Strong Chang's Conjecture and the tree property at $\omega_{2}{ }^{\pi}$

Víctor Torres-Pérez ${ }^{\text {a,* }}$, Liuzhen Wu ${ }^{\text {b }}$
${ }^{\text {a }}$ Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Haupstraße 8-10/104, 1040 Vienna, Austria
${ }^{\text {b }}$ Institute of Mathematics, Chinese Academy of Sciences, East Zhong Guan Cun Road No. 55, Beijing 100190, China

A R T I C L E I N F O

Article history:
Received 28 October 2013
Received in revised form 12 July
2014
Accepted 1 August 2014
Available online 1 June 2015

Keywords:

Strong Chang's Conjecture
Tree property

Abstract

We prove that a strong version of Chang's Conjecture together with $2^{\omega}=\omega_{2}$ implies there are no ω_{2}-Aronszajn trees. © 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Given a regular cardinal κ, we say that κ has the tree property if every tree T of height κ and levels of size $<\kappa, T$ has a cofinal branch, and it is usually denoted by $\operatorname{TP}(\kappa)$. Trees of height κ with levels of size $<\kappa$ with no cofinal branches are usually called κ-Aronszajn.

We list some historical results involving the Tree Property for different regular cardinals. König's Lemma gives some sufficient conditions for a tree to have a cofinal branch. He proved in [5] that $\operatorname{TP}(\omega)$ holds. However, Aronszajn showed that we cannot generalize König's Lemma for trees of height ω_{1} by constructing an ω_{1}-Aronszajn tree (see [2]). Considering trees of height ω_{2} with levels of size at most \aleph_{1}, it turns out to be independent from the usual axioms of Set Theory. We recall also the result by Silver, where if $\operatorname{TP}\left(\omega_{2}\right)$ holds, then \aleph_{2} is weakly compact in L (Theorem 5.9 in [6]). On the other hand, Mitchell proved that if κ is a weakly compact, then there is a generic extension where $\kappa=\omega_{2}=2^{\omega}$ and $\operatorname{TP}\left(\omega_{2}\right)$ holds (see [6]). In particular, $\operatorname{TP}\left(\omega_{2}\right)$ is equiconsistent with the existence of a weakly compact cardinal.

[^0]In these notes we work with a strong version of Chang's Conjecture (see Definition 3.1 of the present notes and also see Theorem 1.3 in [9] for an earlier reference) here denoted by CC^{*}. On one hand, Todorčević and Torres-Pérez proved that under a stronger version of CC^{*}, the negation of CH implies there are no special ω_{2}-Aronszajn trees (see [15]). On the other hand, Sakai and Velickovic proved that under SSR, a strengthening of CC^{*} (see [1]), the negation of CH together with $\mathrm{MA}_{\omega_{1}}$ (Cohen) implies the strong tree property at ω_{2} and so in particular it implies $\operatorname{TP}\left(\omega_{2}\right)$ (see [8]).

We prove in these notes that CC^{*} and the negation of CH imply $\mathrm{TP}\left(\omega_{2}\right)$. Observe that by a result of Todorčević (see [14]), CC ${ }^{*}$ implies $2^{\omega} \leq \omega_{2}$, so under $\mathrm{CC}^{*}, \neg \mathrm{CH}$ is equivalent to $2^{\omega}=\omega_{2}$.

We make a remark for the necessity of $\neg \mathrm{MA}_{\omega_{1}}$ (Cohen) in [8]:
Theorem 1.1 (Folklore). Assume that there exists a strongly compact cardinal. Then there exists a forcing extension in which $\mathrm{SSR}+\neg \mathrm{MA}_{\omega_{1}}($ Cohen $)+\neg \mathrm{CH}$ holds.

The following fact is used:
Fact 1.1. (Shelah [10], Chapter XIII, 1.6 and 1.10) Assume that κ is a strongly compact cardinal. Let $\left(P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \kappa, \beta<\kappa\right)$ be a revised countable support iteration of semi-proper posets of size $<\kappa$ such that $\kappa=\omega_{2}$ in $V^{P_{\kappa}}$. Then SSR holds in $V^{\mathbb{P}_{\kappa}}$.

