Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Strong Chang's Conjecture and the tree property at $\omega_2 \approx$

Víctor Torres-Pérez^{a,*}, Liuzhen Wu^b

 ^a Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Haupstraße 8-10/104, 1040 Vienna, Austria
^b Institute of Mathematics, Chinese Academy of Sciences, East Zhong Guan Cun Road No. 55, Beijing 100190, China

A R T I C L E I N F O

Article history: Received 28 October 2013 Received in revised form 12 July 2014 Accepted 1 August 2014 Available online 1 June 2015

Keywords: Strong Chang's Conjecture Tree property

ABSTRACT

We prove that a strong version of Chang's Conjecture together with $2^{\omega} = \omega_2$ implies there are no ω_2 -Aronszajn trees.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a regular cardinal κ , we say that κ has the *tree property* if every tree T of height κ and levels of size $< \kappa$, T has a cofinal branch, and it is usually denoted by $\text{TP}(\kappa)$. Trees of height κ with levels of size $< \kappa$ with no cofinal branches are usually called κ -Aronszajn.

We list some historical results involving the Tree Property for different regular cardinals. König's Lemma gives some sufficient conditions for a tree to have a cofinal branch. He proved in [5] that $TP(\omega)$ holds. However, Aronszajn showed that we cannot generalize König's Lemma for trees of height ω_1 by constructing an ω_1 -Aronszajn tree (see [2]). Considering trees of height ω_2 with levels of size at most \aleph_1 , it turns out to be independent from the usual axioms of Set Theory. We recall also the result by Silver, where if $TP(\omega_2)$ holds, then \aleph_2 is weakly compact in L (Theorem 5.9 in [6]). On the other hand, Mitchell proved that if κ is a weakly compact, then there is a generic extension where $\kappa = \omega_2 = 2^{\omega}$ and $TP(\omega_2)$ holds (see [6]). In particular, $TP(\omega_2)$ is equiconsistent with the existence of a weakly compact cardinal.

* Corresponding author.

http://dx.doi.org/10.1016/j.topol.2015.05.061

 $^{^{*}}$ The first author was supported partially by Project P 26869-N25, Project P 24725-N25, and Project I 1272-N25 of the Austrian Science Fund (FWF). The second author was partially supported by Project P 23316-N13 of the Austrian Science Fund (FWF). The authors are indebted to Hiroshi Sakai for valuable comments and suggestions.

E-mail addresses: victor.torres@tuwien.ac.at (V. Torres-Pérez), lzwu@math.ac.cn (L. Wu).

^{0166-8641/@2015} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

In these notes we work with a strong version of Chang's Conjecture (see Definition 3.1 of the present notes and also see Theorem 1.3 in [9] for an earlier reference) here denoted by CC^{*}. On one hand, Todorčević and Torres-Pérez proved that under a stronger version of CC^{*}, the negation of CH implies there are no special ω_2 -Aronszajn trees (see [15]). On the other hand, Sakai and Velickovic proved that under SSR, a strengthening of CC^{*} (see [1]), the negation of CH together with MA_{ω_1}(Cohen) implies the strong tree property at ω_2 and so in particular it implies TP(ω_2) (see [8]).

We prove in these notes that CC^{*} and the negation of CH imply TP(ω_2). Observe that by a result of Todorčević (see [14]), CC^{*} implies $2^{\omega} \leq \omega_2$, so under CC^{*}, \neg CH is equivalent to $2^{\omega} = \omega_2$.

We make a remark for the necessity of $\neg MA_{\omega_1}(Cohen)$ in [8]:

Theorem 1.1 (Folklore). Assume that there exists a strongly compact cardinal. Then there exists a forcing extension in which $SSR + \neg MA_{\omega_1}(Cohen) + \neg CH$ holds.

The following fact is used:

Fact 1.1. (Shelah [10], Chapter XIII, 1.6 and 1.10) Assume that κ is a strongly compact cardinal. Let $(P_{\alpha}, \dot{Q}_{\beta} : \alpha \leq \kappa, \beta < \kappa)$ be a revised countable support iteration of semi-proper posets of size $< \kappa$ such that $\kappa = \omega_2$ in $V^{P_{\kappa}}$. Then SSR holds in $V^{\mathbb{P}_{\kappa}}$.

