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Abstract

By temporal and contemporaneous aggregation, doubly indexed partial sums
of independent copies of random coefficient AR(1) or INAR(1) processes are
studied. Iterated limits of the appropriately centered and scaled aggregated
partial sums are shown to exist. The paper completes the results of Pilipauskaité
and Surgailis (2014) and Barczy, Nedényi and Pap (2015).
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1. Introduction

The aggregation problem is concerned with the relationship between indi-
vidual (micro) behavior and aggregate (macro) statistics. There exist differ-
ent types of aggregation. The scheme of contemporaneous (also called cross-
sectional) aggregation of random-coefficient AR(1) models was firstly proposed
by |[Robinson| (1978) and |Granger| (1980) in order to obtain the long memory
phenomena in aggregated time series.

Puplinskaité and Surgailig (2009} 2010) discussed aggregation of random-

coefficient AR(1) processes with infinite variance and innovations in the domain
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of attraction of a stable law. Related problems for some network traffic models,
M/G/oo queues with heavy-tailed activity periods, and renewal-reward pro-
cesses have also been examined. On page 512 in (2013)) one can find many

references for papers dealing with the aggregation of continuous time stochas-

tic processes, and the introduction of Barczy et al.| (2015)) contains a detailed

overview on the topic.

. The aim of the present paper is to complete the papers of [Pilipauskaité and|

|Surgailis| (2014)) and Barczy et al| (2015) by giving the appropriate iterated
limit theorems for both the randomized AR(1) and INAR(1) models when the

parameter 8 =1, which case is not investigated in both papers.
Let Z,, N, R and R, denote the set of non-negative integers, positive

integers, real numbers and non-negative real numbers, respectively. The paper

of [Pilipauskaité and Surgailis| (2014)) discusses the limit behavior of sums

N |nt]
S =3"N" XY teRy,  NoaneN, (1.1)
j=1k=1
where (X;gj))kez+, j € N, are independent copies of a stationary random-

coefficient AR(1) process
X =aXp_1+ ¢, keN, (1.2)

with standardized independent and identically distributed (i.i.d.) innovations
(ex)ken having E(e1) =0 and Var(e;) =1, and a random coefficient o with
values in [0,1), being independent of (ex)reny and admitting a probability

density function of the form
Y(x)1—x), 2z €[0,1), (1.3)

where f € (—1,00) and 1 is an integrable function on [0,1) having a
limit limgey ¢(z) = 91 > 0. Here the distribution of X, is chosen as the

unique stationary distribution of the model (1.2]). Its existence was shown in

Proposition 1 of [Puplinskaité and Surgailis| (2009). We point out that they

considered so-called idiosyncratic innovations, i.e., the innovations (8;3 ))keN,
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j € N, belonging to (X,ij))keZJr, j € N, are independent. In|Pilipauskaité and
Surgailis| (2014) they derived scaling limits of the finite dimensional distributions
of (A]_V}nSt(N’"))teRJr, where Ay, are some scaling factors and first N — oo
and then n — oo, or vice versa, or both N and n increase to infinity, possibly
with different rates. The iterated limit theorems for both orders of iteration are
presented in the paper of Pilipauskaite and Surgailis| (2014), in Theorems 2.1
and 2.3, along with results concerning simultaneous limit theorems in Theorem
2.2 and 2.3. We note that the theorems cover different ranges of the possible
values of 8 € (—1,00), namely, 8 € (—1,0), 8 =0, € (0,1),and 8 > 1.
Among the limit processes is a fractional Brownian motion, lines with random
slopes where the slope is a stable variable, a stable Lévy process, and a Wiener
process. Our paper deals with the missing case when [ = 1, for both two
orders of iteration.

The paper of Barczy et al.| (2015)) discusses the limit behavior of sums ,
where (X;gj))kem, j € N, are independent copies of a stationary random-
coefficient INAR(1) process. The usual INAR(1) process with non-random-

coefficient is defined as
Xr_1
X = Z fkyj + €k, ke N, (1.4)

j=1
where (e;)ken areii.d. non-negative integer-valued random variables, (§x ;) jen
are i.i.d. Bernoulli random variables with mean « € [0,1], and X, is a non-
negative integer-valued random variable such that Xo, (& ;)kjen and (€x)ken
are independent. By using the binomial thinning operator ao due to [Steutel

and van Harn| (1979), the INAR(1) model in ([1.4)) can be considered as
X =aoXp_1+eg, keN, (1.5)

which form captures the resemblance with the AR(1) model. We note that an
INAR(1) process can also be considered as a special branching process with
immigration having Bernoulli offspring distribution.

