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Abstract

Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8

discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive

antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461

(10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of

the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This

finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic

neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse

the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric

disorders characterized with impaired NMDA receptor-mediated transmission.
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1. Introduction

The dorsal raphe nucleus (DRN) in the brainstem contains at

least 50% of all serotonergic neurons of the central nervous

system (Wiklund and Bjorklund, 1980). These neurons are

medium sized cells with spiny dendritic arborization, which

establish local neuronal network with their dendrodendritic

connections and recurrent axon collaterals. Beside serotonergic

projection neurons, DRN also contains GABAergic interneurons

as well as numerous noradrenergic and glutamatergic axon

terminals. Morphological and functional observations confirmed

the existence of a glutamatergic pathway arising from the median

prefrontal cortex (Behzadi et al., 1990; Hajos et al., 1998)

whereas serotonergic neurons of DRN form extended projection

to the cerebral cortex (Kidd et al., 1991; Sesack et al., 1989).

Thus, the raphe-cortical serotonergic and the cortico-raphe

glutamatergic projections establish a long-axon neuronal loop

between these two brain structures. Interaction between

glutamatergic axon terminals and serotonergic neurons forms

an excitatory-inhibitory connection by which incoming excita-

tory signals are converted into inhibitory output projecting back

to cerebral cortex where stimulation was generated from.

The primary target of the cortical glutamatergic neurons

within the raphe nuclei is the serotonergic projection neurons

www.elsevier.com/locate/neuint

Neurochemistry International 52 (2008) 130–134

* Corresponding author. Tel.: +36 1 401 4221; fax: +36 1 407 4888.

E-mail address: harsing.laszlo@egis.hu (L.G. Harsing Jr.).

0197-0186/$ – see front matter # 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neuint.2007.06.030



Author's personal copy

(Tao et al., 1996; Harsing et al., 2004). The excitatory

glutamatergic influence in DRN may be mediated by ionotropic

glutamate receptors expressed in postsynaptic membrane of

serotonergic neurons. In isolated raphe nuclei slices, activation

of N-methyl-D-aspartate (NMDA) receptors evokes serotonin

release (Harsing et al., 2004). The NMDA receptor requires

glycine as cotransmitter for its activation (Johnson and Ascher,

1987). At synaptic level, glutamate is released from glutama-

tergic axon terminals and glycine is released from astroglial

cells. Being released into the synaptic cleft, they diffuse to the

vicinity of postsynaptic NMDA receptors (Zafra et al., 1997).

Operation of glycine transporter type-1 (GlyT1) expressed in

astocytes assures to set glycine concentrations at NMDA

receptor below saturating levels (Bergeron et al., 1998).

Inhibition of GlyT1 enforces NMDA receptor-mediated

functions, particularly in conditions when glycineB binding

site at NR1 subunit is blocked by selective inhibitors (Danysz

and Parson, 1998). The aim of the present study was to

investigate whether the GlyT1 inhibitors Org-24461 and NFPS

(Fig. 1) are able to facilitate glutamate-mediated excitation of

serotonergic projection neurons in rat DRN.

2. Experimental procedure

2.1. Animals and drugs

Male Wistar rats weighing 250–300 g were obtained from Charles River

Hungary. The animals were housed up to five to a cage in a temperature- and

humidity-controlled animal facility on a 12-h light:12-h dark cycle (6.00 a.m.

on; 6.00 p.m. off) with food and water available ad libitum. The animals were

allowed at least 1 week of habituation to their housing prior to experimentation.

NFPS, N[3-(40-fluorophenyl)-3-(40phenylphenoxy)-propyl]sarcosine

(Herdon et al., 2001) and Org-24461, R,S-(�)N-methyl-N-[(4-trifluoro-

methyl)phenoxy]-3-phenyl-propylglycine (Brown et al., 2001) were synthe-

sized by Dr. Peter Matyus, Department of Organic Chemistry, Semmelweis

University, Budapest, Hungary. Org-24461 (50 mg/ml) and NFPS (10 mg/

ml) were dissolved in dimethyl sulfoxide (DMSO), briefly sonicated and

kept in a water bath at 37 8C for ca. 10 min. Immediately before admin-

istration; they were diluted in a double volume of saline. L-701,324 was

purchased from Tocris Bioscience (Bristol, UK) and dissolved in 25%

polyethylene glycol (PEG)-300 and 75% saline. Intravenous administration

of drug vehicle alone showed no change in single-unit activity. Urethane was

purchased from Reanal (Budapest, Hungary). All other chemicals were of

analytical grade.

