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1. Introduction

Given a regular cardinal κ, we say that κ has the tree property if every tree T of height κ and levels of 
size < κ, T has a cofinal branch, and it is usually denoted by TP(κ). Trees of height κ with levels of size 
< κ with no cofinal branches are usually called κ-Aronszajn.

We list some historical results involving the Tree Property for different regular cardinals. König’s Lemma 
gives some sufficient conditions for a tree to have a cofinal branch. He proved in [5] that TP(ω) holds. 
However, Aronszajn showed that we cannot generalize König’s Lemma for trees of height ω1 by constructing 
an ω1-Aronszajn tree (see [2]). Considering trees of height ω2 with levels of size at most ℵ1, it turns out to 
be independent from the usual axioms of Set Theory. We recall also the result by Silver, where if TP(ω2)
holds, then ℵ2 is weakly compact in L (Theorem 5.9 in [6]). On the other hand, Mitchell proved that if κ
is a weakly compact, then there is a generic extension where κ = ω2 = 2ω and TP(ω2) holds (see [6]). In 
particular, TP(ω2) is equiconsistent with the existence of a weakly compact cardinal.
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In these notes we work with a strong version of Chang’s Conjecture (see Definition 3.1 of the present notes 
and also see Theorem 1.3 in [9] for an earlier reference) here denoted by CC∗. On one hand, Todorčević 
and Torres-Pérez proved that under a stronger version of CC∗, the negation of CH implies there are no 
special ω2-Aronszajn trees (see [15]). On the other hand, Sakai and Velickovic proved that under SSR, a 
strengthening of CC∗ (see [1]), the negation of CH together with MAω1(Cohen) implies the strong tree 
property at ω2 and so in particular it implies TP(ω2) (see [8]).

We prove in these notes that CC∗ and the negation of CH imply TP(ω2). Observe that by a result of 
Todorčević (see [14]), CC∗ implies 2ω ≤ ω2, so under CC∗, ¬CH is equivalent to 2ω = ω2.

We make a remark for the necessity of ¬MAω1(Cohen) in [8]:

Theorem 1.1 (Folklore). Assume that there exists a strongly compact cardinal. Then there exists a forcing 
extension in which SSR + ¬MAω1(Cohen) + ¬CH holds.

The following fact is used:

Fact 1.1. (Shelah [10], Chapter XIII, 1.6 and 1.10) Assume that κ is a strongly compact cardinal. Let 
(Pα, Q̇β : α ≤ κ, β < κ) be a revised countable support iteration of semi-proper posets of size < κ such that 
κ = ω2 in V Pκ . Then SSR holds in V Pκ .

Assume that κ is strongly compact in V . Let (Pα, Q̇β : α ≤ κ, β < κ) be the countable support iteration 
of random forcing. Here recall that a revised countable support iteration coincides with a countable support 
iteration for proper posets. Note also that κ = ω2 in V Pκ . Hence SSR holds in V Pκ by the above fact. 
Moreover, MAω1(Cohen) fails in V Pκ as adding random reals makes non(B) into ω1.

2. Preliminaries and basic definitions

Given a limit ordinal γ, a subset A ⊆ γ is unbounded in γ if sup(A) = γ. A is closed in γ if for every 
limit ordinal β < γ, if A ∩ β is unbounded in β, then β ∈ A. A set A ⊆ γ is often called a club set in γ if it 
is closed and unbounded in γ. A set S ⊆ γ is stationary, if S ∩A �= ∅ for every A club in γ.

The following result involving stationary sets is known as Fodor’s Lemma or the Pressing Down Lemma 
for ordinals.

Lemma 2.1. (Fodor [3]) Let κ be a regular uncountable cardinal. Then for every S ⊆ κ stationary, and for 
every f : S → κ such that f(α) < α for every α ∈ S, there is ξ < κ such that f−1({ξ}) is stationary.

