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tions in the serine protease 1 (PRSSI) gene encoding human cationic trypsinogen
have been conclusively associated with autosomal dominant hereditary pancreatitis
and sporadic nonalcoholic chronic pancreatitis. Most high-penetrance PRSS/ vari-
ants increase intrapancreatic trypsin activity by stimulating trypsinogen autoacti-
vation and/or by inhibiting chymotrypsin C-dependent trypsinogen degradation.
Alternatively, some PRSS! variants can cause trypsinogen misfolding, which
results in intracellular retention and degradation with consequent endoplasmic
reticulum stress. However, not all PRSS/ variants are pathogenic, and clinical
relevance of rare variants is often difficult to ascertain. Here we review the PRSS/
variants published since 1996 and discuss their functional properties and role in

chronic pancreatitis.

The PRSS1 Gene

The serine protease 1 (PRSSI, PRoteaSe Serine ) gene in
humans is located on chromosome 7q35, within the T cell
receptor beta locus (43). The association of trypsinogen genes
with this locus is important historically, because DNA se-
quencing of this region in 1996 and the fortuitous finding of
eight trypsinogen genes intercalated here greatly facilitated the
discovery of the susceptibility gene for hereditary pancreatitis.
PRSS1 codes for human cationic trypsinogen, the precursor for
the most abundant digestive enzyme secreted by the human
pancreas (45). Besides PRSSI, the locus also contains five
trypsinogen pseudogenes, a relic gene, and PRSS2, that en-
codes anionic trypsinogen, the other major human trypsinogen
isoform. The PRSS3 gene coding for mesotrypsinogen, the
relatively minor third human isoform, is found on chromosome
9pl3.

Copy Number Mutations in PRSS1

Heterozygous triplication and duplication of a 605-kb seg-
ment containing the trypsinogen genes on chromosome 7 was
found in French patients with hereditary and sporadic idio-
pathic chronic pancreatitis (5, 29, 33). Presumably similar
heterozygous duplications of PRSS! were reported in two U.S.
families with hereditary pancreatitis (26). Such copy number
mutations should result in higher trypsinogen expression
through a gene-dosage effect, although this has not been
demonstrated directly. Higher trypsinogen concentrations, in
turn, would increase the likelihood of autoactivation and de-
velopment of intrapancreatic trypsin activity. A unique dupli-
cation event that resulted in an extra copy of a hybrid PRSS2/
PRSST trypsinogen gene was also described in a French family
with hereditary pancreatitis (34).
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Gene Conversions Within Trypsinogen Genes

Human trypsinogen genes exhibit a high level of sequence
identity, which may facilitate gene conversion events. In fact,
gene conversion was suggested as a mechanism for the evolu-
tionary origin of the most common hereditary pancreatitis-
associated mutations (6). A gene conversion event was identi-
fied in a 6-yr-old German girl with sporadic chronic pancre-
atitis, which replaced exon 2 in PRSS! with that from PRSS2
(60). A gene duplication event in a French family with hered-
itary pancreatitis resulted in a similar hybrid gene, containing
exons 1-2 from PRSS2 and exons 3—-4-5 from PRSSI (34).
Since exon 1 codes for part of the signal peptide which is
removed in the endoplasmic reticulum, only changes in exon 2
affect the mature trypsinogen protein. The amino acids en-
coded by exon 2 are nearly identical between the two isoforms,
with the exception of I1e29 and Ser54 found in anionic
trypsinogen (PRSS2). Consequently, the hybrid genes de-
scribed in the German and French studies encode cationic
trypsinogen with mutations p.N29I and p.N54S. Whereas the
p.N54S variation is functionally innocuous (60), the p.N291
mutation causes hereditary pancreatitis.