We will consider a certain randomized INAR(1) process with randomized

thinning parameter «, given formally by the recursive equation (|1.5)), where
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a is a random variable with values in (0,1). This means that, conditionally
on «, the process (Xi)rez, is an INAR(1) process with thinning parameter
a. Conditionally on «, the i.i.d. innovations (eg)gen are supposed to
have a Poisson distribution with parameter A € (0,00), and the conditional
distribution of the initial value X, given « 1is supposed to be the unique
stationary distribution, namely, a Poisson distribution with parameter \/(1 —
«). For a rigorous construction of this process see Section 4 of Barczy et al.
(2015). The iterated limit theorems for both orders of iteration —that are
analogous to the ones in case of the randomized AR(1) model— are presented
in the latter paper, in Theorems 4.6-4.12. This paper deals with the missing
case when [ =1, for both two orders of iteration. When first N — oo and
then n — oo, we use the technique that already appeared in the second proof of
Theorem 4.6 of Barczy et al.|(2015]). We show convergence of finite dimensional
distributions of Gaussian sequences by checking convergence of covariances. It
turns out that in case of § =1 these covariances can be computed explicitly.
When first n — oo and then N — oo, we apply a new approach. Using
the ideas of the second proof of Theorem 4.9 of [Barczy et al.|(2015)), it suffices
to show weak convergence of sums of certain i.i.d. random variables scaled by
the factor Nlog N towards a positive number. It will be a consequence of a
classical limit theorem with a stable limit distribution for these sums scaled by
the factor N and centered appropriately. One may wonder about the limit
behavior if n and N converge to infinity simultaneously, not in an iterated
manner. This question has not been covered for § =1 for either models, but
the authors of this paper are planning to do so. Another natural question, which
remains open, is whether the finite-dimensional convergence can be replaced by

the functional convergence in Skorokhod space.
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2. Iterated aggregation of randomized INAR(1) processes with Pois-

son innovations

Let o), j € N, be a sequence of independent copies of the random
variable «, and let (X ,gj )) kez.,» J €N, be a sequence of independent copies
of the process (Xy)rez, with idiosyncratic innovations (i.e., the innovations
(sl(cj))keN, j € N, belonging to (X;gj))kem, j € N, are independent) such that
(X,gj))kez+ conditionally on al?) is a strictly stationary INAR(1) process with
Poisson innovations for all j € N.

First we examine a simple aggregation procedure. For each N € N, consider
the stochastic process SV) = (gz(cN)>k€Z+ given by

N N
SV =3 (X B [a0) = 3 (%) - A ) keZy

—al
Jj=1 Jj=1

The following two propositions are Proposition 4.1 and 4.2 of Barczy et al.
(2015). We will use D25 or Dylim  for the weak convergence of the finite

dimensional distributions.

2.1 Proposition. If ]E(ﬁ) < 00, then
N‘ég(m&)j} as N — oo,
where (j)vk)kez+ is a stationary Gaussian process with zero mean and covari-

ances

~ ~ k
]E(yoyk):COV(XO_)\7X}g— A ):)\E( a ) keZy. (21)

l1—« l1—« 1l—«

2.2 Proposition. We have

L [nt] ) § |nt] ) ) D; )\(1 ¥ Oé)
(nz Z S ) - (n2 Z(Xk —-E(X; |a(1)))> - ?B
teR, teR, «

k=1
as n — oo, where B = (By)ier, is a standard Brownian motion, independent

of «.
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In the forthcoming theorems we assume that the distribution of the random
variable «, i.e., the mixing distribution, has a probability density described
in . We note that the form of this density function indicates [ > —1.
Furthermore, if « has such a density function, then for each ¢ € N the

expectation E((1 —«a)~%) is finite if and only if 3 > ¢ — 1.