We use a general version of a stationary set, originally by Jech, but in these notes we use an equivalent
version due to Kueker (see for example, Theorem 8.28 in [4]). Given an infinite set A, we denote by [A]<ω

the collection of finite subsets of A. Similarly, let [A]ω denote the collection of all subsets of A of size ω. We 
say that a set S ⊆ [A]ω is stationary in [A]ω if for every function F : [A]<ω → A, there is X ∈ [A]ω such 
that F (e) ∈ X for every e ∈ [X]<ω.

The following lemma is the generalized version of the Pressing Down Lemma (see Theorem 8.24 in [4]).

Lemma 2.2 (Jech). For every stationary set S ⊆ [A]ω and for every function f : S → A such that f(X) ∈ X

for every X ∈ S, there is a ∈ A such that f−1({a}) is stationary.

The couple 〈T, <T 〉 is a tree whenever <T is a partial order of T , and for every t ∈ T , the set {s ∈ T :
s <T t} is well-ordered by <T . Some times we may just write the tree T , assuming there is an implicit 
order. We denote by predT (t) the set of all the <T -predecessors of t in T , and by htT (t) = o.t.(predT (t)). 
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We will denote by Tξ = {t ∈ T : htT (t) = ξ}. Often we will just drop off the subindex T if the context is 
clear.

For A, B ⊆ T we denote by A ⊥ B if for every s ∈ A and every t ∈ B, s and t are not comparable. 
Similarly, for s, t ∈ T and A ⊆ T , let s ⊥ t and s ⊥ A iff {s} ⊥ {t} and {t} ⊥ A respectively.

Given an ordinal λ ≥ ω2, we recall the Weak Reflection Principle for λ, WRP(λ).

Definition 2.1. WRP(λ) is the following statement: For any stationary subset S of [λ]ω, there is X ⊂ λ such 
that

(1) |X| = ω1,
(2) ω1 ⊆ X and S ∩ [X]ω is a stationary subset of [X]ω.

Todorčević showed the following (see Lemma 6 in [14]):

Lemma 2.3 (Todorčević). CC∗ implies WRP(ω2).

3. Main Theorem

In this section we prove our main result.

Theorem 3.1. Under CC∗, ¬CH is equivalent to the tree property at ω2.

We follow very closely the proof of Theorem 2.2 in [15]. It is a classical result of Specker that TP(ω2)
implies ¬CH (see [11]).

Given two sets M∗, M we will denote by M∗ � M iff M∗ ⊇ M and M∗ ∩ ω1 = M ∩ ω1. Consider the 
following strong version of Chang’s Conjecture:

Definition 3.1 (CC∗). There are arbitrarily large uncountable regular cardinals θ such that for every well-
ordering < of Hθ, and every countable elementary submodel M ≺ 〈Hθ; ∈, <〉, and every ordinal η < ω2, 
there exists an elementary countable submodel M∗ ≺ 〈Hθ; ∈, <〉 such that M∗ � M and (M∗ ∩ω2) \ η �= ∅.

We will need the following Proposition for the proof of Lemma 3.1, namely in Claim 3.1.

Proposition 3.1. Let T be a κ-Aronszajn tree (κ a regular cardinal). Given a regular cardinal μ < κ, consider 
a family of collection of nodes 〈Aξ : ξ ∈ X〉 such that X contains a stationary set consisting of ordinals 
of cofinality at least μ, Aξ ⊆ Tξ and |Aξ| < μ for every ξ ∈ X. Then for every λ large enough such that 
{κ, T, X, 〈Aξ : ξ ∈ X〉, . . .} ⊂ Hλ and for every elementary submodel N ≺ 〈Hλ; ∈, <, κ, T, X, 〈Aξ : ξ ∈
X〉, . . .〉 such that Aξ ⊆ N for every ξ ∈ X ∩N , then for every t ∈ T of height at least sup(N ∩ κ) there are 
unboundedly many (in sup(N ∩ κ)) ξ ∈ X ∩N such that every s ∈ Aξ is incomparable with t.