Common Polymorphisms in PRSSI

Polymorphic variations with a population frequency >5%
are relatively rare in PRSS/. Variant c486C>T (p.D162= or
p.D162D; dbSNP rs6666) in exon 4 and variant ¢.738C>T
(p.N246= or p.N246N, dbSNP rs6667) in exon 5 are the only
two variations within the coding region. The two variants are
typically found in linkage disequilibrium and the C allele has
a slightly higher frequency in Europeans (0.6), whereas it is
less frequent (0.25) in subjects of Asian origin or subjects from
India (0.1). No disease association has been demonstrated for
either variant. Two additional common variants can be found
in the 5’ region upstream of the ATG start codon: ¢.—204C>A
(dbSNP 134726576; C allele frequency is ~0.7 in Europeans
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and ~0.4 in Asians) and ¢.—408C>T (dbSNP rs10273639; C
allele frequency is ~0.6 in Europeans and ~0.3 in Asians). In
a recent genomewide association study, variant ¢.—408C>T
(i.e., the T allele) was demonstrated to have a small protective
effect against chronic pancreatitis presumably by lowering
trypsinogen expression (64). The C allele of the same variation
(erroneously reported as —409C/T) was previously claimed to
offer protection against pancreatic cancer in a Chinese popu-
lation; however, independent confirmation is lacking (31).

PRSS1 Variants in the General Population

Published accounts indicate that sequencing the PRSS! gene
of 200 French (7), 82 German (58), 420 Chinese (4, 68), 28
Korean (30), and 150 Brazilian (3) control subjects revealed
only the p.E79K exon 3 variant in a French and a Brazilian
individual. More recently, exon 3 of 1,000 healthy controls of
German origin was sequenced and only the p.V123L variation
was identified in a single subject (46). These observations
indicate that PRSS! variants, other than the common polymor-
phisms, are exceedingly rare in the general population.

PRSS1 Mutations in Hereditary Pancreatitis

Autosomal dominant hereditary pancreatitis was first re-
ported by Comfort and Steinberg in 1952 (10). Using genetic
linkage analysis, three independent research groups localized
the susceptibility gene to chromosome 7 in 1996 (27, 39, 62).
In the same year, Whitcomb et al. (63) used candidate gene
sequencing to identify the most common causative mutation
p.R122H in PRSSI. Genetic heterogeneity underlying heredi-
tary pancreatitis was soon recognized when the second most
common PRSS! mutation, p.N29I, was described by two
eroups in 1997-1998 (16, 56). These two heterozygous muta-
tions are found in ~90% of hereditary pancreatitis families
worldwide, with p.R122H accounting for ~65% and p.N291 for
~25% of the cases. In the remaining 10% of the cases, PRSS!
mutations p.A16V, p.D21A, p.D22G, p.K23R, p.K23_124insIDK,
p.N29T, p.V39A, p.R116C, and p.R122C were identified, always
in the heterozygous state (2, 12, 22, 28, 40, 48, 55, 57, 65, 67).
Mutations p.D21A, p.D22G, p.K23R, p.K23_I24insIDK, and
p.V39A were found only in a single family each. Penetrance of
PRSS1 mutations in hereditary pancreatitis families is incomplete;
it is estimated between 80 and 90% for carriers of p.R122H,
although smaller pedigrees may exhibit lower apparent penetrance
(21, 62, 41, 49). Note that mutations p.A16V and p.R116C exhibit
variable penetrance and were also found in sporadic cases with no
family history.

Hereditary pancreatitis-associated PRSS/ mutations exert
their effect via a so-called trypsin-dependent pathological path-
way, which involves increased autoactivation of mutant
trypsinogens resulting in elevated intrapancreatic trypsin ac-
tivity. Rare mutations in the activation peptide of trypsinogen
(p.D21A, p.D22G, p.K23R, and p.K23_124insIDK) directly
stimulate autoactivation (8, 15, 22, 37). In contrast, the more
common hereditary pancreatitis-associated PRSS/ mutations
alter the regulation of activation and degradation of cationic
trypsinogen by chymotrypsin C (CTRC), a digestive enzyme
that controls trypsin levels generated through autoactivation of
human trypsinogens (51) (Fig. 1). CTRC promotes degradation
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of trypsinogen by cleaving the Leu81-Glu82 peptide bond in
the calcium binding loop and thereby attenuates trypsin levels
during autoactivation (51, 52, 53). Importantly, trypsin-medi-
ated autolytic cleavage of the Arg122-Vall23 peptide bond is
also required for CTRC-dependent degradation and inactiva-
tion of trypsinogen (51, 53). Paradoxically, CTRC also stim-
ulates trypsinogen activation by processing the activation pep-
tide at the Phel8-Asp19 peptide bond to a shorter form, which
is cleaved by trypsin at a higher rate, resulting in increased
autoactivation (38, 51).

