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Abstract

By temporal and contemporaneous aggregation, doubly indexed partial sums

of independent copies of random coefficient AR(1) or INAR(1) processes are

studied. Iterated limits of the appropriately centered and scaled aggregated
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1. Introduction

The aggregation problem is concerned with the relationship between indi-

vidual (micro) behavior and aggregate (macro) statistics. There exist differ-

ent types of aggregation. The scheme of contemporaneous (also called cross-

sectional) aggregation of random-coefficient AR(1) models was firstly proposed5

by Robinson (1978) and Granger (1980) in order to obtain the long memory

phenomena in aggregated time series.

Puplinskaitė and Surgailis (2009, 2010) discussed aggregation of random-

coefficient AR(1) processes with infinite variance and innovations in the domain
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of attraction of a stable law. Related problems for some network traffic models,10

M/G/∞ queues with heavy-tailed activity periods, and renewal-reward pro-

cesses have also been examined. On page 512 in Jirak (2013) one can find many

references for papers dealing with the aggregation of continuous time stochas-

tic processes, and the introduction of Barczy et al. (2015) contains a detailed

overview on the topic.15

The aim of the present paper is to complete the papers of Pilipauskaitė and

Surgailis (2014) and Barczy et al. (2015) by giving the appropriate iterated

limit theorems for both the randomized AR(1) and INAR(1) models when the

parameter β = 1, which case is not investigated in both papers.

Let Z+, N, R and R+ denote the set of non-negative integers, positive

integers, real numbers and non-negative real numbers, respectively. The paper

of Pilipauskaitė and Surgailis (2014) discusses the limit behavior of sums

S
(N,n)
t :=

N∑
j=1

bntc∑
k=1

X
(j)
k , t ∈ R+, N, n ∈ N, (1.1)

where (X
(j)
k )k∈Z+ , j ∈ N, are independent copies of a stationary random-

coefficient AR(1) process

Xk = αXk−1 + εk, k ∈ N, (1.2)

with standardized independent and identically distributed (i.i.d.) innovations

(εk)k∈N having E(ε1) = 0 and Var(ε1) = 1, and a random coefficient α with

values in [0, 1), being independent of (εk)k∈N and admitting a probability

density function of the form

ψ(x)(1− x)β , x ∈ [0, 1), (1.3)

where β ∈ (−1,∞) and ψ is an integrable function on [0, 1) having a20

limit limx↑1 ψ(x) = ψ1 > 0. Here the distribution of X0 is chosen as the

unique stationary distribution of the model (1.2). Its existence was shown in

Proposition 1 of Puplinskaitė and Surgailis (2009). We point out that they

considered so-called idiosyncratic innovations, i.e., the innovations (ε
(j)
k )k∈N,
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j ∈ N, belonging to (X
(j)
k )k∈Z+

, j ∈ N, are independent. In Pilipauskaitė and25

Surgailis (2014) they derived scaling limits of the finite dimensional distributions

of (A−1N,nS
(N,n)
t )t∈R+

, where AN,n are some scaling factors and first N →∞

and then n→∞, or vice versa, or both N and n increase to infinity, possibly

with different rates. The iterated limit theorems for both orders of iteration are

presented in the paper of Pilipauskaitė and Surgailis (2014), in Theorems 2.130

and 2.3, along with results concerning simultaneous limit theorems in Theorem

2.2 and 2.3. We note that the theorems cover different ranges of the possible

values of β ∈ (−1,∞), namely, β ∈ (−1, 0), β = 0, β ∈ (0, 1), and β > 1.

Among the limit processes is a fractional Brownian motion, lines with random

slopes where the slope is a stable variable, a stable Lévy process, and a Wiener35

process. Our paper deals with the missing case when β = 1, for both two

orders of iteration.