Assume that κ is strongly compact in V. Let $\left(P_{\alpha}, \dot{Q}_{\beta}: \alpha \leq \kappa, \beta<\kappa\right)$ be the countable support iteration of random forcing. Here recall that a revised countable support iteration coincides with a countable support iteration for proper posets. Note also that $\kappa=\omega_{2}$ in $V^{P_{\kappa}}$. Hence SSR holds in $V^{\mathbb{P}_{\kappa}}$ by the above fact. Moreover, $\mathrm{MA}_{\omega_{1}}$ (Cohen) fails in $V^{P_{\kappa}}$ as adding random reals makes non (\mathcal{B}) into ω_{1}.

2. Preliminaries and basic definitions

Given a limit ordinal γ, a subset $A \subseteq \gamma$ is unbounded in γ if $\sup (A)=\gamma$. A is closed in γ if for every limit ordinal $\beta<\gamma$, if $A \cap \beta$ is unbounded in β, then $\beta \in A$. A set $A \subseteq \gamma$ is often called a club set in γ if it is closed and unbounded in γ. A set $S \subseteq \gamma$ is stationary, if $S \cap A \neq \emptyset$ for every A club in γ.

The following result involving stationary sets is known as Fodor's Lemma or the Pressing Down Lemma for ordinals.

Lemma 2.1. (Fodor [3]) Let κ be a regular uncountable cardinal. Then for every $S \subseteq \kappa$ stationary, and for every $f: S \rightarrow \kappa$ such that $f(\alpha)<\alpha$ for every $\alpha \in S$, there is $\xi<\kappa$ such that $f^{-1}(\{\xi\})$ is stationary.

We use a general version of a stationary set, originally by Jech, but in these notes we use an equivalent version due to Kueker (see for example, Theorem 8.28 in [4]). Given an infinite set A, we denote by $[A]<\omega$ the collection of finite subsets of A. Similarly, let $[A]^{\omega}$ denote the collection of all subsets of A of size ω. We say that a set $S \subseteq[A]^{\omega}$ is stationary in $[A]^{\omega}$ if for every function $F:[A]^{<\omega} \rightarrow A$, there is $X \in[A]^{\omega}$ such that $F(e) \in X$ for every $e \in[X]^{<\omega}$.

The following lemma is the generalized version of the Pressing Down Lemma (see Theorem 8.24 in [4]).
Lemma 2.2 (Jech). For every stationary set $S \subseteq[A]^{\omega}$ and for every function $f: S \rightarrow A$ such that $f(X) \in X$ for every $X \in S$, there is $a \in A$ such that $f^{-1}(\{a\})$ is stationary.

The couple $\left\langle T,<_{T}\right\rangle$ is a tree whenever $<_{T}$ is a partial order of T, and for every $t \in T$, the set $\{s \in T$: $\left.s<_{T} t\right\}$ is well-ordered by $<_{T}$. Some times we may just write the tree T, assuming there is an implicit order. We denote by $\operatorname{pred}_{T}(t)$ the set of all the $<_{T}$-predecessors of t in T, and by ht $T_{T}(t)=$ o.t. $\left(\operatorname{pred}_{T}(t)\right)$.

We will denote by $T_{\xi}=\left\{t \in T: \mathrm{ht}_{T}(t)=\xi\right\}$. Often we will just drop off the subindex T if the context is clear.

For $A, B \subseteq T$ we denote by $A \perp B$ if for every $s \in A$ and every $t \in B, s$ and t are not comparable. Similarly, for $s, t \in T$ and $A \subseteq T$, let $s \perp t$ and $s \perp A$ iff $\{s\} \perp\{t\}$ and $\{t\} \perp A$ respectively.

Given an ordinal $\lambda \geq \omega_{2}$, we recall the Weak Reflection Principle for $\lambda, \operatorname{WRP}(\lambda)$.

Definition 2.1. $\mathrm{WRP}(\lambda)$ is the following statement: For any stationary subset S of $[\lambda]^{\omega}$, there is $X \subset \lambda$ such that
(1) $|X|=\omega_{1}$,
(2) $\omega_{1} \subseteq X$ and $S \cap[X]^{\omega}$ is a stationary subset of $[X]^{\omega}$.

Todorčević showed the following (see Lemma 6 in [14]):

Lemma 2.3 (Todorčević). CC^{*} implies $\operatorname{WRP}\left(\omega_{2}\right)$.

3. Main Theorem

In this section we prove our main result.

Theorem 3.1. Under $\mathrm{CC}^{*}, \neg \mathrm{CH}$ is equivalent to the tree property at ω_{2}.