PRSSI mutations interfere with the CTRC-mediated cleav-
ages described above and render trypsinogen resistant to deg-
radation and/or increase processing of the activation peptide
(Fig. 1). Typically, a combination of two or more effects
results in the common phenotype of increased activation (51).
Thus mutations p.R122H and p.R122C completely block
cleavage at Argl122 by trypsin but also decrease cleavage at
Leu81 by CTRC. Mutation p.N29I increases cleavage of the
activation peptide and reduces cleavage both at Leu81 and
Argl122, Mutations p.V39A and p.N29T decrease cleavage at
Leu81 and Argl22, whereas mutation p.A16V increases pro-
cessing of the activation peptide by CTRC (38, 51). Regardless
of mechanistic details, the unifying biochemical phenotype of
all hereditary pancreatitis-associated mutants is increased rates
of autoactivation, with markedly elevated final trypsin activity
levels, relative to wild-type cationic trypsinogen.

The only exception to the unifying pathological mechanism
described above is mutation p.R116C, which does not change
trypsinogen activation but causes misfolding, which results in
intracellular aggregation and degradation and consequently
reduced secretion (25). Mutation-induced misfolding can elicit
endoplasmic reticulum stress, which is probably responsible
for the increased disease risk in carriers of p.R116C, although
the exact mechanism is unknown. Mutation p.R116C exhibits
variable penetrance and is often found in sporadic cases,
suggesting that the misfolding-dependent pathological path-
way may confer relatively smaller risk.

PRSS1 Variants in Sporadic Nonalcoholic Chronic
Pancreatitis

The first indication that PRSS/ variants can cause chronic
pancreatitis with lower penetrance came from the identification
of the p.A16V variant by Witt et al. (65) in four children with
chronic pancreatitis. Only one child had a positive family
history consistent with hereditary pancreatitis, whereas in three
children the disease was sporadic with no family history, even
though inheritance from unaffected parents was demonstrated.
Subsequent studies based on the EUROPAC database (18)
confirmed the variable penetrance of this variant, demonstrat-
ing that p.A16V was found in six families with hereditary
pancreatitis, in one family with familial (single-generation)
chronic pancreatitis, and in three cases of chronic pancreatitis
with no family history. The biochemical phenotype of the
p.Al6V explains its genetic properties: the mutation causes
increased autoactivation in the presence of CTRC; however,
the rate of autoactivation and the final trypsin levels attained
are much lower than those observed with the highly penetrant
PRSS1 mutations such as p.R122H (51). Increased autoactiva-
tion is due to faster processing of the mutant trypsinogen
activation peptide by CTRC (38, 51). As noted above, mutation
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Fig. 1. Effect of pancreatitis-associated PRSSI mutations on the chymotrypsin C (CTRC)-dependent activation and degradation of human cationic trypsinogen.
CTRC cleaves the Leu81-Glu82 peptide bond and trypsin cleaves the Argl22-Vall23 peptide bond; these 2 cleavages result in the eventual degradation of
trypsinogen. CTRC also stimulates autoactivation of cationic trypsinogen by cleaving the Phel8-Aspl9 peptide bond in the activation peptide. The shortened
activation peptide is more susceptible to trypsin-mediated activation at the Lys23-Ile24 peptide bond. The dominant effect of CTRC is degradation. A: PRSS!
mutations can increase conversion of trypsinogen to trypsin by inhibition of CTRC-dependent trypsinogen degradation (red arrow) or by increasing
CTRC-dependent stimulation of autoactivation (green arrow). See text for further details. B: proteolytic cleavage of human cationic trypsinogen by CTRC and
trypsin. Primary structure of trypsinogen with disulfide bonds is shown. CTRC cleavage sites are highlighted in orange and trypsin cleavage sites are shown in
blue. The activation peptide is in green. Note the yellow peptide segment not stabilized by disulfide bonds between the Leu81 and Argl22 cleavage sites. B is
modified from Ref. 53, copyright by the National Academy of Sciences of the United States of America.