For each N,n € N, consider the stochastic process S®:m) = (ng’”))teM
given by
N [nt]
(N n j j ;
SN =3 (XY B o)), teRy.
j=1 k=1

2.3 Theorem. If =1, then

. -3 a1 S(V,n)
De-lim Dg- lim (nlogn) 2N—2 S = /2 i B,

im
n— o0 N —oc0

where B = (By)ier, 1is a standard Wiener process.

Proof of Theorem Since E((1—a)~!) < oo, the condition in Proposition
is satisfied, meaning that

N_%g(N)&j as N — oo,

where (Vi)rez, Iis a stationary Gaussian process with zero mean and covari-

ances

S S A A ak
E(Yok) = Cov (XO— Xy — 1_a> =AE(;—), keZy

Therefore, it suffices to show that

Lnt)

Dt- lim Y V= V2MhB,
k=1

1
n—oo y/nlogn

where B = (By)ier . is a standard Wiener process. This follows from the

continuity theorem if for all t1,t2 € N we have

[nt1] [nt2]

! Z Vi | = 2\ min(ty, t2), (2.2)
k=1

~ 1
C e — , ——
o vnlogn ; Y vnlogn



as n — oo. By (2.1) we have

1 |_nt1J LntzJ I_’I’Ltlj LntzJ a‘kie‘

Cov \/nlogn Z \/nlogn Z _nlognE Z Z 11—«

k=1 ¢=1
1lntaf nt] )
_ A /0 S S - a)de.

nlogn a
8 k=1 ¢=1

First we derive

1 Lnt1] [nt2]

Z Z a* =1 da — 2min(ty, t,), (2:3)

k=1 (=1

nlogn J,

as n — oo. Indeed, if we suppose that to > t1, then

1 Lnt1] [nt2] |nty ] |ntz]

[0 30 SELITED 9 SpT=r e

k=1 =1 k=1 =1
= (Int1] + D)(H([nt1]) = 1) + 2 — [nt1] + |nt1 ] (H(|nt2]) — 1)
+ (Int2) — [nt1] + 1) (H(|nt2)) — H(|nta] — [nt1] + 1))
= ([nt1] +1)(log([nt1]) + O(1)) + 2 — [nt1] + [nt1](log|nt2] + O(1))
+ ([nt2) — [nt1] + 1) (log(|nt2])) — log(|nta] — [nt1] + 1) + O(1)),

where H(n) denotes the n-th harmonic number, and it is well known that
H(n) =logn + O(1) for every m € N. Therefore, convergence (2.3) holds.
Consequently, (2.2) will follow from

1 Lnt1] [nt2]

1
I, := |[k—2| _
" nlogn Jo Z Z a [Y(a) —t1|da — 0

k=1 /(=1

as n — 00. Note that for every € > 0 thereis a . > 0 such that for every
a € (1—0.,1) it holds that [i¢(a) — 1| < e. Hence

1-5. Lnta] [nt2]
Innlogng/ Z Z al*= 12| a)+ 1) da
0 k=1 (=1
[nt1] [nts]
FS S e g
1=0: k=1 ¢=1
[nt1] [nts]

1-6.
</O QLZ:”(M )+ 1) da+e > Y d¥da,

1= p—1 ¢=1
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meaning that for every ¢ > 0 by (2.3) we have limsup,_ .|l < 0+

4demin(ty, ta), resulting that lim, ,. I, = 0, which completes the proof. O

2.4 Theorem. If 8 =1, then

1 -
It R - g(n) _
Ds A}Hn Ds nh_r)réo Vo S A B,

where B = (Bt)te]lh is a standard Wiener process.