Proof. Suppose otherwise, and take t ∈ T of height at least sup(N ∩ κ) and α ∈ N such that for all 
ξ ∈ X ∩N \ α, there is a node tξ ∈ Aξ such that tξ ≤T t. Without loss of generality, we can suppose that 
X is a stationary set consisting of ordinals greater than α and of cofinality at least μ.

Since |Aξ| < μ for any ξ ∈ X, there is an ordinal βξ < ξ such that for any s, s′ ∈ Aξ, s = s′ ↔ s � βξ =
s′ � βξ. By elementarity and using Fodor’s Lemma, we can find β ∈ N ∩X and a stationary set S ∈ N such 
that for any ξ ∈ S, s = s′ ↔ s � β = s′ � β for any s, s′ ∈ Aξ.

Then for every s ∈ Aβ , we can define a function fs : S → T such that fs(ξ) is the unique sξ ∈ Aξ

such that sξ > s. Since Aβ ⊆ N , in particular s = t � β ∈ N , and therefore fs is defined in N . However, 
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by our initial assumption, fs(ξ) = tξ for every ξ ∈ S ∩ N , and so fs defines in N a cofinal branch of T , 
contradiction. �

Let T be an ω2-Aronszajn tree. In order to simplify the proof, without loss of generality, we suppose that 
T ⊆ ω2 and let e : ω2 × ω1 → T be a bijective function such that e(δ, ξ) ∈ Tδ for every (δ, ξ) ∈ ω2 × ω1. Let 
θ be sufficiently large such that T , e and all relevant parameters are members of Hθ.

Lemma 3.1. Assume CC∗ and that T is an ω2-Aronszajn tree. For every M ≺ Hθ countable, and for every 
η0, η1 ∈ ω2, we can find M0, M1 ≺ Hθ countable such that:

(1) M ∩ ω1 = M0 ∩ ω1 = M1 ∩ ω1,
(2) M0 ∩ ω2 \ η0 �= ∅ and M1 ∩ ω2 \ η1 �= ∅,
(3) ∃δ0 ∈ (M0 ∩ ω2) and δ1 ∈ (M1 ∩ ω2) such that (M0 ∩ Tδ0) ⊥ (M1 ∩ Tδ1).

Proof. Fix λ > θ sufficiently large such that CC∗ holds in Hλ and M, η0, η1 and all relevant parameters are 
in Hλ. Let N ≺ Hλ such that if γ = sup(N ∩ ω2), then cof(γ) = ω1.

Fix M1 witnessing CC* for M and γ.
We need the following Claim:

Claim 3.1. For every t ∈ T of height at least γ, there is M∗ � M with M∗ ∈ N and β ∈ M∗ ∩ ω2 such that 
t ⊥ Tβ ∩M∗.

Proof. Assume otherwise, and take t ∈ T of height at least γ such that for every M∗ ∈ N with M∗ � M , 
for each β ∈ M∗ ∩ ω2, there is an sβ ∈ (Tβ ∩M∗) such that sβ < t.

We work inside N in this paragraph. Using that CC∗ holds in N , build a sequence of models 〈Mη : η ∈ ω2〉
such that Mη � M and Mη ∩ω2 \ η �= ∅ for every η ∈ ω2. Let βξ be the minimum β ∈ ω2 \ ξ such that there 
is η ∈ ω2 such that βξ = min(Mη ∩ω2 \ η). Let ηξ be the minimum η ∈ ω2 such that βξ = min(Mη ∩ω2 \ η). 
Define 〈Aξ : ξ ∈ ω2〉 by setting Aξ to be the set of nodes r in Tξ with r ≤ s for some s ∈ Mηξ

∩Tβξ
. Remark 

that since Mηξ
is countable, so is Aξ.