p.R116C is another example of a hereditary pancreatitis-asso-
ciated mutation with variable penetrance. A recent study dem-
onstrated that variant p.G208A was associated with ~4% of
idiopathic and alcoholic chronic pancreatitis patients of Japa-
nese origin, and increased disease risk by ~15- to 20-fold (32).
This variant has no effect on trypsinogen activation but causes
a moderate (~60%) reduction in trypsinogen secretion from
transfected cells (46). Thus, as seen with variant p.R116C,
mutation-induced misfolding and endoplasmic reticulum stress
may be the pathologically relevant mechanism for variant
p.G208A as well. It is also noteworthy that p.G208A is the first
PRSS1 variant for which an association with alcoholic pancre-
atitis has been demonstrated.

Screening of various patient populations with sporadic idio-
pathic chronic pancreatitis has led to the identification of a
large number of rare missense variants (4, 7, 14, 23, 30, 35, 42,
55, 58). The clinical significance of such variants has been
unclear because their low frequency did not allow statistical
determination of genetic association with pancreatitis. Never-
theless, authors often described these as causative or pancre-
atitis-associated simply by analogy with well-characterized
disease-relevant PRSSI mutations. Characterization of the
functional phenotype of these variants revealed that only the
activation peptide variant p.D19A increased autoactivation in a

manner similar to the hereditary pancreatitis-associated activa-
tion-peptide mutations (8, 15, 37). A handful of mutants
showed a marked (p.D100H, p.C139F, and p.C139S) or mod-
erate (p.K92N and p.S124F) secretion defect, which suggested
that these mutations exerted their pathogenic effect through a
mechanism that involves mutation-induced misfolding and
endoplasmic reticulum stress, as described above for mutations
p.R116C and p.G208A (25, 46). Another subset of mutants
showed no phenotypic alterations compared with wild-type
trypsinogen (p.LL81IM, p.QI98K, p.Al121T, p.T137M, and
p.S181G) or suffered increased degradation by CTRC (p.P36R,
p.G&3E, p.I88N, and p.V123M) (46, 52, 54). These variants are
likely harmless and their identification in patients with chronic
pancreatitis may be accidental. One variant (p.K170E) caused
slightly increased trypsinogen secretion, which, similarly to the
copy number mutations, may (ranslate to increased risk for
pancreatitis (46).

Variant p.E79K should be highlighted because this is the
only rare PRSSI variant that was found not only in patients but
also in unrelated controls (3, 7, 20, 23, 41, 50, 59). Early
biochemical studies demonstrated an increased propensity of
this mutant to transactivate anionic trypsinogen; however, this
small phenotypic change is unlikely to be of pathological
consequence (59). More recent studies indicated that the rate of
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Table 1. Variants in the PRSSI gene encoding human cationic trypsinogen
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Number of CP Carriers

