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ABSTRACT The Kirchhoff-Law-Johnson-Noise unconditionally secure key exchanger is a promising,
surprisingly simple, very low cost and efficient electronic alternative to quantum key distribution. A few
resistors, switches, and interconnecting cables can provide unconditionally secure data transmission in the
ideal case by utilizing the thermal noise of the resistors. The key problems regarding practical realizations
are related to the resistance tolerance, finite cable resistance, and other non-ideal properties that can cause
information leak. In this paper, we present robust protection from cable resistance and resistance mismatch
attacks against the system. Our theoretical results show that all resistive inaccuracies, parasitic resistances,
cable resistance, and temperature dependence can be compensated; therefore, the practical implementation
becomes much easier. The generalized method provides inherent protection against the so-called second law
attack as well.

INDEX TERMS Unconditional security, secure key exchange, attack protection, KLIN secure key

exchanger.

I. INTRODUCTION

Secure data transmission is without doubt among the most
challenging problems today. Millions of sensitive data trans-
fer transactions are performed in every second in various
fields of economy, medicine, traffic, industry, governmental
and military activities and even more. One of the most known
and hopeful tool to realize unconditionally secure commu-
nication could be the quantum key distribution (QKD) [1].
However, it requires rather special and expensive hard-
ware, electronic-to-optical signal conversion, special opti-
cal data paths. Therefore, there is a natural need for much
cheaper and much less difficult alternatives that can effec-
tively replace QKD in wide variety of high-volume prac-
tical applications. One of these is an exceptionally simple
and ultralow-cost alternative based on classical physics has
been introduced that can have unbeatable advantages [2]-[6].
The so-called Kirchhoff-Law-Johnson-Noise (KLJIN) secure
key exchange scheme (also known as Kish Key Distribu-
tion (KKD) [7]) is an electronic system that uses only a four
resistors and two switches to share a secret key fully securely.
The simplest version of the KLJN system can be seen
in Fig. 1.

Both communicating parties, Alice and Bob, can choose
one of the two resistors to be connected to the communication
line, Ry or Ry. There are four possible states depending on
the choice of Alice and Bob: LL, LH, HL and HH. The
thermal (Johnson) noise voltage of the selected resistor is the
signal source at each end and has the effective power spectral
density of 4kTR; or 4kTRy depending on the state of the
corresponding switch, k is the Boltzmann constant, and 7 is
the absolute temperature. The eavesdropper Eve can observe
the resulting noise voltage Vg and noise current /g in the
interconnecting wire. From the eavesdropper’s point of view,
the two resistors are connected in parallel, therefore the power
spectral density of the voltage noise is 4kTR; Ry /(Rr + Ry ),
if different resistors are chosen at the two sides. In this case
the current noise power spectral density is given by and
4kT/(R;, + Rpy). Therefore, one can see that the LH and
HL states can’t be distinguished by the eavesdropper, while
both Alice and Bob has the information where the lower and
higher value resistors are. This can be used to exchange a
single bit of information with unconditional security. There is
a fundamental thermodynamical explanation of this feature:
if the system is in thermal equilibrium, there is no energy
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FIGURE 1. Two equivalent models of the KLIN key exchanger. At both
ends lower (L) and higher (H) value resistors can be chosen using the
switches. At the bottom the separate voltage generators represent the
thermal noise of the corresponding resistors. The eavesdropper can
measure the voltage Vg and current /¢ in the cable and knows the
values of R; and Ry that are public. LH state is shown; HL state

can be selected by toggling both switches.

flow between the two parties, therefore there is no way to
extract information, the dynamics of the system if fully sym-
metric [2]. This also implies that the correlation between the
voltage Vg and current I is zero. It is important to note that
Alice, Bob and Eve must evaluate the power spectral density,
therefore a certain averaging time is needed called bit transfer
time. Assuming a given bandwidth, the variance is propor-
tional to the power spectral density therefore the evaluation of
this is preferred in practical applications. The instant values
are meaningless due to the random nature of the signals.
All system parameters are public including the values of
Ry and Ry . DC or other deterministic voltage generators can’t
be used for secure communication.