By Proposition 3.1, there are unboundedly many ξ ∈ N ∩ω2 such that t ⊥ Aξ, so choose one of such ξ’s. 
Then there is s ∈ Mηξ

∩ Tβξ
such that s <T t. Thus there is r ∈ Aξ such that r ≤T s <T t, contradicting 

that r and t are incomparable. �
Let {tn : n ∈ ω} be an enumeration of M1 ∩ T \ γ. Using Claim 3.1, build a ⊆-increasing sequence 

〈M0
n : n ∈ ω〉 of countable elementary submodels of Hθ such that for every n ∈ ω, M0

n ∈ N and M0
n � M , 

and such that there is β ∈ M0
n ∩ ω2 with tn ⊥ M0

n ∩ Tβ . Let M0 be an end-extension of 
⋃

n<ω M0
n derived 

from CC∗ and η0. Let δ0 = min(M0 ∩ ω2 \ η0) and δ1 = min(M1 ∩ ω2 \ γ). We claim it suffices.
Take s ∈ Tδ0 ∩ M0 and t ∈ Tδ1 ∩ M1. In particular, there is n ∈ ω and β ∈ M0

n ∩ ω2 such that t = tn
and t ⊥ Tβ ∩ M0

n. Since β ∈ M0
n ⊆ M0, we have s�β ∈ M0. Moreover, since the enumeration function 

e ∈ M0
n ⊆ M0 and M0

n ∩ ω1 = M0 ∩ ω1, we have Tβ ∩M0 = Tβ ∩M0
n and so s�β ∈ M0

n. Therefore s�β is not 
comparable with t, and so neither are s and t.

This finishes the proof of Lemma 3.1. �
Lemma 3.2. Assume CC∗. Let T be an ω2-Aronszajn tree. If the set

ST = {A ∈ [ω2]ω : ∀t ∈ T (pred(t) ∩A is bounded in sup(A))}

is nonstationary, then CH holds.
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Proof. Let f : [ω2]<ω → ω2 such that the set Cf of closure points of f (i.e. X ∈ Cf iff for every e ∈ [X]<ω, 
f(e) ∈ X) is disjoint with ST . We can suppose that T ⊆ ω2 and e : ω1 × ω2 → T is a bijection such that 
e(δ, β) ∈ Tδ. Let λ be sufficiently large such that T , ST , f , e and all relevant parameters are members of Hλ.

Using previous lemma, build a binary tree 〈Mσ〉σ∈2<ω of countable elementary submodels of Hλ with the 
property that for every σ ∈ 2<ω

(1) Mσ ∩ ω1 = Mσ�0 ∩ ω1 = Mσ�1 ∩ ω1,
(2) Mσ ∩ ω2 � Mσ�0 ∩ ω2 and Mσ ∩ ω2 � Mσ�1 ∩ ω2,
(3) there exists δ0 ∈ (Mσ�0 ∩ ω2) and δ1 ∈ (Mσ�1 ∩ ω2) such that Tδ0 ∩Mσ�0 ⊥ Tδ0 ∩Mσ�1,
(4) for every r ∈ 2ω, if Mr =

⋃

n∈ω
Mr�n, then for every r, r′ ∈ 2ω, sup(Mr ∩ ω2) = sup(Mr′ ∩ ω2).

Let δ be the common supremum of every Mr ∩ ω2, r ∈ 2ω. Then for every r ∈ 2ω, there is tr ∈ Tδ ∩Mr

such that for every pred(tr) ∩Mr is unbounded in δ.

Claim 3.2. The application r �→ tr is an injection from 2ω to Tδ (and so CH does hold).

Proof. Let r0, r1 ∈ 2ω with r0 �= r1 and denote by ti the node tri for i ∈ {0, 1}. We will find two predecessors 
of t0 and t1 that are incomparable.