Number of Non-CP

Region Nucleotide Change Amino Acid Change Reported Carriers Reported Clinical Significance
PRSS1 duplication 7 Pathogenic
PRSS1 triplication 26 2 Pathogenic
5 prime ¢.—408C>T common polymorphism common polymorphism Protective
5 prime c.—204C>A common polymorphism common polymorphism Nonpathogenic
5 prime c.—36G>A Unknown
5 prime c.—30_—28delTCC 1 Unknown
intron 1 c40+1G>A 1 Protective
intron 1 ¢.40+40delC 1 Unknown
intron 1 c.4149C>T 1 Unknown
exon 2 c47C>T p.-A16V 30 24 Pathogenic
exon 2 ¢.56A>C p.D19A 1 Pathogenic
exon 2 c.62A>C p-D21A 3 Pathogenic
exon 2 c.65A>G p-D22G 2 1 Pathogenic
exon 2 c.68A>G p.-K23R 2 Pathogenic
exon 2 ¢.63_71dup p-K23_I24insIDK 3 Pathogenic
exon 2 c.86A>T p-N291I 285 18 Pathogenic
exon 2 PRSS1-PRSS2 hybrid p-N29I + p.N54S 7 1 Pathogenic
exon 2 c.86A>C p-N29T 5 Pathogenic
exon 2 ¢.107C>G p-P36R 2 Nonpathogenic
exon 2 c111C>A p-Y37X 1 Protective
exon 2 c.116T>C p-V39A 7 Pathogenic
intron 2 ¢c.200+1G>A 1 Protective
exon 3 ¢.235G>A p-E7T9K 13 6 Pathogenic?
exon 3 c.241C>A p-L8IM 4 Unknown
exon 3 c.248G>A p-G83E 1 Nonpathogenic
exon 3 c.263T>A p.I88N 1 Nonpathogenic
exon 3 c.273C>A p.A91= 1 Unknown
exon 3 c.276G>T p-K92N 1 Pathogenic
exon 3 c.292C>A p-QI98K 1 Nonpathogenic
exon 3 ¢.298G>C p.D100H 2 3 Pathogenic
exon 3 ¢.310C>G p.L104V 4 Unknown
exon 3 ¢.311T>C p.L104P 1 3 Pathogenic
exon 3 c.346C>T p-R116C 16 4 Pathogenic
exon 3 c361G>A p-A121T 14 6 Nonpathogenic
exon 3 ¢.364C>T p-R122C 35 23 Pathogenic
exon 3 ¢.365G>A p-R122H 793 69 Pathogenic
exon 3 ¢.365_366GC>AT p-R122H 3 Pathogenic
exon 3 ¢.367G>A p-V123M 1 Nonpathogenic
exon 3 ¢.367G>T p-V123L 1 Nonpathogenic
exon 3 c¢.371C>T p-S124F 1 Pathogenic
exon 3 cA403A>G p-T135A 1 Unknown
exon 3 c410C>T p.T137M 2 1 Nonpathogenic
exon 3 c.415T>A p.C139S 11 Pathogenic
exon 3 c416G>T p.C139F 2, 1 Pathogenic
exon 3 c417C>T p.C139= 1 Unknown
exon 3 c443C>T p.-A148V 1 Unknown
intron 3 c454+10A>C 5 Unknown
intron 3 c454+36T>C 1 Unknown
intron 3 c.454+75A>G 24 4 Unknown
intron 3 cA454+127A>T 1 Unknown
intron 3 c.454+157C>A 1 Unknown
intron 3 c.454+157C>G 1 2 Unknown
intron 3 c454+172C>T 4 Unknown
intron 3 cA455-192T>A 1 Unknown
exon 4 c486C>T p.D162= common polymorphism common polymorphism Nonpathogenic
exon 4 ¢.508A>G p-K170E 2 Pathogenic?
exon 4 c.541A>G p-S181G 1 1 Nonpathogenic
intron 4 ¢.592-79G>A 1 Unknown
intron 4 ¢.592-78G>A 1 Unknown
intron 4 ¢.592-24C>T 1 Unknown
intron 4 ¢.592-11C>T 1 Unknown
intron 4 ¢.592-8C>T 1 Unknown
Continued
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PRSS1 VARIANTS IN PANCREATITIS

Amino Acid Number of CP Carriers Number of Non-CP
Region Nucleotide Change Change Reported Carriers Reported Clinical Significance
exon 5 ¢.623G>C p-G208A 22 3 Pathogenic
exon 5 ¢.738C>T p-N246= common polymorphism common polymorphism Nonpathogenic

Adapted from www.pancreasgenetics.org, February 2, 2014. For a complete list of citations please visit the database website. The number of reported chronic
pancreatitis (CP) carriers is an approximation for the most frequent variants, because authors often published the same patients in multiple publications without
indicating the repetitive entries. Non-CP carriers include nonpenetrant family members, unrelated healthy control subjects or individuals with conditions other
than pancreatitis. The clinical significance field indicates our interpretation of the available genetic and functional data with respect to the pathogenic potential
of PRSS1 variants. The following genetic evidence was considered as indicative of pathogenic nature: segregation with disease, multiple reports worldwide of
affected carriers, and absence in unrelated controls. In case of rare variants, phenotypic similarity to well-characterized, hereditary pancreatitis-associated
mutations served as the basis for classification. Thus variants were considered pathogenic if they caused 1) increased autoactivation in the absence or presence
of chymotrypsin C (CTRC), 2) reduced secretion, indicative of potential misfolding, or 3) increased trypsinogen expression or secretion. Conversely, variants

that are expected to reduce trypsinogen expression were designated protective.