We follow very closely the proof of Theorem 2.2 in [15]. It is a classical result of Specker that $\operatorname{TP}\left(\omega_{2}\right)$ implies $\neg \mathrm{CH}$ (see [11]).

Given two sets M^{*}, M we will denote by $M^{*} \sqsupseteq M$ iff $M^{*} \supseteq M$ and $M^{*} \cap \omega_{1}=M \cap \omega_{1}$. Consider the following strong version of Chang's Conjecture:

Definition $3.1\left(\mathrm{CC}^{*}\right)$. There are arbitrarily large uncountable regular cardinals θ such that for every wellordering $<$ of H_{θ}, and every countable elementary submodel $M \prec\left\langle H_{\theta} ; \in,<\right\rangle$, and every ordinal $\eta<\omega_{2}$, there exists an elementary countable submodel $M^{*} \prec\left\langle H_{\theta} ; \in,<\right\rangle$ such that $M^{*} \sqsupseteq M$ and $\left(M^{*} \cap \omega_{2}\right) \backslash \eta \neq \emptyset$.

We will need the following Proposition for the proof of Lemma 3.1, namely in Claim 3.1.

Proposition 3.1. Let T be a κ-Aronszajn tree (κ a regular cardinal). Given a regular cardinal $\mu<\kappa$, consider a family of collection of nodes $\left\langle A_{\xi}: \xi \in X\right\rangle$ such that X contains a stationary set consisting of ordinals of cofinality at least $\mu, A_{\xi} \subseteq T_{\xi}$ and $\left|A_{\xi}\right|<\mu$ for every $\xi \in X$. Then for every λ large enough such that $\left\{\kappa, T, X,\left\langle A_{\xi}: \xi \in X\right\rangle, \ldots\right\} \subset H_{\lambda}$ and for every elementary submodel $N \prec\left\langle H_{\lambda} ; \in,<, \kappa, T, X,\left\langle A_{\xi}: \xi \in\right.\right.$ $X\rangle, \ldots\rangle$ such that $A_{\xi} \subseteq N$ for every $\xi \in X \cap N$, then for every $t \in T$ of height at least $\sup (N \cap \kappa)$ there are unboundedly many $($ in $\sup (N \cap \kappa)) \xi \in X \cap N$ such that every $s \in A_{\xi}$ is incomparable with t.

Proof. Suppose otherwise, and take $t \in T$ of height at least $\sup (N \cap \kappa)$ and $\alpha \in N$ such that for all $\xi \in X \cap N \backslash \alpha$, there is a node $t_{\xi} \in A_{\xi}$ such that $t_{\xi} \leq_{T} t$. Without loss of generality, we can suppose that X is a stationary set consisting of ordinals greater than α and of cofinality at least μ.

Since $\left|A_{\xi}\right|<\mu$ for any $\xi \in X$, there is an ordinal $\beta_{\xi}<\xi$ such that for any $s, s^{\prime} \in A_{\xi}, s=s^{\prime} \leftrightarrow s \upharpoonright \beta_{\xi}=$ $s^{\prime} \upharpoonright \beta_{\xi}$. By elementarity and using Fodor's Lemma, we can find $\beta \in N \cap X$ and a stationary set $S \in N$ such that for any $\xi \in S, s=s^{\prime} \leftrightarrow s \upharpoonright \beta=s^{\prime} \upharpoonright \beta$ for any $s, s^{\prime} \in A_{\xi}$.

Then for every $s \in A_{\beta}$, we can define a function $f_{s}: S \rightarrow T$ such that $f_{s}(\xi)$ is the unique $s_{\xi} \in A_{\xi}$ such that $s_{\xi}>s$. Since $A_{\beta} \subseteq N$, in particular $s=t \upharpoonright \beta \in N$, and therefore f_{s} is defined in N. However,
by our initial assumption, $f_{s}(\xi)=t_{\xi}$ for every $\xi \in S \cap N$, and so f_{s} defines in N a cofinal branch of T, contradiction.

Let T be an ω_{2}-Aronszajn tree. In order to simplify the proof, without loss of generality, we suppose that $T \subseteq \omega_{2}$ and let $e: \omega_{2} \times \omega_{1} \rightarrow T$ be a bijective function such that $e(\delta, \xi) \in T_{\delta}$ for every $(\delta, \xi) \in \omega_{2} \times \omega_{1}$. Let θ be sufficiently large such that T, e and all relevant parameters are members of H_{θ}.