Proof of Theorem By Proposition [2.2] of the current paper and the
second proof of Theorem 4.9 of Barczy et al.| (2015) it suffices to show that
N

1 AM1+aW) p
Z:l 0 a0y s M, N — oo

Let us apply Theorem 7.1 of [Resnick| (2007) with

oo LA + al?)
NN (1= a)2’
meaning that
A1 !
NP(Xy1>z)=NP ((+02 > Nm) =N ¥(a)(1 — a)da,
(1-a) 1—h(A\,Nz)

where h(\,z) = (1/4 + +/1/16 + x/(2)))~. Note that for every & > 0 there

isa Jd. > 0 such that for every a € (1 —0d.,1) it holds that [¢(a) — 1] < e.
Then,

1 T Naz))2
N 0(a) — 1|(1 — a)da < Ne AN 2
1—h(\Nz) 2

for every x > 0 and large enough N. Therefore, for every x > 0 we have

1
lim NP(Xy1>2)= lim N 1(1 —a)da
N—o00 N—o00 I—E(A,Nac)

= lim N¢17(h(A7Nx))2 = lim L} N ()

= It =
N —o00 2 N—oo 2 1 1 N 2 x
(1 ty1et Tf)

where v is obviously a Lévy-measure. By the decomposition

1—h(A,Ne¢) )\(1 +a) 2
NE(Rgxnie) =V | (i) wa-aa =1+
0



where

1-6 2 2
W, _ T (A0 +a) Cada < a2z
Iy .7N/0 <N(1—a)2 Y(a)(1 —a)da < N)\ 641—>0

€

as N — oo, and

1—h(\,Ne) (1 2
@ _ (1+a) B
Iy =N s (N(l — a)2> Y(a)(1 —a)da
A2 [ITPONE dg 4N - P )
g = 7N - g
vl e [h(A &2 o } 8y \2e

for large enough N values, so it follows that
. . 2 .
Eh_% hifnﬁsilopNE (X3al{xnal<ey) = 0.

Therefore, by applying Theorem 7.1 of [Resnick| (2007) with the choice ¢ =1

we get that
N (4)
Z A1+ al9)) & )\(l—l—a)]l
N1 —al)? N1 —a)? {7t <1}
ZN: A1 +aD) My /1 ® 2 (1 )
= - —_ —a)da
= N(1 — ali))2 N )y (1—-a)?
b 1—y/% 9 " 1-h(\,N) 9
ket 11— _Arn 11—
+ i /0 (17(1)2( a)da N/ (l—a)Q( a)da
Ay 1—h(X,N) 9 Ay 1—h()\,N) 1+a
+TA (1_a)2(1—a)da—N/0 (l_a)2(l—a)da

My [PON) g A [IRON)
W/o qap e [ @ - ae

N
A
= 52T AN H AT AT X,

where by (5.37) of [Resnick| (2007

: o d L d
E(elf%0) = eXp{/ (elf® — 1)M +/ (elf® —1 —iﬁx)wl/\ x}, 0 eR.
1 0

2 2

We show that
I LI+
log N

0, N — o0,
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resulting
1 3 A1+ o) Z A1+ al9) )\wl/lﬁ 2
log N = N(1 — ali))2 logN N1-al@)2 N J, l1—a

v 20 (10g( ?;\)) 50 Xo+ My =M, N - .

Indeed,

J(1) 1—h(\,N)
N__ W% / 2 da = 201 log 2L + 1 + N
logN  log N 1-V/Z 1—a log N N \ 4 16 2\

converges to 0 as N — co. Moreover,

J](\?) _ U /1h(A,N) l1—a (1— a)da = U 1 1
logN log N (1—a)? log N

converges to 0 as N — co. Finally,

J](\}”)) 1—h(A,N) l+a
= — d
log N log N /0 1-— a(w1 ¥(a))da
1—6. 1-h(AN) o
logN/ ¢1+1/J( ))da+logN 1fa€da

1 2e 1 1 N
< [ _
log N 6. (1/)1-1-5 )+logN [log§g+log<4+ +2/\>1

One can easily see that for all € > 0, we get limsupy_, |J )/log N| <0+e¢,
resulting that limy_co J N)/logN = 0, which completes the proof. O

3. Iterated aggregation of randomized AR(1) processes with Gaus-

sian innovations

Let a9, j € N, be asequence of independent copies of the random variable
a, and let (X,ij))kez+, j € N, be a sequence of independent copies of the
process (Xi)rez, withidiosyncratic Gaussian innovations (i.e., the innovations
(82j))kez+, j €N, belonging to (X;Ej))keh» j € N, are independent) having
zero mean and variance o2 € R, such that (X ,gj ))keZ , conditionally on al) s

a strictly stationary AR(1) process for all j € N. A rigorous construction of this

10
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random-coefficient process can be given similarly as in case of the randomized
INAR(1) process detailed in Section 4 of Barczy et al.| (2015).