This very smart and incredibly simple idea can be imple-
mented in practice with the use of some additional elec-
tronic components [8] and can even be integrated on a
chip easily that allows application in many modern compact
electronic devices. Secret key exchange between integrated
circuits on a printed circuit board, between machines in
a hospital, between computers located in different build-
ings are all supported. Since the thermal noise amplitude
is very small, artificial voltage generators typically based
on digital-to-analog converters (DAC) can be used to set
the voltage noise effective amplitude to the desired value
[8], [9]. The effective power of the thermal noise volt-
age signal with bandwidth of fpw is equal to 4kTRfpw,
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therefore the amplitude tuning can be considered as emu-
lating different, typically very high temperatures. The sys-
tem has inspired the development of a discrete time secure
key exchanger [10] also. Many different kinds of attack
types have been discussed: attacks based on cable resis-
tance [4], [11]-[14], temperature difference in the chan-
nel [15], [16], finite propagation time [11], Bennett-Riedel
attack [17], [18], directional coupler attack [7], [19], [20],
second law attack [14], transient attack [21], and current
injection attack [22]. The system is still claimed to be uncon-
ditionally secure in its ideal operating conditions [2], [3]. The
phrase unconditional security is used in many papers about
the KLJN key exchange scheme, the most detailed discussion
can be found in [3], while different interpretation recently
considered [21]. It is important to note that in a physical
realization there is always an information leak that depends
on many factors like cable length, resistance tolerance,
noise bandwidth, parasitic capacitance, propagation time.
However, with proper design, the information leak can be
reduced to arbitrarily small level [3], [9] and, unlike in the
case of conditionally secure systems, no additional restric-
tions are assumed on the measurement precision or computa-
tional resources available to the eavesdropper.

Many possible applications are considered including
securing computer communications, hardware components,
memories, processors, keyboards, mass storage devices, key
distribution over the Smart Grid, ethernet cables, uncloneable
hardware keys, industrial sensor networks and automotive
communication [23]-[28].

The original KJLN system discussed above uses two iden-
tical resistor pairs, two switches and interconnecting cable
to transfer data securely. The thermal noise of the resistors
is used to hide information from the eavesdropper, while the
communicating parties, Alice and Bob, can measure the noise
magnitude to determine the state of the system and this way
they can exchange bits of a key. Recently we have applied
a different approach to guarantee unconditional security and
this allowed a significant generalization of the system [29].
We have shown that it is not required to have the same lower
and higher value resistors at the two ends. Our main point
was that all quantities measured by the eavesdropper must be
the same for the LH and HL states. This means that thermal
equilibrium and zero correlation of the voltage and current
fluctuations are not needed any more what was a critical point
of the original arrangement to prove security and in the same
time it exposed the system to rather strong attacks [14]. This
generalization has already inspired new exchange schemes
also [30].

In the generalized KLIN system depicted in Fig. 2 at both
ends of the communication line lower (L) and higher (H)
value resistors can be chosen again, but there are no other
restrictions on the values of the resistors. It has been shown
that the eavesdropper cannot distinguish between the states
LH and HL if the voltage noise amplitudes are properly
chosen [29]. In other words, if the resistor values are given,
it is possible to find voltage noise amplitudes that guarantee
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FIGURE 2. The generalized KLIN key exchanger with finite cable
resistance. At both ends lower (L) and higher (H) value resistors can be
chosen using the switches. The voltage generators represent the thermal
noise of the corresponding resistor. The eavesdropper can measure the
voltage Vg and current I anywhere in the cable that has resistance R.
The observation point is indicated by g in the range of 0 to 1. LH state is
shown; HL state can be selected by toggling both switches.

unconditional security. It is important to note that since in
the generalized case any value for the resistors can be used,
all resistor inaccuracies and parasitic resistances including
the resistance of the switches can be taken into account
rather easily. The voltage noise amplitudes can be tuned to
fully eliminate the effect of these non-ideal components. This
is a crucial feature concerning practical applications where
such conditions always present. Although the application
of artificial generators could allow the use of almost any
kind of noise signal, we have proven that absolute secu-
rity can be guaranteed if and only if Gaussian noise is
used [29], [31].

In the following we consider a new, more practical case
when the cable has finite resistance and the eavesdropper can
measure the voltage and current anywhere in the cable.

Il. RESULTS
A. GENERALIZED ATTACK PROTECTION
We prove that by proper tuning of the amplitude of the voltage
noise generators can fully prevent information leak at any
observation point of the cable. Instead of using thermody-
namic approach [2] here we apply mathematical statistical
tools following the methods used in our latest articles in the
subject [29], [31], [32].

