

Intra-familial Variability of Ectodermal Defects Associated with *WNT10A* Mutations

Emma K. Wedgeworth¹, Nikoletta Nagy², Jonathan M. L. White¹, Andrew C. Pembroke³ and John A. McGrath^{1,2,4*}

St John's Institute of Dermatology, ¹The Guy's and St Thomas' NHS Foundation Trust and ²King's College London, London, ³Department of Dermatology, Sevenoaks Hospital, Kent, and ⁴Dermatology Research Laboratories, Floor 9 Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK. *E-mail: john.mcgrath@kcl.ac.uk

Accepted September 27, 2010.

WNT10A is a member of the wingless signalling pathway that has a fundamental role in skin and appendageal morphogenesis (1). Moreover, naturally occurring *WNT10A* gene mutations have been identified in the autosomal recessive human ectodermal dysplasia syndromes odonto-onycho-dermal dysplasia (ODDD; OMIM277980) and Schöpf-Schulz-Passarge syndrome (SSPS; OMIM224750) (2–7). These disorders show considerable phenotypic overlap, with hypodontia, nail dystrophy, hypotrichosis and palmoplantar keratoderma common to both, although eyelid cysts (apocrine hidrocystomas) are thought to be characteristic for SSPS (8). Furthermore, variable ectodermal defects (teeth, nails, hair) have also been noted in heterozygous carriers of *WNT10A* mutations, with some phenotypic differences between males and females: dental anomalies predominate in males, whereas hair and nail pathology is more common in female heterozygotes (4, 7).

CASE REPORTS

In this study we undertook genotype-phenotype correlation in a British family with OODD/SSPS, spanning four generations and containing seven individuals with diverse ectodermal abnormalities (Fig. 1a). One individual (II-2) had the typical clinical features of SSPS, including eyelid cysts (Fig. 1b), whereas the others had variable ectodermal defects, which are detailed in Table SI (<http://adv.medicaljournals.se/article/abstract/10.2340.00015555-1028>). Following ethical approval, informed consent, and in accordance with the principles of the Declaration of Helsinki, genomic DNA from eight available family members was amplified and screened for mutations in the *WNT10A* gene, as described previously. Two potentially pathogenic mutations were identified, p.Cys107X and p.Phe228Ile (Fig. S1) (<http://adv.medicaljournals.se/article/abstract/10.2340.00015555-1028>), both of which have been documented previously in other individuals and families with OODD/SSPS. The carrier status for these mutations is depicted in Fig. 1a.

DISCUSSION

Homozygosity for p.Cys107X was detected in individual II-2 (male) with clinical features of SSPS. This particular mutation appears to be the most common recurrent nonsense mutation, as it has been reported in nine other pedigrees with OODD/SSPS (4, 6, 7). Indeed, it is the most frequent molecular pathology in SSPS, notwithstanding that it can also underlie OODD, an observation that underscores OODD and SSPS being variable manifestations of the same clinicopathological and molecular entity. Three individuals in our family who were compound heterozygotes for p.Cys107X/p.Phe228Ile showed similar