Assume that κ is strongly compact in V. Let $(P_{\alpha}, \dot{Q}_{\beta} : \alpha \leq \kappa, \beta < \kappa)$ be the countable support iteration of random forcing. Here recall that a revised countable support iteration coincides with a countable support iteration for proper posets. Note also that $\kappa = \omega_2$ in $V^{P_{\kappa}}$. Hence SSR holds in $V^{\mathbb{P}_{\kappa}}$ by the above fact. Moreover, MA_{ω_1} (Cohen) fails in $V^{P_{\kappa}}$ as adding random reals makes **non**(\mathcal{B}) into ω_1 .

2. Preliminaries and basic definitions

Given a limit ordinal γ , a subset $A \subseteq \gamma$ is unbounded in γ if $\sup(A) = \gamma$. A is closed in γ if for every limit ordinal $\beta < \gamma$, if $A \cap \beta$ is unbounded in β , then $\beta \in A$. A set $A \subseteq \gamma$ is often called a club set in γ if it is closed and unbounded in γ . A set $S \subseteq \gamma$ is stationary, if $S \cap A \neq \emptyset$ for every A club in γ .

The following result involving stationary sets is known as *Fodor's Lemma* or the *Pressing Down Lemma* for ordinals.

Lemma 2.1. (Fodor [3]) Let κ be a regular uncountable cardinal. Then for every $S \subseteq \kappa$ stationary, and for every $f: S \to \kappa$ such that $f(\alpha) < \alpha$ for every $\alpha \in S$, there is $\xi < \kappa$ such that $f^{-1}(\{\xi\})$ is stationary.

We use a general version of a stationary set, originally by Jech, but in these notes we use an equivalent version due to Kueker (see for example, Theorem 8.28 in [4]). Given an infinite set A, we denote by $[A]^{<\omega}$ the collection of finite subsets of A. Similarly, let $[A]^{\omega}$ denote the collection of all subsets of A of size ω . We say that a set $S \subseteq [A]^{\omega}$ is stationary in $[A]^{\omega}$ if for every function $F : [A]^{<\omega} \to A$, there is $X \in [A]^{\omega}$ such that $F(e) \in X$ for every $e \in [X]^{<\omega}$.

The following lemma is the generalized version of the Pressing Down Lemma (see Theorem 8.24 in [4]).

Lemma 2.2 (Jech). For every stationary set $S \subseteq [A]^{\omega}$ and for every function $f: S \to A$ such that $f(X) \in X$ for every $X \in S$, there is $a \in A$ such that $f^{-1}(\{a\})$ is stationary.

The couple $\langle T, <_T \rangle$ is a *tree* whenever $<_T$ is a partial order of T, and for every $t \in T$, the set $\{s \in T : s <_T t\}$ is well-ordered by $<_T$. Some times we may just write the tree T, assuming there is an implicit order. We denote by $\operatorname{pred}_T(t)$ the set of all the $<_T$ -predecessors of t in T, and by $\operatorname{ht}_T(t) = \operatorname{o.t.}(\operatorname{pred}_T(t))$.

We will denote by $T_{\xi} = \{t \in T : ht_T(t) = \xi\}$. Often we will just drop off the subindex T if the context is clear.

For $A, B \subseteq T$ we denote by $A \perp B$ if for every $s \in A$ and every $t \in B$, s and t are not comparable. Similarly, for $s, t \in T$ and $A \subseteq T$, let $s \perp t$ and $s \perp A$ iff $\{s\} \perp \{t\}$ and $\{t\} \perp A$ respectively.

Given an ordinal $\lambda \geq \omega_2$, we recall the Weak Reflection Principle for λ , WRP(λ).

Definition 2.1. WRP(λ) is the following statement: For any stationary subset S of $[\lambda]^{\omega}$, there is $X \subset \lambda$ such that

- (1) $|X| = \omega_1$,
- (2) $\omega_1 \subseteq X$ and $S \cap [X]^{\omega}$ is a stationary subset of $[X]^{\omega}$.

Todorčević showed the following (see Lemma 6 in [14]):

Lemma 2.3 (Todorčević). CC^* implies $WRP(\omega_2)$.

3. Main Theorem

In this section we prove our main result.

Theorem 3.1. Under CC^{*}, \neg CH is equivalent to the tree property at ω_2 .

We follow very closely the proof of Theorem 2.2 in [15]. It is a classical result of Specker that $TP(\omega_2)$ implies $\neg CH$ (see [11]).