The paper of Barczy et al. (2015) discusses the limit behavior of sums (1.1),

where (X
(j)
k )k∈Z+

, j ∈ N, are independent copies of a stationary random-

coefficient INAR(1) process. The usual INAR(1) process with non-random-

coefficient is defined as

Xk =

Xk−1∑
j=1

ξk,j + εk, k ∈ N, (1.4)

where (εk)k∈N are i.i.d. non-negative integer-valued random variables, (ξk,j)k,j∈N

are i.i.d. Bernoulli random variables with mean α ∈ [0, 1], and X0 is a non-

negative integer-valued random variable such that X0, (ξk,j)k,j∈N and (εk)k∈N

are independent. By using the binomial thinning operator α ◦ due to Steutel

and van Harn (1979), the INAR(1) model in (1.4) can be considered as

Xk = α ◦Xk−1 + εk, k ∈ N, (1.5)

which form captures the resemblance with the AR(1) model. We note that an

INAR(1) process can also be considered as a special branching process with

immigration having Bernoulli offspring distribution.40

We will consider a certain randomized INAR(1) process with randomized

thinning parameter α, given formally by the recursive equation (1.5), where
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α is a random variable with values in (0, 1). This means that, conditionally

on α, the process (Xk)k∈Z+
is an INAR(1) process with thinning parameter

α. Conditionally on α, the i.i.d. innovations (εk)k∈N are supposed to45

have a Poisson distribution with parameter λ ∈ (0,∞), and the conditional

distribution of the initial value X0 given α is supposed to be the unique

stationary distribution, namely, a Poisson distribution with parameter λ/(1−

α). For a rigorous construction of this process see Section 4 of Barczy et al.

(2015). The iterated limit theorems for both orders of iteration —that are50

analogous to the ones in case of the randomized AR(1) model— are presented

in the latter paper, in Theorems 4.6-4.12. This paper deals with the missing

case when β = 1, for both two orders of iteration. When first N → ∞ and

then n→∞, we use the technique that already appeared in the second proof of

Theorem 4.6 of Barczy et al. (2015). We show convergence of finite dimensional55

distributions of Gaussian sequences by checking convergence of covariances. It

turns out that in case of β = 1 these covariances can be computed explicitly.

When first n → ∞ and then N → ∞, we apply a new approach. Using

the ideas of the second proof of Theorem 4.9 of Barczy et al. (2015), it suffices

to show weak convergence of sums of certain i.i.d. random variables scaled by60

the factor N logN towards a positive number. It will be a consequence of a

classical limit theorem with a stable limit distribution for these sums scaled by

the factor N and centered appropriately. One may wonder about the limit

behavior if n and N converge to infinity simultaneously, not in an iterated

manner. This question has not been covered for β = 1 for either models, but65

the authors of this paper are planning to do so. Another natural question, which

remains open, is whether the finite-dimensional convergence can be replaced by

the functional convergence in Skorokhod space.
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2. Iterated aggregation of randomized INAR(1) processes with Pois-

son innovations70

Let α(j), j ∈ N, be a sequence of independent copies of the random

variable α, and let (X
(j)
k )k∈Z+

, j ∈ N, be a sequence of independent copies

of the process (Xk)k∈Z+
with idiosyncratic innovations (i.e., the innovations

(ε
(j)
k )k∈N, j ∈ N, belonging to (X

(j)
k )k∈Z+ , j ∈ N, are independent) such that

(X
(j)
k )k∈Z+ conditionally on α(j) is a strictly stationary INAR(1) process with75

Poisson innovations for all j ∈ N.

First we examine a simple aggregation procedure. For each N ∈ N, consider

the stochastic process S̃(N) = (S̃
(N)
k )k∈Z+

given by

S̃
(N)
k :=

N∑
j=1

(
X

(j)
k − E(X

(j)
k |α

(j))
)

=

N∑
j=1

(
X

(j)
k −

λ

1− α(j)

)
, k ∈ Z+.

The following two propositions are Proposition 4.1 and 4.2 of Barczy et al.

(2015). We will use
Df−→ or Df -lim for the weak convergence of the finite

dimensional distributions.