The current /g and voltage Vg observed by the eavesdrop-
per in the LH state (shown in Fig. 2) can be written as:

Vup(t) — Via(t)

Ig1r() = Ria+ Ris + R’ (D
Ve, Lu (1)
_ (Rup+(1—¢q) - Rc) - Via(t)+(Rra+ q - Rc) - Vip(t)
B Ria+Rup+Rc '
2

Here g specifies the observation point in the cable; it is zero
at the left end of the cable and unity at the other end.

Similar equations can be obtained for the HL state, when
the higher values resistor is selected at Alice’s side:

Vig(t) — Vha(t)

—_— 3
Rpa + R + Rc

Ig gr(t) =
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Ve, HL(?)
_ (Rep+(1—¢q) - Rc) - Vaa(t)+(Rua+ q - Re) - Vip(t)
Rua+RLs+Rc '

“

The communication can only be secure, if the eavesdropper
observes the same statistical properties of these signals both
for the LH and HL states. The variance of the current /g, the
variance of the voltage Vg and the correlation between these
signals must not depend on the actual state. Using (1) and (3)
the variance of the current can be calculated for the two states,
LH and HL, and these must be equal:

WR0)+ Vas0) _ Vi) + 020)
(Ria +Rug +Rc)>  (Rua + Rup + Re)?

The following equation that expresses the equality of the
voltage variances in the LH and HL states can be obtained
using (2) and (4):

(Rup+(1 — @) - RO)* - (VAO)+Ria+ g - Ro)* - (VD)
(Ria+Rup+Rc)?

_ (Rup+(1—q) - Re)*- (Vi (O)+ Rua+4-Re)*- (V1)

B (Rua+R13+Rc)?

(6)
Finally, the correlation of the current and voltage must be
the same in the LH and HL cases:
<VHB(I) — Via(t)
Ria + Ryp + Rc
 (Rup+(1—¢q) - Rc) - Via)+Rra+q - Re) - VHB(t)>

Rpa+Rup+Rc
_ <VLB(t) — VHa(1)
" \Rua + Rip + Rc
 Rpp+(1—¢) - Rc)-Vaa)+Rua+q - RC)‘VLB(I)>
Rya+Rip+Rc '

N

Since all voltage noise signals are independent, the cross
correlation terms, (Vyg(t) - Via(t)), and (Vya(t) - Vig(1)), are
zero. Therefore, the left hand side of (7) can be written as

<<RLA+ q-Re) -V2(t) — Rug+(1—q) - Re) -VE, (1)

(Rua+Rre+RC)?

n Rup - Vup(t) -Via(t) — (Rpa+ g - Re) V() -Via(t)
(Rua+RLB+RC)?

Ria+4q-Rc < 2
_ v z>
(Rra + Rup + Rc)? s (1)
R 1—¢9g)-R
_ Rup+(1—9q) C2-<VL2A(t)>
(Ria + Rup + Rc)
Rup+ (1 —2-9)-Rc —Rpa
(Ria + Rup + Re)?
Ria+q-Rc < 2
- % z>
(R + Rup + Re)? s (1)
_ Ryp+(d—-9)-Rc
(Ra + Rup + Rc)?

“(VHa(t) V(1))

<V£A(I)> . ®)
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One can similarly simplify the right term of (7) to the
following:
Rpa +q - Rc
(Rua + Rrp + Rc)?

(viso)
_ Ris+(-9)Rc
(Rua + Rrg + Rc)?
Using (7), (8) and (9) we get
Rug + (1 —¢q) - Rc

Ria+4-Re <V2 (t)> -
(Rra + Rup + Rc)? \ B (Rra + Rug + Re)?
(Via)

_ Rua+q-Rc
(RHA + R + Rc)?
R+ (1 -9 RC2 <VI?IA(t)>'
(Rua + R + Re)

According to (5), (6) and (10) the variances of the voltage
noise signals at Alice and Bob must satisfy the following
equations (11)—(13), as shown at the bottom of this page.