autoactivation of mutant p.E79K is suppressed in the presence
of CTRC; however, the mutant reaches higher final trypsin
levels than wild-type trypsinogen, because of its resistance to
CTRC-mediated degradation (A. Szab6 and M. Sahin-Té6th,
unpublished observations). Thus the biochemical phenotype is
inconclusive but, together with the genetic data, may be cau-
tiously interpreted as p.E79K being a mild pathogenic variant
with low penetrance.

PRSS1 Variants in Conditions Unrelated to Pancreatitis

Chen et al. (9) reported two loss-of-function PRSS! variants,
a nonsense variant p.Y37X and a splice-site mutation
¢.200+1G>A in intron 2 found in chronic alcoholics without
pancreatic disease. The authors suggested that the variants
should be protective against chronic pancreatitis. Gullo et al.
(19) investigated PRSS1 variants in benign pancreatic hyper-

Table 2. Mechanism of action of pathogenic PRSS1 variants

enzymemia and found variant p.A148V and the splice-site
mutation ¢.40+1G>A in intron 1. Variant p.A148V has no
functional consequences (A. Schnidr and M. Sahin-T6th, un-
published observations), whereas variant ¢.40+1G>A should
result in decreased (rypsinogen expression, which might be
protective against chronic pancreatitis. Two studies described
PRSS1 variants in Chinese patients with pancreatic cancer
(p.T135A, p. T137M, c.454+36T>C, and c454+157C>G in
intron 3), which are in all likelihood incidental findings unre-
lated to pathology (13, 68). The same group proposed a strong
protective effect for the C allele of the common polymorphic
variant ¢.—408C>T (erroneously reported as —409C/T)
against pancreatic cancer (31). Variant p.L104V was re-
ported in two female members of a Chinese family with
familial solid pseudopapillary tumor of the pancreas and in
two healthy male relatives (17). Finally, patients with

Region Nucleotide change Amino acid change Pathogenic mechanism Notes Citations
PRSS1 duplication increased secretion no direct evidence
PRSS1 triplication increased secretion no direct evidence
exon 2 c47C>T p-Al6V increased activation CTRC dependent 38,51
exon 2 c.56A>C p.-DI9A increased activation 8,15, 24,37
exon 2 c.62A>C p-D21A increased activation 37
exon 2 c.65A>G p-D22G increased activation 8,15, 22, 24, 57
exon 2 c.68A>G p-K23R increased activation 8, 15, 24, 57
exon 2 ¢.63_71dup p-K23_I24insIDK increased activation 15,22
exon 2 c.86A>T p.N29I increased activation CTRC dependent 51
exon 2 PRSSI-PRSS2 hybrid p-N29I + p.N54S increased activation CTRC dependent 51, 60
exon 2 c.86A>C p.-N29T increased activation CTRC dependent 51
exon 2 c.116T>C p-V39A increased activation CTRC dependent 51
exon 3 ¢.235G>A p-E79K increased activation* CTRC dependent unpublished
exon 3 ¢.276G>T p.K92N misfolding 46
exon 3 ¢.298G>C p-D100H misfolding 46
exon 3 c311T>C p.L104P misfolding unpublished
exon 3 c.346C>T p-R116C misfolding 25
exon 3 ¢.364C>T p-R122C increased activation CTRC dependent 51
exon 3 ¢.365G>A p-R122H increased activation CTRC dependent 51
exon 3 ¢.365_366GC>AT p-R122H increased activation CTRC dependent 51
exon 3 c¢.371C>T p-S124F misfolding 46
exon 3 c.415T>A p.C139S misfolding 25
exon 3 c416G>T p.C139F misfolding 46
exon 4 ¢.508A>G p-K170E increased secretion 46
exon 5 ¢.623G>C p-G208A misfolding 46

See Table 1 for inclusion criteria. Mutations in PRSSI can increase activation of cationic trypsinogen via 4 independent but mutually nonexclusive
mechanisms: /) inhibition of CTRC-dependent trypsinogen degradation, 2) increasing CTRC-dependent stimulation of autoactivation; 3) direct stimulation of
autoactivation; and 4) increased trypsinogen secretion. Alternatively, PRSSI mutations can cause misfolding and endoplasmic reticulum stress. See Fig. 1 for
CTRC-dependent mechanisms of trypsinogen activation and degradation. *Note that the biochemical phenotype of p.E79K is ambiguous; see text for details.