Lemma 3.1. Assume CC^{*} and that T is an ω_{2}-Aronszajn tree. For every $M \prec H_{\theta}$ countable, and for every $\eta_{0}, \eta_{1} \in \omega_{2}$, we can find $M_{0}, M_{1} \prec H_{\theta}$ countable such that:
(1) $M \cap \omega_{1}=M_{0} \cap \omega_{1}=M_{1} \cap \omega_{1}$,
(2) $M_{0} \cap \omega_{2} \backslash \eta_{0} \neq \emptyset$ and $M_{1} \cap \omega_{2} \backslash \eta_{1} \neq \emptyset$,
(3) $\exists \delta_{0} \in\left(M_{0} \cap \omega_{2}\right)$ and $\delta_{1} \in\left(M_{1} \cap \omega_{2}\right)$ such that $\left(M_{0} \cap T_{\delta_{0}}\right) \perp\left(M_{1} \cap T_{\delta_{1}}\right)$.

Proof. Fix $\lambda>\theta$ sufficiently large such that CC^{*} holds in H_{λ} and M, η_{0}, η_{1} and all relevant parameters are in H_{λ}. Let $N \prec H_{\lambda}$ such that if $\gamma=\sup \left(N \cap \omega_{2}\right)$, then $\operatorname{cof}(\gamma)=\omega_{1}$.

Fix M_{1} witnessing CC* for M and γ.
We need the following Claim:
Claim 3.1. For every $t \in T$ of height at least γ, there is $M^{*} \sqsupseteq M$ with $M^{*} \in N$ and $\beta \in M^{*} \cap \omega_{2}$ such that $t \perp T_{\beta} \cap M^{*}$.

Proof. Assume otherwise, and take $t \in T$ of height at least γ such that for every $M^{*} \in N$ with $M^{*} \sqsupseteq M$, for each $\beta \in M^{*} \cap \omega_{2}$, there is an $s_{\beta} \in\left(T_{\beta} \cap M^{*}\right)$ such that $s_{\beta}<t$.

We work inside N in this paragraph. Using that CC ${ }^{*}$ holds in N, build a sequence of models $\left\langle M_{\eta}: \eta \in \omega_{2}\right\rangle$ such that $M_{\eta} \sqsupseteq M$ and $M_{\eta} \cap \omega_{2} \backslash \eta \neq \emptyset$ for every $\eta \in \omega_{2}$. Let β_{ξ} be the minimum $\beta \in \omega_{2} \backslash \xi$ such that there is $\eta \in \omega_{2}$ such that $\beta_{\xi}=\min \left(M_{\eta} \cap \omega_{2} \backslash \eta\right)$. Let η_{ξ} be the minimum $\eta \in \omega_{2}$ such that $\beta_{\xi}=\min \left(M_{\eta} \cap \omega_{2} \backslash \eta\right)$. Define $\left\langle A_{\xi}: \xi \in \omega_{2}\right\rangle$ by setting A_{ξ} to be the set of nodes r in T_{ξ} with $r \leq s$ for some $s \in M_{\eta \xi} \cap T_{\beta_{\xi}}$. Remark that since $M_{\eta_{\xi}}$ is countable, so is A_{ξ}.

By Proposition 3.1, there are unboundedly many $\xi \in N \cap \omega_{2}$ such that $t \perp A_{\xi}$, so choose one of such ξ 's. Then there is $s \in M_{\eta_{\xi}} \cap T_{\beta_{\xi}}$ such that $s<_{T} t$. Thus there is $r \in A_{\xi}$ such that $r \leq_{T} s<_{T} t$, contradicting that r and t are incomparable.

Let $\left\{t_{n}: n \in \omega\right\}$ be an enumeration of $M_{1} \cap T \backslash \gamma$. Using Claim 3.1, build a \subseteq-increasing sequence $\left\langle M_{n}^{0}: n \in \omega\right\rangle$ of countable elementary submodels of H_{θ} such that for every $n \in \omega, M_{n}^{0} \in N$ and $M_{n}^{0} \sqsupseteq M$, and such that there is $\beta \in M_{n}^{0} \cap \omega_{2}$ with $t_{n} \perp M_{n}^{0} \cap T_{\beta}$. Let M_{0} be an end-extension of $\bigcup_{n<\omega} M_{n}^{0}$ derived from CC ${ }^{*}$ and η_{0}. Let $\delta_{0}=\min \left(M_{0} \cap \omega_{2} \backslash \eta_{0}\right)$ and $\delta_{1}=\min \left(M_{1} \cap \omega_{2} \backslash \gamma\right)$. We claim it suffices.