Given two sets M^*, M we will denote by $M^* \supseteq M$ iff $M^* \supseteq M$ and $M^* \cap \omega_1 = M \cap \omega_1$. Consider the following strong version of Chang's Conjecture:

Definition 3.1 (CC^{*}). There are arbitrarily large uncountable regular cardinals θ such that for every wellordering < of H_{θ} , and every countable elementary submodel $M \prec \langle H_{\theta}; \in, < \rangle$, and every ordinal $\eta < \omega_2$, there exists an elementary countable submodel $M^* \prec \langle H_{\theta}; \in, < \rangle$ such that $M^* \supseteq M$ and $(M^* \cap \omega_2) \setminus \eta \neq \emptyset$.

We will need the following Proposition for the proof of Lemma 3.1, namely in Claim 3.1.

Proposition 3.1. Let T be a κ -Aronszajn tree (κ a regular cardinal). Given a regular cardinal $\mu < \kappa$, consider a family of collection of nodes $\langle A_{\xi} : \xi \in X \rangle$ such that X contains a stationary set consisting of ordinals of cofinality at least μ , $A_{\xi} \subseteq T_{\xi}$ and $|A_{\xi}| < \mu$ for every $\xi \in X$. Then for every λ large enough such that $\{\kappa, T, X, \langle A_{\xi} : \xi \in X \rangle, \ldots\} \subset H_{\lambda}$ and for every elementary submodel $N \prec \langle H_{\lambda}; \in, <, \kappa, T, X, \langle A_{\xi} : \xi \in X \rangle, \ldots\rangle$ such that $A_{\xi} \subseteq N$ for every $\xi \in X \cap N$, then for every $t \in T$ of height at least $\sup(N \cap \kappa)$ there are unboundedly many (in $\sup(N \cap \kappa)$) $\xi \in X \cap N$ such that every $s \in A_{\xi}$ is incomparable with t.

Proof. Suppose otherwise, and take $t \in T$ of height at least $\sup(N \cap \kappa)$ and $\alpha \in N$ such that for all $\xi \in X \cap N \setminus \alpha$, there is a node $t_{\xi} \in A_{\xi}$ such that $t_{\xi} \leq_T t$. Without loss of generality, we can suppose that X is a stationary set consisting of ordinals greater than α and of cofinality at least μ .

Since $|A_{\xi}| < \mu$ for any $\xi \in X$, there is an ordinal $\beta_{\xi} < \xi$ such that for any $s, s' \in A_{\xi}$, $s = s' \leftrightarrow s \upharpoonright \beta_{\xi} = s' \upharpoonright \beta_{\xi}$. By elementarity and using Fodor's Lemma, we can find $\beta \in N \cap X$ and a stationary set $S \in N$ such that for any $\xi \in S$, $s = s' \leftrightarrow s \upharpoonright \beta = s' \upharpoonright \beta$ for any $s, s' \in A_{\xi}$.

Then for every $s \in A_{\beta}$, we can define a function $f_s : S \to T$ such that $f_s(\xi)$ is the unique $s_{\xi} \in A_{\xi}$ such that $s_{\xi} > s$. Since $A_{\beta} \subseteq N$, in particular $s = t \upharpoonright \beta \in N$, and therefore f_s is defined in N. However, by our initial assumption, $f_s(\xi) = t_{\xi}$ for every $\xi \in S \cap N$, and so f_s defines in N a cofinal branch of T, contradiction. \Box

Let T be an ω_2 -Aronszajn tree. In order to simplify the proof, without loss of generality, we suppose that $T \subseteq \omega_2$ and let $e: \omega_2 \times \omega_1 \to T$ be a bijective function such that $e(\delta, \xi) \in T_\delta$ for every $(\delta, \xi) \in \omega_2 \times \omega_1$. Let θ be sufficiently large such that T, e and all relevant parameters are members of H_{θ} .

Lemma 3.1. Assume CC^{*} and that T is an ω_2 -Aronszajn tree. For every $M \prec H_{\theta}$ countable, and for every $\eta_0, \eta_1 \in \omega_2$, we can find $M_0, M_1 \prec H_{\theta}$ countable such that:

- (1) $M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1$,
- (2) $M_0 \cap \omega_2 \setminus \eta_0 \neq \emptyset$ and $M_1 \cap \omega_2 \setminus \eta_1 \neq \emptyset$,
- (3) $\exists \delta_0 \in (M_0 \cap \omega_2)$ and $\delta_1 \in (M_1 \cap \omega_2)$ such that $(M_0 \cap T_{\delta_0}) \perp (M_1 \cap T_{\delta_1})$.