2.2. Recording single neuron activity from rat DRN

Rats were anesthetized with urethane (1 g/kg i.p.). A polyethylene cannula

was inserted into the left femoral vein. Then the head of the animals was fixed,

the skull was opened on a 6 mm � 6 mm square around the lambda point using

a dental drill and the dura was cut. The opening was sealed with bone wax, and

the animal was put aside for at least 30 min. For recording, the rat was mounted

in a stereotaxic frame (Narishige SR-6N) and a wolfram microelectrode (World

Precision Instruments, WPI TM33B20) was advanced into the area of DRN

(AP: 8; L: 0; and V: 5.8–6.5 mm, Paxinos and Watson, 1998) by a single axis

micromanipulator (Narishige SM15). Extracellular single-unit activity was

recorded and amplified, amplified gain: 1000�; low-pass filter at 0.1 kHz,

high-pass filter 5 kHz. The amplified biological signals were registered in a

Tektronix oscilloscope and sampled by a PC-based computer using Neurosys

1.1.0.357 software (Experimetria, Hungary). As soon as the firing in DRN

reached a stabile rate, control activity was recorded for 10 min. Then, with

uninterrupted recording, L-701,324 was injected i.v. in a dose of 2 mg/kg and

activity was recorded for another 10-min period. GlyT1 inhibitors were added

i.v. (Org-24461 10 mg/kg, NFPS 3 mg/kg) and neuronal single-unit activity was

further recorded for a 10-min period.

To verify the position of the microelectrode, dc current (1 mA for 15 s) was

delivered through the recording electrode when all recording was completed.

The animals received then an overdose of urethane and were perfused transcar-

dially with saline followed by buffered formalin. Brain sections (70 mm)

containing the raphe nuclei were cut using a freezing microtome and the

sections were washed, dehydrated with alcohol and Nissl staining was used for

evaluation. A further proof that activity of neurons from a correct location was

recorded was provided by changes in neuronal activity after L-701,324 admin-

istration (see below).

2.3. Evaluation of the records and statistical analysis

For evaluation, the records were played back and a threshold level was set so

that all extracellular spikes, but no noise, crossed it. Crossings were counted as

events, from which neuronal firing rate was calculated by the software. For data

analysis, firing rates were collected for 250 s before injection of L-701,324

(control period) and for 250 and 500 s periods before and after the administration

of the GlyT1 inhibitors. All group data were presented as mean� S.D. and one-

way analysis of variance (ANOVA) followed by the least significant difference

(LSD) tests were used to compare differences between group mean data with

control group mean. Differences between control and experimental responses

with P < 0.05 were considered significant, n indicate the number of experiments.

3. Results

Our preliminary experiments indicated that single neuron

firing registered from rat DRN was due to activation of

Fig. 1. The chemical structures of the glycine transporter type-1 inhibitors Org-24461 and NFPS.
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serotonergic neurons. This was evidenced by firing rate

characteristics (Blier et al., 1992) and by the fact that i.v.

administration of 8-OH-DPAT, and 5-HT1A receptor agonist,

markedly reduced neuronal firing rate in DRN of the rat.

During the control period the rate of neuronal single-unit

firing, recorded from DRN of anesthetized rats varied between

3 and 8 Hz with no excessive variations in time (Fig. 2A). Then,

in the first series of experiments, L-701,324 was injected i.v. in

a dose of 2 mg/kg, which reduced firing rate significantly by

approximately 50% (Table 1). This effect increased the

detection sensitivity of the putative effect of the agent tested,

indicated that the recorded activity was of DRN neurons having

glutamate receptors. Org-24461, injected in a dose of 10 mg/kg

i.v. 3–5 min after L-701,324 administration, raised the firing

rate of DRN approximately to the control level (Fig. 2A and

Table 1). The increase started within 1 min after injection,

peaked at 4–5 min and then ceased gradually.