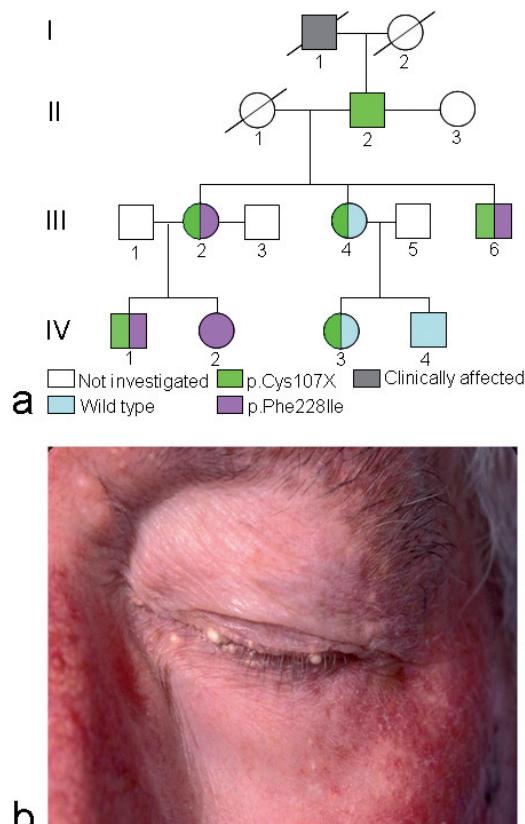


Fig. 1. (a) Pedigree details showing carrier status for the nonsense/missense mutations in *WNT10A*. (b) Prominent eyelid cysts (apocrine hidrocystomas) in individual II-2 characteristic of Schöpf-Schulz-Passarge syndrome.

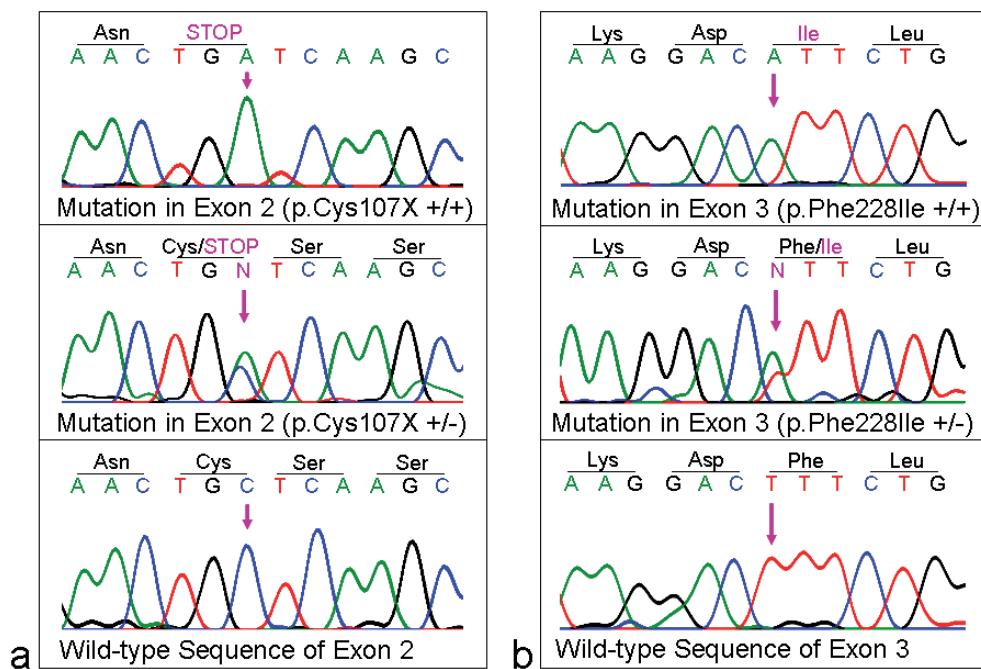
but somewhat milder clinical features that were more akin to OODD. The missense mutation p.Phe228Ile, which is located within a conserved alpha-helix domain of the protein, has previously been demonstrated to occur in ~0.5% of control chromosomes and its occurrence in this family appears to have been acquired both through the deceased spouse of individual II-2 and the first spouse of individual III-2 (individual III-1). There is no history of consanguinity in this family, and thus the entrance of this mutation at two separate points of the pedigree supports the published data that p.Phe228Ile may be a common finding in the general population (4, 5). In previous reports, homozygosity for p.Phe228Ile has been associated with OODD in one individual, but approximately 50% of heterozygotes may show variable abnormalities of skin, hair, teeth or nails (4, 5). This observation, based on an assessment of 15 individuals heterozygous for p.Phe228Ile and the published control population data, suggests that