Proof. Fix $\lambda > \theta$ sufficiently large such that CC^{*} holds in H_{λ} and M, η_0, η_1 and all relevant parameters are in H_{λ} . Let $N \prec H_{\lambda}$ such that if $\gamma = \sup(N \cap \omega_2)$, then $\operatorname{cof}(\gamma) = \omega_1$.

Fix M_1 witnessing CC^{*} for M and γ .

We need the following Claim:

Claim 3.1. For every $t \in T$ of height at least γ , there is $M^* \supseteq M$ with $M^* \in N$ and $\beta \in M^* \cap \omega_2$ such that $t \perp T_\beta \cap M^*$.

Proof. Assume otherwise, and take $t \in T$ of height at least γ such that for every $M^* \in N$ with $M^* \supseteq M$, for each $\beta \in M^* \cap \omega_2$, there is an $s_\beta \in (T_\beta \cap M^*)$ such that $s_\beta < t$.

We work inside N in this paragraph. Using that CC^{*} holds in N, build a sequence of models $\langle M_{\eta} : \eta \in \omega_2 \rangle$ such that $M_{\eta} \supseteq M$ and $M_{\eta} \cap \omega_2 \setminus \eta \neq \emptyset$ for every $\eta \in \omega_2$. Let β_{ξ} be the minimum $\beta \in \omega_2 \setminus \xi$ such that there is $\eta \in \omega_2$ such that $\beta_{\xi} = \min(M_{\eta} \cap \omega_2 \setminus \eta)$. Let η_{ξ} be the minimum $\eta \in \omega_2$ such that $\beta_{\xi} = \min(M_{\eta} \cap \omega_2 \setminus \eta)$. Define $\langle A_{\xi} : \xi \in \omega_2 \rangle$ by setting A_{ξ} to be the set of nodes r in T_{ξ} with $r \leq s$ for some $s \in M_{\eta_{\xi}} \cap T_{\beta_{\xi}}$. Remark that since $M_{\eta_{\xi}}$ is countable, so is A_{ξ} .

By Proposition 3.1, there are unboundedly many $\xi \in N \cap \omega_2$ such that $t \perp A_{\xi}$, so choose one of such ξ 's. Then there is $s \in M_{\eta_{\xi}} \cap T_{\beta_{\xi}}$ such that $s <_T t$. Thus there is $r \in A_{\xi}$ such that $r \leq_T s <_T t$, contradicting that r and t are incomparable. \Box

Let $\{t_n : n \in \omega\}$ be an enumeration of $M_1 \cap T \setminus \gamma$. Using Claim 3.1, build a \subseteq -increasing sequence $\langle M_n^0 : n \in \omega \rangle$ of countable elementary submodels of H_θ such that for every $n \in \omega$, $M_n^0 \in N$ and $M_n^0 \supseteq M$, and such that there is $\beta \in M_n^0 \cap \omega_2$ with $t_n \perp M_n^0 \cap T_\beta$. Let M_0 be an end-extension of $\bigcup_{n < \omega} M_n^0$ derived from CC^{*} and η_0 . Let $\delta_0 = \min(M_0 \cap \omega_2 \setminus \eta_0)$ and $\delta_1 = \min(M_1 \cap \omega_2 \setminus \gamma)$. We claim it suffices.

Take $s \in T_{\delta_0} \cap M_0$ and $t \in T_{\delta_1} \cap M_1$. In particular, there is $n \in \omega$ and $\beta \in M_n^0 \cap \omega_2$ such that $t = t_n$ and $t \perp T_\beta \cap M_n^0$. Since $\beta \in M_n^0 \subseteq M_0$, we have $s \restriction_\beta \in M_0$. Moreover, since the enumeration function $e \in M_n^0 \subseteq M_0$ and $M_n^0 \cap \omega_1 = M_0 \cap \omega_1$, we have $T_\beta \cap M_0 = T_\beta \cap M_n^0$ and so $s \restriction_\beta \in M_n^0$. Therefore $s \restriction_\beta$ is not comparable with t, and so neither are s and t.