In the second series of experiments, 2 mg/kg L-701,324 was

injected as before and it decreased neuronal firing rate in DRN

by ca. 70% (Table 1). On i.p. administration of 3 mg/kg NFPS,

this decrease was reversed (Fig. 2B and Table 1), so that the

firing rate was higher than that in the control. The time course of

the rate change was similar to that seen after Org-24461.

4. Discussion

It has been suggested that hypofunction of NMDA receptors

may be involved in the etiology of schizophrenia (Coyle et al.,

2003). The glutamatergic theory of schizophrenia is based upon

the cognitive and behavioral effects of the NMDA receptor

antagonist phencyclidine (PCP) and ketamine in animals and

human. In fact, subanesthetic doses of dissociative anaesthetics

exacerbate psychotic symptoms, reverse remission in schizo-

phrenic patients and evoke psychotic state in normal subjects

(Millan, 2002). The similarities of PCP-precipitated behavior

with appearance of symptoms of schizophrenia have prompted

the use of PCP and ketamine in pharmacological models of

schizophrenia in both preclinical and clinical studies (Mathé,

1998).

A reduced NMDA receptor function has been established in

our study by using L-701,324, an antagonist on glycineB binding

site of NMDA receptor that readily crosses the blood–brain

barrier. We found that blockade of glycineB binding sites in DRN

reduces single neuron firing rate and this inhibition can be

suspended by subsequent administration of GlyT1 inhibitors.

Similarly to our finding, it has been shown that GlyT1 inhibition

potentiates NMDA-mediated neuronal cell firing responses in rat

prefrontal cortical neurons (Chen et al., 2003). We have shown

previously that stimulation of NMDA receptors leads to increase

of serotonin release from rat raphe nuclei slices (Harsing et al.,

2004). The present experiments, showing enhanced neuronal

firing rate after indirect activation of NMDA receptors by GlyT1

inhibitors, are in accordance. Thus, both in vitro and in vivo

experiments served direct evidence for the existence of a

glutamatergic–serotonergic interaction in the raphe nuclei.

The prefrontal cortex receives serotonergic innervation from

DRN (Hajos et al., 1998). The raphe-cortical projection exerts

stimulation of GABA interneurons through 5-HT2A receptors

and inhibition of glutamatergic pyramidal cells via 5-HT1A

receptors in the prefrontal cortex (Carlsson et al., 1997;

Aghajanian and Marek, 2000). This dual action of serotonin

results in an increased GABAergic inhibition and a reduced

glutamatergic stimulation in cortical neuronal circuitry. The

GABA/glutamate balance in the prefrontal cortex may be

particularly important in schizophrenia when the impaired

thalamic filter leads to increased transmission of sensory

information from the periphery to the cerebral cortex

(Aghajanian and Marek, 2000). The extreme levels of sensory

inputs disrupt integrative cortical functions, which mirrors in

Fig. 2. The effects of the GlyT1 inhibitor Org-24461 (A) and NFPS (B) on

single neuron firing rate in DRN of anesthetized rats. Org-24461 and NFPS

were injected i.v. in doses of 10 and 3 mg/kg, respectively, after inhibition of

neuronal firing by the glycineB binding site antagonist L-701,324. L-701,324

was administered to rats in an i.v. dose of 2 mg/kg. ANOVA followed by the

least significant difference test (LSD), mean � S.D., n = 6 in Org-24461-treated

group and n = 11 in NFPS-treated group.

Table 1

Effect of Org-24461 and NFPS on single neuron firing rate recorded from dorsal

raphe nucleus of anesthetized rats

Control L-701,324

(2 mg/kg)

Org-24461

(10 mg/kg)

Frequency (Hz) 7.92 � 8.97 3.64 � 6.55*** 7.64 � 11.35###

Control L-701,324

(2 mg/kg)

NFPS

(3 mg/kg)

Frequency (Hz) 3.69 � 0.42 1.05 � 0.27*** 4.95 � 1.96###

Single-unit activity was recorded from DRN of anesthetized rats. L-701,324, a

glycineB binding site competitive antagonist, and Org-24461 and NFPS,

inhibitors of GlyT1, were administered i.v. in doses indicated. Mean � S.D.,

n = 6 in Org-24461-treated group and n = 11 in NFPS-treated group. ANOVA

followed by the least significant difference (LSD) test.
*** P < 0.001 vs. control.
### P < 0.001 vs. L-701,324.
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desynchronized EEG activity and hallucinations (Sebban et al.,

2002).