approximately 1 in 400 of the general population may manifest some developmental ectodermal defects that are directly attributable to this particular missense mutation in *WNT10A*. In our pedigree there were no individuals who were solely heterozygous for this mutation, but one subject was homozygous for p.Phe228Ile (female, IV-2); clinically, there were widely spaced deciduous teeth in childhood, but only mild hypodontia and a persisting tendency to overheat as an adult. Two individuals who were heterozygous for p.Cys107X (but no other *WNT10A* mutation) displayed very different features: one (female, III-4) had eyelid cysts, sparse eyebrows, mild hypodontia and slight palmoplantar keratoderma, whereas the other (female, IV-3) had no apparent clinical anomalies. Although eyelid cysts are a typical feature of autosomal recessive SSPS, we noted their presence in two other family members, one of whom (III-4) was only heterozygous for p.Cys107X and no other mutation in *WNT10A*. Individual III-4 reported multiple eyelid cysts similar to those experienced by subject II-2. However, these cysts, which developed in her early 30s, lasted for only approximately two years and resolved spontaneously before detailed clinical or histological assessment was feasible. Thus, this clinical feature should perhaps be regarded as just one physical sign in the OODD/SSPS spectrum rather than a pathognomonic hallmark of SSPS. Individuals with SSPS have also been reported to have a higher incidence of malignancies, particularly skin cancers, although this has not been a universal finding (9). In our pedigree, individual II-2 had a history of superficial spreading malignant melanoma, cutaneous squamous cell carcinoma and basal cell carcinomas, but not internal malignancies. No other family member had any history of cancer. Dental changes were the most common clinical pathology in our pedigree and were detected in the permanent dentition of all homozygotes, all compound heterozygotes, and one of the two heterozygotes. The severity of the dental abnormalities was more marked in males. Individuals II-2 and IV-1 had severe hypodontia, which was evident in their permanent dentition. Of note, subject II-2 required dentures from the age of 14 years and subject IV-1 retained several deciduous teeth, many of which showed extensive root resorption. Individual IV-1 also required multiple implant replacement of his deciduous teeth, as well as maxillary advancement due to mid-facial hypoplasia. Individual III-6 reported hypodontia and wore an upper dental plate. All 3 of these family members had conical-shaped teeth. More variable and less frequent symptoms/signs in these and other family members included hyperhidrosis, nail dystrophy, facial erythema and photophobia. Overall, our single pedigree study provides a detailed illustration of the phenotypic spectrum of ectodermal abnormalities associated with *WNT10A* gene pathology. The findings demonstrate that OODD and SSPS are essentially part of the same disorder and that the actual clinical manifestations depend not only

on the presence of one or two mutations in *WNT10A*, the nature of the mutation (nonsense or missense), and the sex of an individual, but also on other currently unknown influences (genetic, epigenetic or environmental) that may be relevant to *WNT* signalling and ectodermal homeostasis (10, 11).

ACKNOWLEDGEMENTS

The authors acknowledge financial support from the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust.


REFERENCES

1. Bolognesi R, Beermann A, Farrana L, Wittkopp N, Lutz R, Balavoine G, et al. *Tribolium* Wnts: evidence for a larger repertoire in insects with overlapping expression patterns that suggest multiple redundant functions in embryogenesis. *Dev Genes Evol* 2008; 218: 193–202.
2. Adaimy L, Chouery E, Megarbane H, Mroueh S, Delague V, Nicolas E, et al. Mutation in *WNT10A* is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia. *Am J Hum Genet* 2007; 81: 821–828.
3. Castori M, Ruggieri S, Giannetti L, Annessi G, Zambruno G. Schopf-Schulz-Passarge Syndrome: further delineation of the phenotype and genetic considerations. *Acta Derm Venereol* 2008; 88: 607–612.
4. Bohring A, Stamm T, Spaich C, Haase C, Spree K, Hehr U, et al. *WNT10A* mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. *Am J Hum Genet* 2009; 85: 97–105.
5. Nawaz S, Klar J, Wajid M, Aslam M, Tariq M, Schuster J, et al. *WNT10A* missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome. *Eur J Hum Genet* 2009; 17: 1600–1605.
6. Nagy N, Wedgeworth E, Hamada T, White JM, Hashimoto T, McGrath JA. Schopf-Schulz-Passarge syndrome resulting from a homozygous nonsense mutation in *WNT10A*. *J Dermatol Sci* 2010; 58: 220–222.
7. van Geel M, Gattas M, Kesler Y, Tong P, Yan H, Tran K, et al. Phenotypic variability associated with *WNT10A* nonsense mutations. *Br J Dermatol* 2010 February 15 [Epub ahead of print].
8. Visinoni AF, Lisboa-Costa T, Pagnan NAB, Chautard-Freire-Maia EA. Ectodermal dysplasias: clinical and molecular review. *Am J Med Genet Part A* 2009; 149A: 1980–2002.
9. Starink TM. Eccrine syringofibroadenoma: multiple lesions representing a new cutaneous marker of the Shöpf syndrome, and solitary nonhereditary tumors. *J Am Acad Dermatol* 1997; 36: 569–576.
10. Lapébie P, Gazave E, Ereskovsky A, Derelle R, Bézac C, Renard E, et al. *WNT/beta-catenin* signalling and epithelial patterning in the homoscleromorph sponge Oscarella. *PLoS One* 2009; 4: e5823.
11. Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, et al. Loss of the tumor suppressor CYLD enhances *Wnt/beta-catenin* signaling through K63-linked ubiquitination of Dvl. *Mol Cell* 2010; 37: 607–619.