This finishes the proof of Lemma 3.1. \Box

Lemma 3.2. Assume CC^{*}. Let T be an ω_2 -Aronszajn tree. If the set

 $S_T = \{A \in [\omega_2]^{\omega} : \forall t \in T(\operatorname{pred}(t) \cap A \text{ is bounded in } \sup(A))\}$

is nonstationary, then CH holds.

Proof. Let $f : [\omega_2]^{<\omega} \to \omega_2$ such that the set C_f of closure points of f (i.e. $X \in C_f$ iff for every $e \in [X]^{<\omega}$, $f(e) \in X$) is disjoint with S_T . We can suppose that $T \subseteq \omega_2$ and $e : \omega_1 \times \omega_2 \to T$ is a bijection such that $e(\delta, \beta) \in T_\delta$. Let λ be sufficiently large such that T, S_T, f, e and all relevant parameters are members of H_λ .

Using previous lemma, build a binary tree $\langle M_{\sigma} \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_{λ} with the property that for every $\sigma \in 2^{<\omega}$

- (1) $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1,$
- (2) $M_{\sigma} \cap \omega_2 \subsetneq M_{\sigma \frown 0} \cap \omega_2$ and $M_{\sigma} \cap \omega_2 \subsetneq M_{\sigma \frown 1} \cap \omega_2$,
- (3) there exists $\delta_0 \in (M_{\sigma \frown 0} \cap \omega_2)$ and $\delta_1 \in (M_{\sigma \frown 1} \cap \omega_2)$ such that $T_{\delta_0} \cap M_{\sigma \frown 0} \perp T_{\delta_0} \cap M_{\sigma \frown 1}$,
- (4) for every $r \in 2^{\omega}$, if $M_r = \bigcup_{n \in \omega} M_{r \upharpoonright n}$, then for every $r, r' \in 2^{\omega}$, $\sup(M_r \cap \omega_2) = \sup(M_{r'} \cap \omega_2)$.

Let δ be the common supremum of every $M_r \cap \omega_2$, $r \in 2^{\omega}$. Then for every $r \in 2^{\omega}$, there is $t_r \in T_{\delta} \cap M_r$ such that for every $\operatorname{pred}(t_r) \cap M_r$ is unbounded in δ .

Claim 3.2. The application $r \mapsto t_r$ is an injection from 2^{ω} to T_{δ} (and so CH does hold).

Proof. Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by t_i the node t_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of t_0 and t_1 that are incomparable.

Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality suppose $r_i(n) = i$ for $i \in \{0, 1\}$.

Since $(M_{r_i} \cap \omega_2) \notin S_T$, we can find $s_i <_T t_i$ with $s_i \in M_{r_i \upharpoonright_{m_i}}$ for some $m_i > n$. By the construction of our binary tree, we can take $\delta_0 \in M_{r_0 \upharpoonright_{n+1}}$ and $\delta_1 \in M_{r_1 \upharpoonright_{n+1}}$ such that $T_{\delta_0} \cap M_{r_0 \upharpoonright_{n+1}} \perp T_{\delta_1} \cap M_{r_1 \upharpoonright_{n+1}}$. However, observe that for $i \in \{0, 1\}$, $\delta_i \in M_{r_i \upharpoonright_{n+1}} \subseteq M_{r_1}$, and so $t_i \upharpoonright_{\delta_i} \in M_{r_i \upharpoonright_{n+1}}$. Therefore, $t_0 \upharpoonright_{\delta_0}$ and $t_1 \upharpoonright_{\delta_1}$ are incomparable, and so $t_0 \neq t_1$. \Box

This finishes the proof of Lemma 3.2. \Box

We are now ready to finish the proof of our Theorem. From the previous lemma we know that the set S_T is stationary in $[\omega_2]^{\omega_0}$. Let $S'_T = S_T \cap C_e$, where C_e is the club of all countable subsets of ω_2 closed under the level enumeration function e of T.

We now use that CC^{*} implies WRP(ω_2) (Lemma 2.3). Take $X \subseteq \omega_2$ of size \aleph_1 such that $\omega_1 \subseteq X$ and where $S'_T \cap [X]^{\omega}$ is stationary. Take $t \in T$ of height at least sup(X).