In schizophrenia, NMDA receptors in the central nervous

system may be impaired (Tamminga, 1998) and those expressed

in the cell membrane of raphe serotonergic neurons might also be

altered. Decreased activity of glutamate carboxy peptidase and

variants in the gene for neuroregulin I have been implicated to

explain NMDA receptor hypofunction in subjects with schizo-

phrenia (Lewis and Gonzalez-Burgos, 2006). Since cortical

glutamatergic input activates raphe serotonergic neurons via

NMDA receptors (Harsing et al., 2006), their hypofunctional

state will lead to reduced serotonergic transmission in their axon

terminal fields, including the prefrontal cortex.

Direct agonists of glycineB binding site may restore NMDA

receptor hypofunctionality characteristics for psychotic state

(Millan, 2002) and GlyT1 inhibitors may act accordingly

(Mork et al., 2005). GlyT1 inhibitors will increase availability

of synaptic glycine at NMDA receptors and restoration of

glutamatergic influence on raphe serotonergic neurons may

normalize GABA/glutamate balance in the cerebral cortex

leading to an overall inhibition in prefrontal neuronal circuitry.

Thus, effects of GlyT1 inhibitors on raphe nuclei NMDA

receptors may be part of their antipsychotic action reported

earlier (Javitt, 2002; Harsing et al., 2003, 2005; Thomsen,

2006). The potential site of action of GlyT1 inhibitors in the

neuronal circuitry of DRN is shown in Fig. 3.

There have been a number of publications indicating the

disruption of raphe neurochemical transmission in schizophrenia

or animal models of psychosis (Akhondzadeh, 2001; Craven

et al., 2005). Thus, raphe serotonergic pathways have been shown

to participate in psychotomimetic drug-induced locomotion and

prepulse inhibition in rats (Kusljic and van den Buuse, 2004).

Furthermore, it has been shown that destruction of raphe

serotonergic neurons by the neurotoxin 5,7-dihydroxytryptamine

enhances the psychomimetic effects of phencyclidine (Kusljic

et al., 2005). The present findings serve additional information to

the potential role of midbrain raphe nuclei in the pathology of

psychosis and may provide further evidence for the potential

antipsychotic role of drugs inhibiting GlyT1.

GlyT1, which may be involved in mediation of schizo-

phrenia, has been detected in different locations in the CNS

(Fig. 3). The primarily action of synaptic GlyT1 is regulation of

glycine concentrations in glutamatergic synapses (Aragon and

Lopez-Corcuera, 2005) whereas those located nonsynaptically

establish glycine concentration gradient between the extra-

synaptic solution and within the synapse (Vandenberg and

Aubrey, 2001). Thus, GlyT1 inhibitors may alter not only

glycine concentrations within the synaptic cleft (Javitt, 2007)

but also in other brain compartments, such as the extracellular

space as revealed by microdialysis studies (Marko et al., 2006).

Nonsynaptic GlyT1 may also have important role in the

regulation of nonsynaptic chemical neurotransmission, a novel

form in neuronal communication first described by Vizi (1984,

2005). Inhibitors of GlyT1 may participate in CNS drug actions

including their antipsychotic effects (Harsing et al., 2003).

Whether synaptic and nonsynaptic GlyT1s represent the same

or different splice variants of the transporter protein remains to

be elucidated (Thomsen, 2006).

In conclusion, the potential antipsychotic effects of GlyT1

inhibitors in human have been arisen since the early discovery

of this group of compounds (Toth and Lajtha, 1986; Javitt and

Frusciante, 1997). There are currently two GlyT1 inhibitors

(SSR504734 and JNJ-17305600) in human clinical phase I

investigation as antischizophrenic agents (Depoortere et al.,

2005; Thomsen, 2006). Our findings, that the GlyT1 inhibitors

Org-24461 and NFPS enhance firing rate of raphe serotonergic

neurons in vivo, may provide additional information about the

mode of antipsychotic action of GlyT1 inhibitor compounds.
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