Take $s \in T_{\delta_{0}} \cap M_{0}$ and $t \in T_{\delta_{1}} \cap M_{1}$. In particular, there is $n \in \omega$ and $\beta \in M_{n}^{0} \cap \omega_{2}$ such that $t=t_{n}$ and $t \perp T_{\beta} \cap M_{n}^{0}$. Since $\beta \in M_{n}^{0} \subseteq M_{0}$, we have $s \upharpoonright_{\beta} \in M_{0}$. Moreover, since the enumeration function $e \in M_{n}^{0} \subseteq M_{0}$ and $M_{n}^{0} \cap \omega_{1}=M_{0} \cap \omega_{1}$, we have $T_{\beta} \cap M_{0}=T_{\beta} \cap M_{n}^{0}$ and so $s \upharpoonright_{\beta} \in M_{n}^{0}$. Therefore $s \upharpoonright_{\beta}$ is not comparable with t, and so neither are s and t.

This finishes the proof of Lemma 3.1.
Lemma 3.2. Assume CC^{*}. Let T be an ω_{2}-Aronszajn tree. If the set

$$
S_{T}=\left\{A \in\left[\omega_{2}\right]^{\omega}: \forall t \in T(\operatorname{pred}(t) \cap A \text { is bounded in } \sup (A))\right\}
$$

is nonstationary, then CH holds.

Proof. Let $f:\left[\omega_{2}\right]^{<\omega} \rightarrow \omega_{2}$ such that the set C_{f} of closure points of f (i.e. $X \in C_{f}$ iff for every $e \in[X]^{<\omega}$, $f(e) \in X)$ is disjoint with S_{T}. We can suppose that $T \subseteq \omega_{2}$ and $e: \omega_{1} \times \omega_{2} \rightarrow T$ is a bijection such that $e(\delta, \beta) \in T_{\delta}$. Let λ be sufficiently large such that T, S_{T}, f, e and all relevant parameters are members of H_{λ}.

Using previous lemma, build a binary tree $\left\langle M_{\sigma}\right\rangle_{\sigma \in 2<\omega}$ of countable elementary submodels of H_{λ} with the property that for every $\sigma \in 2^{<\omega}$
(1) $M_{\sigma} \cap \omega_{1}=M_{\sigma \frown 0} \cap \omega_{1}=M_{\sigma \frown 1} \cap \omega_{1}$,
(2) $M_{\sigma} \cap \omega_{2} \subsetneq M_{\sigma \frown 0} \cap \omega_{2}$ and $M_{\sigma} \cap \omega_{2} \subsetneq M_{\sigma \frown 1} \cap \omega_{2}$,
(3) there exists $\delta_{0} \in\left(M_{\sigma \frown 0} \cap \omega_{2}\right)$ and $\delta_{1} \in\left(M_{\sigma \frown 1} \cap \omega_{2}\right)$ such that $T_{\delta_{0}} \cap M_{\sigma \frown 0} \perp T_{\delta_{0}} \cap M_{\sigma \frown 1}$,
(4) for every $r \in 2^{\omega}$, if $M_{r}=\bigcup_{n \in \omega} M_{r \upharpoonright n}$, then for every $r, r^{\prime} \in 2^{\omega}, \sup \left(M_{r} \cap \omega_{2}\right)=\sup \left(M_{r^{\prime}} \cap \omega_{2}\right)$.

Let δ be the common supremum of every $M_{r} \cap \omega_{2}, r \in 2^{\omega}$. Then for every $r \in 2^{\omega}$, there is $t_{r} \in T_{\delta} \cap M_{r}$ such that for every $\operatorname{pred}\left(t_{r}\right) \cap M_{r}$ is unbounded in δ.

Claim 3.2. The application $r \mapsto t_{r}$ is an injection from 2^{ω} to T_{δ} (and so CH does hold).
Proof. Let $r_{0}, r_{1} \in 2^{\omega}$ with $r_{0} \neq r_{1}$ and denote by t_{i} the node $t_{r_{i}}$ for $i \in\{0,1\}$. We will find two predecessors of t_{0} and t_{1} that are incomparable.