2.1 Proposition. If E
(

1
1−α

)
<∞, then

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+
is a stationary Gaussian process with zero mean and covari-

ances

E(Ỹ0Ỹk) = Cov

(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= λE

( αk

1− α

)
, k ∈ Z+. (2.1)

2.2 Proposition. We have(
n−

1
2

bntc∑
k=1

S̃
(1)
k

)
t∈R+

=

(
n−

1
2

bntc∑
k=1

(X
(1)
k −E(X

(1)
k |α

(1)))

)
t∈R+

Df−→
√
λ(1 + α)

1− α
B

as n→∞, where B = (Bt)t∈R+
is a standard Brownian motion, independent80

of α.
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In the forthcoming theorems we assume that the distribution of the random

variable α, i.e., the mixing distribution, has a probability density described

in (1.3). We note that the form of this density function indicates β > −1.

Furthermore, if α has such a density function, then for each ` ∈ N the85

expectation E((1− α)−`) is finite if and only if β > `− 1.

For each N,n ∈ N, consider the stochastic process S̃(N,n) = (S̃
(N,n)
t )t∈R+

given by

S̃
(N,n)
t :=

N∑
j=1

bntc∑
k=1

(
X

(j)
k − E(X

(j)
k |α

(j))
)
, t ∈ R+.

2.3 Theorem. If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)
− 1

2N−
1
2 S̃(N,n) =

√
2λψ1B,

where B = (Bt)t∈R+
is a standard Wiener process.

Proof of Theorem 2.3. Since E((1−α)−1) <∞, the condition in Proposition

2.1 is satisfied, meaning that

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+
is a stationary Gaussian process with zero mean and covari-

ances

E(Ỹ0Ỹk) = Cov

(
X0 −

λ

1− α
,Xk −

λ

1− α

)
= λE

( αk

1− α

)
, k ∈ Z+.

Therefore, it suffices to show that

Df - lim
n→∞

1√
n log n

bntc∑
k=1

Ỹk =
√

2λψ1B,

where B = (Bt)t∈R+
is a standard Wiener process. This follows from the

continuity theorem if for all t1, t2 ∈ N we have

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

→ 2λψ1 min(t1, t2), (2.2)
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as n→∞. By (2.1) we have

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

 =
λ

n log n
E

bnt1c∑
k=1

bnt2c∑
`=1

α|k−`|

1− α


=

λ

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|

1− a
ψ(a)(1− a) da.

First we derive

1

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da→ 2 min(t1, t2), (2.3)

as n→∞. Indeed, if we suppose that t2 > t1, then∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da =

bnt1c∑
k=1

bnt2c∑
`=1

1

|k − `|+ 1

= (bnt1c+ 1)(H(bnt1c)− 1) + 2− bnt1c+ bnt1c(H(bnt2c)− 1)

+
(
bnt2c − bnt1c+ 1

)
(H(bnt2c)−H(bnt2c − bnt1c+ 1))

= (bnt1c+ 1)(log(bnt1c) +O(1)) + 2− bnt1c+ bnt1c(logbnt2c+O(1))

+
(
bnt2c − bnt1c+ 1

)
(log(bnt2c)− log(bnt2c − bnt1c+ 1) +O(1)) ,

where H(n) denotes the n -th harmonic number, and it is well known that

H(n) = log n + O(1) for every n ∈ N. Therefore, convergence (2.3) holds.

Consequently, (2.2) will follow from

In :=
1

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`||ψ(a)− ψ1|da→ 0

as n→∞. Note that for every ε > 0 there is a δε > 0 such that for every

a ∈ (1− δε, 1) it holds that |ψ(a)− ψ1| < ε. Hence

Inn log n 6
∫ 1−δε

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|(ψ(a) + ψ1) da

+

∫ 1

1−δε

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`||ψ(a)− ψ1|da

6
∫ 1−δε

0

2bnt1c
δε

(ψ(a) + ψ1) da+ ε

∫ 1

1−δε

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`| da,
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meaning that for every ε > 0 by (2.3) we have lim supn→∞ |In| 6 0 +