Let n ∈ ω such that r0�n = r1�n = σ, and r0�n+1 �= r1�n+1. Without loss of generality suppose ri(n) = i

for i ∈ {0, 1}.
Since (Mri ∩ ω2) /∈ ST , we can find si <T ti with si ∈ Mri�mi

for some mi > n. By the construction 
of our binary tree, we can take δ0 ∈ Mr0�n+1 and δ1 ∈ Mr1�n+1 such that Tδ0 ∩ Mr0�n+1 ⊥ Tδ1 ∩ Mr1�n+1 . 
However, observe that for i ∈ {0, 1}, δi ∈ Mri�n+1 ⊆ Mr1 , and so ti�δi ∈ Mri�n+1 . Therefore, t0�δ0 and t1�δ1
are incomparable, and so t0 �= t1. �

This finishes the proof of Lemma 3.2. �
We are now ready to finish the proof of our Theorem. From the previous lemma we know that the set ST

is stationary in [ω2]ω0 . Let S′
T = ST ∩ Ce, where Ce is the club of all countable subsets of ω2 closed under 

the level enumeration function e of T .
We now use that CC∗ implies WRP(ω2) (Lemma 2.3). Take X ⊆ ω2 of size ℵ1 such that ω1 ⊆ X and 

where S′
T ∩ [X]ω is stationary. Take t ∈ T of height at least sup(X).

From the definition of ST , for every A ∈ S′
T ∩ [X]ω we can choose βA ∈ A such that if s ∈ pred(T ) ∩ A, 

then s < βA. By the Pressing Down Lemma, there is a stationary set S ⊆ S′
T ∩ [X]ω and a β such that 

βA = β for all A ∈ S. Let ξ ∈ ω1 such that e(β, ξ) = t�β . Observe that S is in particular cofinal in [X]ω so 
⋃
S = X. Since ω1 ⊆ X, pick A ∈ S such that ξ ∈ A. Therefore, e(β, ξ) ∈ A ∩ pred(t), and so e(β, ξ) < β. 

But this is a contradiction, since in general e(β, ξ) ≥ β for any β ∈ ω2. This ends the proof of our Theorem.

4. Some final remarks

We mention some related previous results. R. Strullu proved that the Map Reflection Principle, introduced 
by Moore in [7], together with MAω1 implies TP(ω2) (see [12]). Also it is implicit in B. Velickovic and 
H. Sakai’s results ([8]) that WRP(ω2) + MAω1(Cohen) implies TP(ω2).

We remark that the results in [15] were in the context of Rado’s Conjecture (RC), which is the following 
statement in Todorčević’s equivalent version:

Definition 4.1 (RC). Every tree T of height ℵ1 is special, i.e., the countable union of antichains if and only 
if every subtree of T of size ℵ1 is also special.
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Todorčević proved via a large cardinal that RC is consistent, and showed it is independent from ZFC. In 
particular, RC is not compatible with MAω1 (see final remarks in [13]).

As we have mentioned, in [15], it was proved that Rado’s Conjecture together with the negation of the 
Continuum implies there are no special ω2-Aronszajn trees. One natural question was which extra condition 
we could add to Rado’s Conjecture to obtain that there are no ω2-Aronszajn trees at all. Since Rado’s 
Conjecture is consistent with both CH and ¬CH, and CH implies ¬TP(ω2), we needed at least to add the 
condition ¬CH to RC if we wanted to obtain TP(ω2). However, as we have mentioned, RC is not consistent 
with MAω1 , so we could not have similar results as the one cited above.

Todorčević proved in [14] that RC implies CC∗. Therefore, a consequence of the result in the present 
paper is that the condition ¬CH was not only needed, but also sufficient to add to RC to get TP(ω2).

Corollary 4.1. RC and ¬CH imply TP(ω2).

As we have mentioned, Todorčević proved in [14] that CC∗ implies WRP(ω2). The following question is 
still open.

Question 4.1. Do WRP(ω2) and ¬CH imply together TP(ω2)?
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