From the definition of S_T , for every $A \in S'_T \cap [X]^{\omega}$ we can choose $\beta_A \in A$ such that if $s \in \operatorname{pred}(T) \cap A$, then $s < \beta_A$. By the Pressing Down Lemma, there is a stationary set $S \subseteq S'_T \cap [X]^{\omega}$ and a β such that $\beta_A = \beta$ for all $A \in S$. Let $\xi \in \omega_1$ such that $e(\beta, \xi) = t \upharpoonright_{\beta}$. Observe that S is in particular cofinal in $[X]^{\omega}$ so $\bigcup S = X$. Since $\omega_1 \subseteq X$, pick $A \in S$ such that $\xi \in A$. Therefore, $e(\beta, \xi) \in A \cap \operatorname{pred}(t)$, and so $e(\beta, \xi) < \beta$. But this is a contradiction, since in general $e(\beta, \xi) \ge \beta$ for any $\beta \in \omega_2$. This ends the proof of our Theorem.

4. Some final remarks

We mention some related previous results. R. Strullu proved that the Map Reflection Principle, introduced by Moore in [7], together with MA_{ω_1} implies $TP(\omega_2)$ (see [12]). Also it is implicit in B. Velickovic and H. Sakai's results ([8]) that $WRP(\omega_2) + MA_{\omega_1}(Cohen)$ implies $TP(\omega_2)$.

We remark that the results in [15] were in the context of Rado's Conjecture (RC), which is the following statement in Todorčević's equivalent version:

Definition 4.1 (RC). Every tree T of height \aleph_1 is special, i.e., the countable union of antichains if and only if every subtree of T of size \aleph_1 is also special.

Todorčević proved via a large cardinal that RC is consistent, and showed it is independent from ZFC. In particular, RC is not compatible with MA_{ω_1} (see final remarks in [13]).

As we have mentioned, in [15], it was proved that Rado's Conjecture together with the negation of the Continuum implies there are no special ω_2 -Aronszajn trees. One natural question was which extra condition we could add to Rado's Conjecture to obtain that there are no ω_2 -Aronszajn trees at all. Since Rado's Conjecture is consistent with both CH and \neg CH, and CH implies \neg TP(ω_2), we needed at least to add the condition \neg CH to RC if we wanted to obtain TP(ω_2). However, as we have mentioned, RC is not consistent with MA ω_1 , so we could not have similar results as the one cited above.

Todorčević proved in [14] that RC implies CC^{*}. Therefore, a consequence of the result in the present paper is that the condition \neg CH was not only needed, but also sufficient to add to RC to get TP(ω_2).

Corollary 4.1. RC and \neg CH imply TP(ω_2).

As we have mentioned, Todorčević proved in [14] that CC^* implies $WRP(\omega_2)$. The following question is still open.

Question 4.1. Do WRP(ω_2) and \neg CH imply together TP(ω_2)?

References

- [1] Philipp Doebler, Ralf Schindler, Π_2 consequences of BMM + NS_{ω_1} is precipitous and the semiproperness of stationary set preserving forcings, Math. Res. Lett. 16 (5) (2009) 797–815.
- [2] Kurepa Dura, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgr. 4 (1935) 1–38.
- [3] G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged.) 17 (1956) 139–142.
- [4] Thomas Jech, Set Theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- [5] Dénes Kőnig, Über eine Schlussweise aus dem Endlichen ins Undendliche, Acta Sci. Math. (Szeged.) 3 (2–3) (1927) 121–130.
- [6] William Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Log. 5 (1972/73) 21-46.
- [7] Justin Tatch Moore, Set mapping reflection, J. Math. Log. 5 (1) (2005) 87–97.
- [8] Hiroshi Sakai, Boban Veličković, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (01) (2015) 69–85.
- [9] Saharon Shelah, Proper Forcing, Lect. Notes Math., vol. 940, Springer-Verlag, Berlin, 1982.
- [10] Saharon Shelah, Proper and Improper Forcing, second edition, Perspect. Math. Log., Springer-Verlag, Berlin, 1998.
- [11] E. Specker, Sur un problème de Sikorski, Colloq. Math. 2 (1949) 9–12.
- [12] Remi Strullu, MRP, tree properties and square principles, J. Symb. Log. 76 (4) (2011) 1441–1452.
- [13] S. Todorčević, On a conjecture of R. Rado, J. Lond. Math. Soc. 27 (1) (1983) 1-8.
- [14] Stevo Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, Banff, AB, 1991, in: NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, pp. 385–398.
- [15] Stevo Todorčević, Víctor Torres-Pérez, Conjectures of Rado and Chang and special Aronszajn trees, Math. Log. Q. 58 (4–5) (2012) 342–347.