First we examine a simple aggregation procedure. For each N € N, consider
the stochastic process SN = (§,§N))kez+ given by

N
SNV =3"XxP, kez,.

j=1
The following two propositions are the counterparts of Proposition [2.1] and
and can be proven similarly as the two concerning the randomized INAR(1)

process.

3.1 Proposition. If E(ﬁ) < 00, then

N_%S(N)&)j as N — oo,

where (Vi)rez, is a stationary Gaussian process with zero mean and covari-

ances
k

E(JoYi) = Cov(Xo, Xi) = aQE(lt_Xﬁ), keZ.,.

3.2 Proposition. We have

[nt] [nt]
(rexsy) = (rrxy) BT
k=1 tER k=1 tERy l-a

as n — oo, where B = (By)er, is a standard Brownian motion, independent

of «.

Again, we assume that the distribution of the random variable « has a
probability density described in (|1.3)). Note that for each ¢ € N the expectation
E((1 — a?)~*) is finite if and only if 5> ¢ — 1.

For each N,n € N, consider the stochastic process S(Nm) — (§§N’n))t€R+

given by
~ N I_’ﬂtJ .
F¥ —S5 X0 teRr,.
j=1k=1

11



3.3 Theorem. If =1, then

D;-lim D- hm (nlogn)féN_% SNm) — o211 B,

n—oo

where B = (By)ier, 1is a standard Wiener process.

Proof of Theorem Since E((1—a?)~1!) < oo, the condition in Proposition
is satisfied, meaning that

N—%g(N)&)JN) as N — oo,

where (Vi)rez, Is a stationary Gaussian process with zero mean and covari-

ances
k

1— a2

E(YoYi) = Cov (Xg, X3) = o IE( ) keZy.

Therefore, it suffices to show that
|nt]

Ds-1 = B,
fnl_)rr;o\/mzyk oy

where B = (By)icr, is a standard Wiener process. This follows from the
continuity theorem, if for all ¢;,t5 € N we have

1 [ntq] ~ [nta]

Cov | —— . - t,t — 0.
ov W;yk\/m;yk o4y min(t, t), n — 00
It is known that
. ;o lnta] o Lnta ) nta] e~
Ml W SEEvA P ORL) il DI Dy
l, S
— ——¥(a)(1 —a)da
nlogn Jo = = 1-a
1 Lnt1] |nts] - 2 1 nta] [nt2] alk—tl+1
k—t
_ —_ d
nlogn/ Z Z ¥(e nlogn/o Z Z 14+a ¥(a)da

k=1 (=1 k=1 (=1

It was shown in the proof of Theorem [2.3] that

1 [nt1] [nt2]

3OS aUg(a)da - 207 min(t, 1), 1 — oo

k=1 (=1

nlogn

12
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We are going to prove that

o2 1 nt1] [ntz] alk—t+1 o2 1 [nt1] [nt2] alk—1l
_ da — d
nlogn/o P ; 14+a Yla)da nlogn J, kzzl e:zl 1+aw<a) “

converges to 0 as m — oo, which proves our theorem. Indeed, if t; > t1, then

[nt1] lntz] kg4t |k—e| R LGES
>3 (o Tra)| " | X (e ae)
k=1 (=1 ta T =

-1 j_ a a(a:tf 1_ D_ (a+1)[nt:] + ante! _aa_LnTJ S < 4|nta],
and as v¥(a), a € (0,1) is integrable,
o2 1
nlogn /0 4| nta](a)da — 0, n — oo.
This completes the proof. O

3.4 Theorem. If =1, then
1 I oy
D¢-lim Dg-lim ——ooou SV = /=B
ngnoo fneréo nN log N 2 ’
where B = (By)ier, 1is a standard Wiener process.

The proof is similar to the INAR(1) case since the only difference is a missing

1 + o factor in the numerator and the constants.
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