4εmin(t1, t2), resulting that limn→∞ In = 0, which completes the proof. 2

2.4 Theorem. If β = 1, then

Df- lim
N→∞

Df- lim
n→∞

1√
nN logN

S̃(N,n) =
√
λψ1B,

where B = (Bt)t∈R+
is a standard Wiener process.90

Proof of Theorem 2.4. By Proposition 2.2 of the current paper and the

second proof of Theorem 4.9 of Barczy et al. (2015) it suffices to show that

1

N logN

N∑
j=1

λ(1 + α(j))

(1− α(j))2
D−→ λψ1, N →∞.

Let us apply Theorem 7.1 of Resnick (2007) with

XN,j :=
1

N

λ(1 + α(j))

(1− α(j))2
,

meaning that

N P(XN,1 > x) = N P
(
λ(1 + α)

(1− α)2
> Nx

)
= N

∫ 1

1−h̃(λ,Nx)
ψ(a)(1− a)da,

where h̃(λ, x) = (1/4 +
√

1/16 + x/(2λ))−1. Note that for every ε > 0 there

is a δε > 0 such that for every a ∈ (1− δε, 1) it holds that |ψ(a)− ψ1| < ε.

Then,

N

∫ 1

1−h̃(λ,Nx)
|ψ(a)− ψ1|(1− a)da 6 Nε

(h̃(λ,Nx))2

2
6
ελ

x

for every x > 0 and large enough N . Therefore, for every x > 0 we have

lim
N→∞

N P(XN,1 > x) = lim
N→∞

N

∫ 1

1−h̃(λ,Nx)
ψ1(1− a)da

= lim
N→∞

Nψ1
(h̃(λ,Nx))2

2
= lim
N→∞

ψ1

2

N(
1
4 +

√
1
16 + Nx

2λ

)2 =
ψ1λ

x
=: ν([x,∞)),

where ν is obviously a Lévy-measure. By the decomposition

N E
(
X2
N,11{|XN,1|6ε}

)
= N

∫ 1−h̃(λ,Nε)

0

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1−a)da = I
(1)
N +I

(2)
N ,
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where

I
(1)
N := N

∫ 1−δε

0

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1− a)da 6
1

N
λ2

22

δ4ε
1→ 0

as N →∞, and

I
(2)
N := N

∫ 1−h̃(λ,Nε)

1−δε

(
λ(1 + a)

N(1− a)2

)2

ψ(a)(1− a)da

6
8ψ1λ

2

N

∫ 1−h̃(λ,Nε)

1−δε

da

(1− a)3
=

4ψ1λ
2

N

[
h̃(λ,Nε)−2 − δ−2ε

]
6 8ψ1λ

2ε

for large enough N values, so it follows that

lim
ε→0

lim sup
N→∞

N E
(
X2
N,11{|XN,1|6ε}

)
= 0.

Therefore, by applying Theorem 7.1 of Resnick (2007) with the choice t = 1

we get that

N∑
j=1

[
λ(1 + α(j))

N(1− α(j))2
− E

(
λ(1 + α)

N(1− α)2
1{

λ(1+α)

N(1−α)2
61

})]

=

N∑
j=1

[
λ(1 + α(j))

N(1− α(j))2
− λψ1

N

∫ 1−
√

2λ
N

0

2

(1− a)2
(1− a)da

+
λψ1

N

∫ 1−
√

2λ
N

0

2

(1− a)2
(1− a)da− λψ1

N

∫ 1−h̃(λ,N)

0

2

(1− a)2
(1− a)da

+
λψ1

N

∫ 1−h̃(λ,N)

0

2

(1− a)2
(1− a)da− λψ1

N

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
(1− a)da

+
λψ1

N

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
(1− a)da− λ

N

∫ 1−h̃(λ,N)

0

1 + a

(1− a)2
ψ(a)(1− a)da

]

=:
λ

N

N∑
j=1

J
(0)
j,N + λJ

(1)
N + λJ

(2)
N + λJ

(3)
N

D−→ X0,

where by (5.37) of Resnick (2007)

E(eiθX0) = exp

{∫ ∞
1

(eiθx − 1)
ψ1λdx

x2
+

∫ 1

0

(eiθx − 1− iθx)
ψ1λdx

x2

}
, θ ∈ R.