The variance of V4 (¢) can be selected without restrictions
that allows optimization of the signal amplitudes in real appli-
cations. We can conclude that properly chosen values of the
voltage generators can be used to ensure security, therefore
the information leak caused by the cable resistance can be
fully eliminated even for the generalized KLJN system, when
all four resistor values can have independent values. It is
important to note that (11), (12) and (13) do not contain g,
which means that the security is maintained over the full
length of the interconnecting cable. The eavesdropper cannot
determine the state of the system; it doesn’t matter where the
actual observation point is. Fig. 3 and Fig. 4 show examples
for the dependence of the correlation between the voltage
and current measured by the eavesdropper on the observation
position ¢ for different resistor values and cable resistance.
The key point is that although the correlation does depend
of the value of ¢, on the cable resistance and on the value of
the resistors used in the system, it is the same for both the
LH and HL cases.

(viaw). ©

(v

(10)

B. FINITE GROUND IMPEDANCE

Fig. 1 and Fig. 2 show the most common schematic used in the
articles about the KLJN system. However, the communicat-
ing parties can be far from each other, papers discussed cable
lengths from a few meters to hundreds of kilometers [8], [33].
In addition, the cable resistance can matter in the case of
shorter distance depending on the value of the resistors used
in the system. For example, in the case of the communication

-75.2
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FIGURE 3. Correlation of the voltage V¢ and current /¢ as a function of
the observation position g. Note that the correlation is the same for both
the LH and HL states. In this example the following values were used

in (10): RHA =10 kOhm, RLB =5 kOhm, RLA =1 kOhm, RHB =9 kOhm,
V4 = 1 V. The used values of R¢ are indicated in the figure and Vg, Vg
and Vi, were calculated using (11), (12) and (13).

-55.2
Re=20Q
i 55.6 |- T
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-56.4 ' '
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FIGURE 4. Correlation of the voltage Vg and current /¢ as a function of
the observation position g. Note that the correlation is the same for both
the LH and HL states. In this example the following values were used

in (10): Ryy = 9 kOhm, R; g = 3 kOhm, R; 4 = 1 kOhm, Ryg = 9 kOhm,
V4 = 1 V. The used values of R¢ are indicated in the figure and Vg, V;g
and Vp, were calculated using (11), (12) and (13).

between microcontrollers in a vehicle the wire resistance
can be considerable. In such cases one can’t assume zero
impedance grounding, therefore a more practical version can
be taken into account as shown in Fig. 5. Here both intercon-
necting wires have their own finite resistance and we assume
that the eavesdropper can measure the voltage between any
two points of these wires. The two wires can have similar or
rather different resistance, examples can be two parallel wires
and a coaxial cable. Note that a distributed RLC network
analysis for high frequency signals not considered here can
be found in [33].

(Vi) _ Ris(Rua + Ry + Re) — (Rua + Re)Rup — R (11
(VA®) R, + Ris(Ria — Rua) + (Rc — Rua)Rra — RcRua

(VEg() _ R2, + Ris(Rua — Rup + Rc) — (Rua + Rc)Rus (12)
(VA®) R}, + Ra(Rup — Ria + Rc) — RraRps — RcRua

(VZ,.) _ R%, + Ris(Rup + Rua + Re) + (Rua + Re)Rug + 2RcRpa + R (13)
(VA(®)  R:, +Rig(Ria + Rus + Rc) + (Rup + 2Rc)R1a + RcRup + R

1144

VOLUME 4, 2016



G. Vadai et al.: Generalized Attack Protection in the KLIN Secure Key Exchanger

IEEE Access

Alice
L Rc1 <|_E H

—  YWWWWWWWYWWY——
a1Rc1  [(1-99)Re+

Ria Rua Ris Rus

Via VHA Vis VHB
92Rc2| (1-02)Re2
~—

FIGURE 5. A more practical view of the generalized KLIN key exchanger
with finite cable resistance that is relevant for communication between
distant parties. In this case both interconnecting wires of the loop have
finite resistance, no grounding with zero impedance is assumed.

Our theoretical treatment presented above is valid for this
case, we only need to express the cable resistance R¢ and the
value of g. The same loop resistance is obtained when

Rc =Rc1 +Rea, (14)
while Vg is equivalent if

= qi1Rc1 + q2Rc2

Re 15)

C. SPECIAL CASE, THE ORIGINAL KLIN SYSTEM

The original KLIN system can be treated as a special case,
when the lower and higher value resistors are the same at the
two ends: Rp4 = Rzp = Ry and Ryq = Rpp = Ry . Using
this condition in (11), (12) and (13) one can obtain the voltage
noise variances required for secure communication:

(Vig®) _ Ru + b (16)
(VL®)  Ro+%
(Via®) _ Ru+ %% (17
(VL®)  Ro+%
<VLZB(t)> - (VfA(t)>. (18)

Note that the lower and higher voltage variances are the
same at both ends just like the associated resistors, regard-
less of the value of the cable resistance R.. According to
(16) and (17) one can see that the voltage variance must
be proportional to the corresponding resistor value plus the
half of the cable resistance — just as if the original system
with zero resistance cable would have such resistors and the
eavesdropper would listen in the middle (¢ = 0.5). Therefore,
in this case the correlation between Vg and I is zero.