Let $n \in \omega$ such that $r_{0} \upharpoonright_{n}=r_{1} \upharpoonright_{n}=\sigma$, and $r_{0} \upharpoonright_{n+1} \neq r_{1} \upharpoonright_{n+1}$. Without loss of generality suppose $r_{i}(n)=i$ for $i \in\{0,1\}$.

Since $\left(M_{r_{i}} \cap \omega_{2}\right) \notin S_{T}$, we can find $s_{i}<_{T} t_{i}$ with $s_{i} \in M_{\left.r_{i}\right|_{m_{i}}}$ for some $m_{i}>n$. By the construction of our binary tree, we can take $\delta_{0} \in M_{r_{0} \upharpoonright_{n+1}}$ and $\delta_{1} \in M_{r_{1} \upharpoonright_{n+1}}$ such that $T_{\delta_{0}} \cap M_{r_{0} \upharpoonright_{n+1}} \perp T_{\delta_{1}} \cap M_{r_{1} \upharpoonright_{n+1}}$. However, observe that for $i \in\{0,1\}, \delta_{i} \in M_{\left.r_{i}\right\rceil_{n+1}} \subseteq M_{r_{1}}$, and so $t_{i} \upharpoonright_{\delta_{i}} \in M_{r_{i} \upharpoonright_{n+1}}$. Therefore, $t_{0} \upharpoonright_{\delta_{0}}$ and $t_{1} \upharpoonright_{\delta_{1}}$ are incomparable, and so $t_{0} \neq t_{1}$.

This finishes the proof of Lemma 3.2.
We are now ready to finish the proof of our Theorem. From the previous lemma we know that the set S_{T} is stationary in $\left[\omega_{2}\right]^{\omega_{0}}$. Let $S_{T}^{\prime}=S_{T} \cap C_{e}$, where C_{e} is the club of all countable subsets of ω_{2} closed under the level enumeration function e of T.

We now use that CC^{*} implies $\operatorname{WRP}\left(\omega_{2}\right)$ (Lemma 2.3). Take $X \subseteq \omega_{2}$ of size \aleph_{1} such that $\omega_{1} \subseteq X$ and where $S_{T}^{\prime} \cap[X]^{\omega}$ is stationary. Take $t \in T$ of height at least $\sup (X)$.

From the definition of S_{T}, for every $A \in S_{T}^{\prime} \cap[X]^{\omega}$ we can choose $\beta_{A} \in A$ such that if $s \in \operatorname{pred}(T) \cap A$, then $s<\beta_{A}$. By the Pressing Down Lemma, there is a stationary set $S \subseteq S_{T}^{\prime} \cap[X]^{\omega}$ and a β such that $\beta_{A}=\beta$ for all $A \in S$. Let $\xi \in \omega_{1}$ such that $e(\beta, \xi)=t \upharpoonright_{\beta}$. Observe that S is in particular cofinal in $[X]^{\omega}$ so $\bigcup S=X$. Since $\omega_{1} \subseteq X$, pick $A \in S$ such that $\xi \in A$. Therefore, $e(\beta, \xi) \in A \cap \operatorname{pred}(t)$, and so $e(\beta, \xi)<\beta$. But this is a contradiction, since in general $e(\beta, \xi) \geq \beta$ for any $\beta \in \omega_{2}$. This ends the proof of our Theorem.

4. Some final remarks

We mention some related previous results. R. Strullu proved that the Map Reflection Principle, introduced by Moore in [7], together with $\mathrm{MA}_{\omega_{1}}$ implies $\operatorname{TP}\left(\omega_{2}\right)$ (see [12]). Also it is implicit in B. Velickovic and H. Sakai's results ([8]) that $\operatorname{WRP}\left(\omega_{2}\right)+\mathrm{MA}_{\omega_{1}}($ Cohen $)$ implies $\operatorname{TP}\left(\omega_{2}\right)$.

We remark that the results in [15] were in the context of Rado's Conjecture (RC), which is the following statement in Todorčević's equivalent version:

Definition 4.1 (RC). Every tree T of height \aleph_{1} is special, i.e., the countable union of antichains if and only if every subtree of T of size \aleph_{1} is also special.

Todorčević proved via a large cardinal that RC is consistent, and showed it is independent from ZFC. In particular, RC is not compatible with $\mathrm{MA}_{\omega_{1}}$ (see final remarks in [13]).