We show that
|J (1)
N |+ |J

(2)
N |+ |J

(3)
N |

logN
→ 0, N →∞,
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resulting

1

logN

N∑
j=1

λ(1 + α(j))

N(1− α(j))2
=

1

logN

N∑
j=1

[
λ(1 + α(j))

N(1− α(j))2
− λψ1

N

∫ 1−
√

2λ
N

0

2

1− a
da

]

+
2λψ1

logN

(
− log

(√
2λ

N

))
D−→ 0 ·X0 + λψ1 = λψ1, N →∞.

Indeed,

J
(1)
N

logN
=

ψ1

logN

∫ 1−h̃(λ,N)

1−
√

2λ
N

2

1− a
da =

2ψ1

logN
log

(√
2λ

N

(
1

4
+

√
1

16
+
N

2λ

))
converges to 0 as N →∞. Moreover,

J
(2)
N

logN
=

ψ1

logN

∫ 1−h̃(λ,N)

0

1− a
(1− a)2

(1− a)da =
ψ1

logN

1− 1

1
4 +

√
1
16 + N

2λ


converges to 0 as N →∞. Finally,∣∣∣∣∣ J (3)

N

logN

∣∣∣∣∣ =

∣∣∣∣∣ 1

logN

∫ 1−h̃(λ,N)

0

1 + a

1− a
(ψ1 − ψ(a))da

∣∣∣∣∣
6

1

logN

∫ 1−δε

0

2

δε
(ψ1 + ψ(a))da+

1

logN

∫ 1−h̃(λ,N)

1−δε

2

1− a
εda

6
1

logN

2

δε
(ψ1 + δ−1ε ) +

2ε

logN

[
log δε + log

(
1

4
+

√
1

16
+
N

2λ

)
.

]
,

One can easily see that for all ε > 0, we get lim supN→∞ |J
(3)
N /logN | 6 0 + ε,

resulting that limN→∞ J
(3)
N /logN = 0, which completes the proof. 2

3. Iterated aggregation of randomized AR(1) processes with Gaus-

sian innovations

Let α(j), j ∈ N, be a sequence of independent copies of the random variable95

α, and let (X
(j)
k )k∈Z+

, j ∈ N, be a sequence of independent copies of the

process (Xk)k∈Z+
with idiosyncratic Gaussian innovations (i.e., the innovations

(ε
(j)
k )k∈Z+ , j ∈ N, belonging to (X

(j)
k )k∈Z+ , j ∈ N, are independent) having

zero mean and variance σ2 ∈ R+ such that (X
(j)
k )k∈Z+ conditionally on α(j) is

a strictly stationary AR(1) process for all j ∈ N. A rigorous construction of this100
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random-coefficient process can be given similarly as in case of the randomized

INAR(1) process detailed in Section 4 of Barczy et al. (2015).

First we examine a simple aggregation procedure. For each N ∈ N, consider

the stochastic process S̃(N) = (S̃
(N)
k )k∈Z+

given by

S̃
(N)
k :=

N∑
j=1

X
(j)
k , k ∈ Z+.

The following two propositions are the counterparts of Proposition 2.1 and 2.2,

and can be proven similarly as the two concerning the randomized INAR(1)

process.105

3.1 Proposition. If E
(

1
1−α2

)
<∞, then

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+
is a stationary Gaussian process with zero mean and covari-

ances

E(Ỹ0Ỹk) = Cov(X0, Xk) = σ2 E
( αk

1− α2

)
, k ∈ Z+.

3.2 Proposition. We have(
n−

1
2

bntc∑
k=1

S̃
(1)
k

)
t∈R+

=

(
n−

1
2

bntc∑
k=1

X
(1)
k

)
t∈R+

Df−→ σ

1− α
B

as n→∞, where B = (Bt)t∈R+ is a standard Brownian motion, independent

of α.