When g is different from 0.5 — i.e. the eavesdropper does
not acquire voltage and current in the middle point — then the
correlation between Vg and I is not zero, see Fig. 6.

Consequently, for non-zero cable resistance zero correla-
tion between the voltage and current can’t be required, since
it can be satisfied in the middle of the cable only. On the other
hand, as we have proven, the correlation is the same in the
LH and HL states regardless of the value of g; therefore, the
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FIGURE 6. Correlation of the voltage Vg and current /¢ as a function of
the observation position g. Note that the correlation is the same for both
the LH and HL states. The correlation is only zero at g = 0.5. In this
example the following values were used in (10): R; = 1 k, Ry = 9 ke,
Via = Vig = 1 V. The used values of R¢ are indicated in the figure and
Vya and Vg were calculated using (16) and (17).

unconditional security is still provided over the full extent of
the cable.

Ill. CONCLUSION

In this paper we have investigated the security of the
KLJN secure key exchange system in its most general operat-
ing condition so far. In the original system the communicating
resistor pairs must be identical at the two ends. Any deviation
from this due to for example resistor inaccuracy or finite
switch on-resistance causes information leak and exposes the
system to attacks. Our theoretical results show that uncondi-
tional security can be maintained over the full extent of the
communication line for any kind of interconnecting cables
or wires and when all four resistors values can be different.
In our generalized case the thermal equilibrium is not needed
any more, therefore the so called second law attack [14] is
inherently prevented. Note that a new version of the KLIN
key exchange scheme [30] inspired by our generalization [29]
is also protected against general attacks by the use of random
resistors and random temperature.

to cable

FIGURE 7. Simplified schematic of a KLIN communicator module.

One of the most important advantages of the generalized
system discussed in this paper is that resistance tolerance,
parasitic resistance of the switches, voltage generator source
resistance and the cable resistance can all be compensated.
Fig. 7 shows a simplified schematic of a possible real commu-
nicator module that utilizes a voltage output DAC to realize
the artificial voltage noise generator.

Here R represents the output resistance of the voltage out-
put DAC, dR;, and dRpy are the deviations from the ideal Ry,
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and Ry communicator resistance values and Ry, and Rswy
are the switch on resistance values in the L and H states,
respectively. This means that the equivalent lower value resis-
tance is

Ri.eq =Ry +dRr + Rg + Rswi, (19)

and the equivalent higher value resistance can be expressed as

Ry eq = Ry + dRy + Rg + Rswh . (20

The equivalent values for both communicator modules can
be used in (11), (12) and (13) to determine the required noise
amplitudes that guarantee secure communication. As shown
in Fig. 7 a single DAC is enough to generate the noise signal
for both the L and H states, because the voltage amplitude
can be programmed accordingly. Note that between state tran-
sitions (LH—HL and HL—LH) the signal must be ramped
down to zero to avoid sharp changes and associated transients
that can expose the system to attacks [8] and the resolution,
non-linearity, limited signal range of the DAC should be
considered in practical applications.

During operation the loop current and voltages at different
nodes can be measured without disturbing the communi-
cation process. This means that the resistance values can
be monitored in real-time, therefore even continuous com-
pensation is possible. The temperature dependence can be
considered in industrial and automotive environments, where
wide range of temperature can be expected. If the commu-
nicators are used in mobile devices and different cables may
be used, the cable resistance can be changed and the system’s
parameters can be affected. In these cases, the level of security
is limited by the accuracy of the resistance measurement and
the voltage amplitude tuning only.

The results presented in this paper can help to make the real
world application of the KLIN protocol a lot easier in many
fields [23]-[28]. Our method is based on the use of mathemat-
ical statistical tools and we did not use the original thermo-
dynamical physical approach. Further information including
open source simulation software and demonstrational videos
can be found on our institutional page [34].
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