Citations refer to functional studies.
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PRSSI-related hereditary pancreatitis have a 40-55% life-
time risk of developing pancreatic cancer (Ref. 66 and
references therein).

The PRSSI Database

The first database for PRSSI variants associated with
chronic pancreatitis was created by Dr. Niels Teich at the
University of Leipzig, Germany (61). Although the link is still
active  (http://www.uni-leipzig.de/pancreasmutation/db.html),
the website has not been updated since 2006. To track the
increasing number of PRSS!/ variants in the literature and to
help with classification of their clinical relevance, in 2012 we
created a new online database. Currently, the database lists 64
PRSS1 variants: 2 copy number mutations, 34 missense vari-
ants, 4 synonymous variants, 1 nonsense variant, 1 micro-
insertion, 1 hybrid gene, and 21 variants in noncoding
regions (Table 1). With respect to clinical significance, 25
variants are pathogenic (Table 2), 14 are nonpathogenic, 4
variants are protective, and 21 (mostly intronic) variants
have unknown significance. The database can be accessed at
WWW.pancreasgenetics.org.

Animal Models of PRSS1 Related Pancreatitis

Although considerable progress has been made in clarifying
the mechanism of PRSSI mutations at the biochemical level,
animal models that recapitulate salient features of human
hereditary pancreatitis are still lacking. At the time of writing
this review, only two publications documented attempts to
generate such models. Selig et al. (47) created transgenic mice
with the coding DNA of human PRSS/ containing the
p.R122H mutation. The animals did not develop spontancous
pancreatitis, and cerulein caused only slightly more severe
pancreatitis in transgenic mice relative to controls. Archer et al.
(1) described the spontancous development of acute and
chronic pancreatitis in a transgenic line with the p.R122H
mutation introduced into the coding DNA of mouse trypsino-
gen isoform T8. Unfortunately, independent replications or
additional studies on this promising model have not been
published since 2006. It is also unclear whether the observed
phenotype was related to the expression of the mutant trypsino-
gen. Nevertheless, this study focused attention to the question
whether the biochemical effects human PRSS/ mutations
would be similar in the context of mouse and human trypsino-
gens and whether we can make use of mouse trypsinogens (o
model the human disease. Recently, we demonstrated that the
mouse pancreas expresses four trypsinogen isoforms to high
levels (T7, T8, T9, and T20), and mouse Ctrc strongly inhibits
autoactivation of isoforms T8 and T9 through cleavage of the
autolysis loop (36). In sharp contrast to the human situation
(see Ref. 51 and Fig. 1), mutation p.R122H had no appreciable
effect on the autoactivation of T8 trypsinogen in the presence
of mouse Ctrc (36). These observations argue that human
pancreatitis-associated mutations may not recapitulate the
pathogenic biochemical phenotype in the context of mouse
(rypsinogens.

Genetic deletion of mouse T7 was recently shown to abolish
intra-acinar trypsinogen activation in response to hyperstimu-
lation with cerulein, whereas severity of acute pancreatitis was
somewhat decreased but not diminished (11). Furthermore,
development of cerulein-induced chronic pancreatitis was un-
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affected by the absence of T7 (44). These observations seem to
call into question the direct role of (rypsinogen in the devel-
opment of pancreatitis and seem to be at odds with the
preponderance of human genetic and biochemical data dis-
cussed in this review. However, a more likely explanation for
the apparent contradiction is that the hyperstimulation model
employed in these studies does not mimic the pathological
pathway associated with human hereditary pancreatitis. Future
studies will be needed to shed more light on this intriguing
problem.
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