Again, we assume that the distribution of the random variable α has a

probability density described in (1.3). Note that for each ` ∈ N the expectation

E((1− α2)−`) is finite if and only if β > `− 1.110

For each N,n ∈ N, consider the stochastic process S̃(N,n) = (S̃
(N,n)
t )t∈R+

given by

S̃
(N,n)
t :=

N∑
j=1

bntc∑
k=1

X
(j)
k , t ∈ R+.

11



3.3 Theorem. If β = 1, then

Df- lim
n→∞

Df- lim
N→∞

(n log n)
− 1

2N−
1
2 S̃(N,n) =

√
σ2ψ1B,

where B = (Bt)t∈R+ is a standard Wiener process.

Proof of Theorem 3.3. Since E((1−α2)−1) <∞, the condition in Proposition

3.1 is satisfied, meaning that

N−
1
2 S̃(N) Df−→ Ỹ as N →∞,

where (Ỹk)k∈Z+
is a stationary Gaussian process with zero mean and covari-

ances

E(Ỹ0Ỹk) = Cov (X0, Xk) = σ2 E
( αk

1− α2

)
, k ∈ Z+.

Therefore, it suffices to show that

Df - lim
n→∞

1√
n log n

bntc∑
k=1

Ỹk =
√
σ2ψ1B,

where B = (Bt)t∈R+ is a standard Wiener process. This follows from the

continuity theorem, if for all t1, t2 ∈ N we have

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

→ σ2ψ1 min(t1, t2), n→∞.

It is known that

Cov

 1√
n log n

bnt1c∑
k=1

Ỹk,
1√

n log n

bnt2c∑
k=1

Ỹk

 =
σ2

n log n
E

bnt1c∑
k=1

bnt2c∑
`=1

α|k−`|

1− α2


=

σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|

1− a2
ψ(a)(1− a)da

=
σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|ψ(a)da− σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|+1

1 + a
ψ(a)da

It was shown in the proof of Theorem 2.3 that

σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|ψ(a)da→ 2σ2ψ1 min(t1, t2), n→∞.
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We are going to prove that

σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|+1

1 + a
ψ(a)da− σ2

n log n

∫ 1

0

bnt1c∑
k=1

bnt2c∑
`=1

a|k−`|

1 + a
ψ(a)da

converges to 0 as n→∞, which proves our theorem. Indeed, if t2 > t1, then∣∣∣∣∣∣
bnt1c∑
k=1

bnt2c∑
`=1

(
a|k−`|+1

1 + a
− a|k−`|

1 + a

)∣∣∣∣∣∣ =
1

1 + a

∣∣∣∣∣∣
bnt1c∑
k=1

(
ak − (a+ 1) + abnt2c−k+1

)∣∣∣∣∣∣
=

1

1 + a

∣∣∣∣a(abnt1c − 1)

a− 1
− (a+ 1)bnt1c+

abnt2c+1 − abnt2c−bnt1c+1

a− 1

∣∣∣∣ 6 4bnt2c,

and as ψ(a), a ∈ (0, 1) is integrable,

σ2

n log n

∫ 1

0

4bnt2cψ(a)da→ 0, n→∞.

This completes the proof. 2

3.4 Theorem. If β = 1, then

Df- lim
N→∞

Df- lim
n→∞

1√
nN logN

S̃(N,n) =

√
σ2ψ1

2
B,

where B = (Bt)t∈R+
is a standard Wiener process.

The proof is similar to the INAR(1) case since the only difference is a missing

1 + α factor in the numerator and the constants.115
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Pilipauskaitė, V., Surgailis, D., 2014. Joint temporal and contemporaneous ag-

gregation of random-coefficient AR(1) processes. Stochastic Process. Appl.

124 (2), 1011–1035.

URL http://dx.doi.org/10.1016/j.spa.2013.10.004
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