Table SI. Clinical features of family members with *WNT10A* gene mutations

Pedigree number	II-2	III-2	III-4	III-6	IV-1	IV-2	IV-3
Sex	M	F	M	M	F	F	F
Age	83	53	51	47	24	21	22
<i>Genotype</i>							
p.Cys107X	+/+	+/-	+/-	+/-	+/-	+/-	+/-
p.Phe228Ile	-/-	+/-	-/-	+/-	+/-	+/-	-/-
<i>Phenotype</i>							
Eyelid cysts	Yes	Yes*	Yes*	No	No	No	No
Palmoplantar keratoderma	Yes	Yes	Mild	Yes	No	No	No
Dystrophic fingernails	Yes	Fragility	No	Fragility	No	No	No
Dystrophic toenails							
Deciduous dentition							
Pterygium	Yes	Poor growth	Mild onycholysis	Mild	No	No	No
Microdontia	Microdontia	Normal	Normal	Microdontia	Microdontia	Widely spaced	Normal
Permanent dentition							
Oligodontia	Oligodontia	Widely spaced	Widely spaced	Oligodontia	Mild hypodontia		
Conical teeth	Conical teeth	Retained deciduous	Hypodontia	Conical teeth	Retained deciduous teeth		
Dentures aged 14 years	Dentures aged 14 years	dentition	Conical teeth	Dental implants			
Androgenetic alopecia present –	–	No	No	No			
Hamilton VI							
Hypotrichosis (other)	Sparse eyelashes	No	Sparse eyebrows	Sparse body hair	No	No	No
Abnormalities of sweating	Hyperhidrosis	Hyperhidrosis	No	Hyperhidrosis	No	None reported, but easy	No
Benign adnexal tumours						overheating	
Malignancies	Multiple seborrhoeic keratoses	Multiple seborrhoeic	No	Yes	No	No	No
	Eccrine hidrocystoma	keratoses	No				
	Cutaneous:	No	No	No	No	No	No
	Malignant melanoma						
	Squamous cell carcinoma						
Photophobia	Basal cell carcinomas						
Retinal abnormalities	Mild	Mild	No	Mild	No	No	No
	Retinal detachment (aged 78 years; cause unknown)	No	No	No	No	No	No
Other features	Absent dermatoglyphics	Facial erythema and easy flushing	Facial erythema	No	No	No	No
	Facial erythema and easy flushing						
	Smooth tongue	Telangiectasia					

*Suspected apocrine hidrocystomas, but not histologically proven.

Fig. SI. Genomic DNA sequencing. (a) Sequencing of family member DNA reveals a C>A transversion at nucleotide 321 that converts cysteine (TGC) to a stop codon (TGA): the mutation is designated p.Cys107X and homozygous, heterozygous and wild-type sequences are illustrated; (b) Sequencing of family member DNA reveals a T>A transversion at nucleotide 682 that converts phenylalanine (TTT) to isoleucine (ATT): the mutation is designated p.Phe228Ile and homozygous, heterozygous and wild-type sequences are illustrated.