Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays

Karulin Alexey Y. and Katona Melinda and Megyesi Zoltán and Kirchenbaum Greg A. and Lehmann Paul V.: Artificial Intelligence-Based Counting Algorithm Enables Accurate and Detailed Analysis of the Broad Spectrum of Spot Morphologies Observed in Antigen-Specific B-Cell ELISPOT and FluoroSpot Assays.
In: Handbook of ELISPOT: Methods and Protocols. Methods in Molecular Biology (2768). Humana Press, New York, pp. 59-85. (2024) ISBN 9781071636893; 9781071636909

[thumbnail of 35730311978-1-0716-3690-9_5.pdf]
Preview
Text
35730311978-1-0716-3690-9_5.pdf - Published Version

Download (808kB) | Preview
[thumbnail of 35730311.pdf]
Preview
Text
35730311.pdf - Cover Image/Table of Contents

Download (250kB) | Preview
Creators:
Karulin Alexey Y.
Katona Melinda MTMT
Megyesi Zoltán
Kirchenbaum Greg A.
Lehmann Paul V.
Item Type: Book Section
Date: 2024
Number: 2768
Number of Pages: 27
Page Range: pp. 59-85
ISBN: 9781071636893; 9781071636909
Publisher: Humana Press
Place of Publication: New York
Faculty/Unit: Not SZTE unit
Institution: Other Institution
Language: English
MTMT rekordazonosító: 35730311
DOI azonosító: https://doi.org/10.1007/978-1-0716-3690-9_5
Related URLs:
Date Deposited: 2025. Apr. 07. 08:45
Last Modified: 2025. Apr. 07. 08:45
URI: http://publicatio.bibl.u-szeged.hu/id/eprint/36434

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year