As we have mentioned, in [15], it was proved that Rado's Conjecture together with the negation of the Continuum implies there are no special ω_{2}-Aronszajn trees. One natural question was which extra condition we could add to Rado's Conjecture to obtain that there are no ω_{2}-Aronszajn trees at all. Since Rado's Conjecture is consistent with both CH and $\neg \mathrm{CH}$, and CH implies $\neg \mathrm{TP}\left(\omega_{2}\right)$, we needed at least to add the condition $\neg \mathrm{CH}$ to RC if we wanted to obtain $\operatorname{TP}\left(\omega_{2}\right)$. However, as we have mentioned, RC is not consistent with $\mathrm{MA}_{\omega_{1}}$, so we could not have similar results as the one cited above.

Todorčević proved in [14] that RC implies CC^{*}. Therefore, a consequence of the result in the present paper is that the condition $\neg \mathrm{CH}$ was not only needed, but also sufficient to add to RC to get $\mathrm{TP}\left(\omega_{2}\right)$.

Corollary 4.1. RC and $\neg \mathrm{CH}$ imply $\mathrm{TP}\left(\omega_{2}\right)$.

As we have mentioned, Todorčević proved in [14] that CC^{*} implies $\operatorname{WRP}\left(\omega_{2}\right)$. The following question is still open.

Question 4.1. Do $\operatorname{WRP}\left(\omega_{2}\right)$ and $\neg \mathrm{CH}$ imply together $\operatorname{TP}\left(\omega_{2}\right)$?

References

[1] Philipp Doebler, Ralf Schindler, Π_{2} consequences of $\mathrm{BMM}+\mathrm{NS}_{\omega_{1}}$ is precipitous and the semiproperness of stationary set preserving forcings, Math. Res. Lett. 16 (5) (2009) 797-815.
[2] Kurepa Dura, Ensembles ordonnés et ramifiés, Publ. Math. Univ. Belgr. 4 (1935) 1-38.
[3] G. Fodor, Eine Bemerkung zur Theorie der regressiven Funktionen, Acta Sci. Math. (Szeged.) 17 (1956) 139-142.
[4] Thomas Jech, Set Theory, Springer Monogr. Math., Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
[5] Dénes Kőnig, Über eine Schlussweise aus dem Endlichen ins Undendliche, Acta Sci. Math. (Szeged.) 3 (2-3) (1927) 121-130.
[6] William Mitchell, Aronszajn trees and the independence of the transfer property, Ann. Math. Log. 5 (1972/73) 21-46.
[7] Justin Tatch Moore, Set mapping reflection, J. Math. Log. 5 (1) (2005) 87-97.
[8] Hiroshi Sakai, Boban Veličković, Stationary reflection principles and two cardinal tree properties, J. Inst. Math. Jussieu 14 (01) (2015) 69-85.
[9] Saharon Shelah, Proper Forcing, Lect. Notes Math., vol. 940, Springer-Verlag, Berlin, 1982.
[10] Saharon Shelah, Proper and Improper Forcing, second edition, Perspect. Math. Log., Springer-Verlag, Berlin, 1998.
[11] E. Specker, Sur un problème de Sikorski, Colloq. Math. 2 (1949) 9-12.
[12] Remi Strullu, MRP, tree properties and square principles, J. Symb. Log. 76 (4) (2011) 1441-1452.
[13] S. Todorčević, On a conjecture of R. Rado, J. Lond. Math. Soc. 27 (1) (1983) 1-8.
[14] Stevo Todorčević, Conjectures of Rado and Chang and cardinal arithmetic, in: Finite and Infinite Combinatorics in Sets and Logic, Banff, AB, 1991, in: NATO Adv. Stud. Inst. Ser., Ser. C, Math. Phys. Sci., vol. 411, Kluwer Acad. Publ., Dordrecht, 1993, pp. 385-398.
[15] Stevo Todorčević, Víctor Torres-Pérez, Conjectures of Rado and Chang and special Aronszajn trees, Math. Log. Q. 58 (4-5) (2012) 342-347.

[^0]: 战 The first author was supported partially by Project P 26869-N25, Project P 24725-N25, and Project I $1272-\mathrm{N} 25$ of the Austrian Science Fund (FWF). The second author was partially supported by Project P 23316-N13 of the Austrian Science Fund (FWF). The authors are indebted to Hiroshi Sakai for valuable comments and suggestions.

 * Corresponding author.

 E-mail addresses: victor.torres@tuwien.ac.at (V. Torres-Pérez), lzwu@math.ac.cn (L. Wu).

