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Abstract

In this paper we prove an asymptotically sharp Bernstein-type inequal-
ity for polynomials on analytic Jordan arcs. Also a general statement on
mapping of a domain bounded by finitely many Jordan curves onto a
complement to a system of the same number of arcs with rational func-
tion is presented here. This fact, as well as, Borwein-Erdélyi inequality
for derivative of rational functions on the unit circle, Gonchar-Grigorjan
estimate of the norm of holomorphic part of meromorphic functions and
Totik’s construction of fast decreasing polynomials play key roles in the
proof of the main result. !

Classification (MSC 2010): 41A17, 30C20, 30E10

Introduction

Let T := {z € C: |z| = 1} denote the unit circle, D := {z € C: |z| < 1} denote
the unit disk and C, := CU {00} denote the extended complex plane. We also
use D* ;= {z € C: |z| > 1} U{oo} for the exterior of the unit disk and ||.||; for
the sup norm over the set K.

First, we recall a Bernstein-type inequality proved by Borwein and Erdélyi
in [BE96] (and in a special case, by Li, Mohapatra and Rodriguez in [LMR95]).
We rephrase their inequality using potential theory (namely, normal derivatives
of Green’s functions) and for the necessary concepts, we refer to [ST97] and
[Ran95]. Then we present one of our main tools, the “open-up” step in Propo-
sition 5, similar step was also discussed by Widom, see [Wid69], p. 205-206
and Lemma 11.1. This way we switch from polynomials and Jordan arcs to
rational functions and Jordan curves. Then we use two conformal mappings,
®; and P, to map the interior of the Jordan domain onto the unit disk and
to map the exterior of the domain onto the exterior of the unit disk respec-
tively. We transform our rational function with ®; and “construct” a similar
rational function (approximate with another, suitable rational function) so that
the Borwein-Erdélyi inequality can be applied.

Our main theorem is the following.

Theorem 1. Let K be an analytic Jordan arc, zy € K not an endpoint. Denote
the two normals to K at zo by ny (z0) and na (29). Then for any polynomial P,
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of degree n we have
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where o (1) depends on zy and K only and tends to 0 as n — oo.

Remark. This theorem was formulated as a conjecture in [NT13] on page
225.
Theorem 1 is asymptotically sharp as the following theorem shows.

Theorem 2. Let K be a finite union of disjoint, C? smooth Jordan arcs and
zo € K is a fized point which is not an endpoint. We denote the two normals to
K at zg by nq (20) and ng (29). Then there exists a sequence of polynomials P,
with deg P,, = n — oo such that
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1 A rational inequality on the unit circle

The following theorem was proved in [BE96] (see also [BE95], p. 324, Theorem
7.1.7), with slightly different notations.

If f is a rational function, then deg (f) denotes the maximum of the degrees
of the numerator and denominator of f (where we assume that the numerator
and the denominator have no common factors).

Theorem (Borwein-Erdélyi). Let ay,...,am € C\ {|Ju| =1} and let
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and B, (u) := max (B}, (u), B, (v)). If R is a polynomial with deg(R) < m

m

and f(u) = R (u) /[1jZ, (u—a;) is a rational function, then

If' (w)| < B (W) ||fllz,  uweT.

If all the poles of f are inside or outside of D, then this result was improved
in [LMR95], Theorem 2 and Corollary 2 on page 525 using different approach.

We need to relax the condition on the degree of the numerator and the
denominator.

If we could allow poles at infinity, then the degree of the numerator can be
larger than that of the denominator. More precisely, we can easily obtain the
following

Theorem 3. Using the notations from Borwein-Erdélyi Theorem, if R is a
polynomial with deg(R) > m and f (u) = R (u) /H;n:1 (u —aj) is a rational
function, then

| (w)| < max (B}, (u) + deg (R) —m, B,, () [|[f]lz, weT. (1)

m



Proof. Let d := deg(R) —m > 0, and let fi (7; v) = f1 (u) = W where

- (u—T)d ’

reR, 7>1 Then (t— D)% |fi ()| < |f ()| < (1 + 1)*|f1 ()| for [u] =1, so
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Using Borwein-Erdélyi Theorem for fi, |u| =1,
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Letting 7 — 0o and combining the last three displayed estimates, we obtain the
Theorem. O

Note that if we let all the poles tend to infinity, then we get back the original
Bernstein (Riesz) inequality for polynomials on the unit disk. Let us also re-
mark that the original proof of Borwein and Erdélyi also proves (1), with little
modifications.

The relation with Green’s functions is as follows. It is well known (see e.g.
[ST97], p.109) that Green’s function of the unit disk D with pole at a € D is

1—au
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and Green’s functions of the complement of the unit disk D* = {|u| > 1} U {cc}
with pole at a € C, |a| > 1 and with pole at infinity are

13
9o+ (u,a) = log | — | and gp- (u,00) = log [ul.
u—a
For the normal derivatives elementary calculations give (|u| = 1, n1 (u) = —u is

the inner normal, ny (u) = u is the outer normal)

1 l1-a(l—t)u
0 ( ) i 0g (1-t)u—a 1-— |a|2 (2)
u,a) = 1m =
ony (u) I 8, t—0+ t lu —al?’
1—a(l1+t)u
b (w.a) = I log ’ (I+ttu—a la]? — 1 3)
« (u,a) = lim =
Ong (u) gp= 1t t—0+ t lu — al?’
0 . log | (141t)ul
— _gp- = lim ———— =1 4
Ons (u) go- (11,00) 150+ t )

They are also mentioned in [DKO07], p.1739.

Using this notation, we can reformulate these last two theorems as follows.
This is actually the result of Borwein and Erdélyi with slightly different wording.



Theorem 4. Let f (u) = R (u) /Q (u) be an arbitrary rational function with no
poles on the unit circle where R and @Q are polynomials. Denote the poles of
fonCx by ay,...,am € Cx \ {Ju| =1} where each pole is repeated as many
times as its order. Then, for u € T,

[f" () | < [ flr

. max Z 6n?(u)gm(u,aj), Z anfw)gn*(u,aj) . (B)
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Note that if deg(R) > deg(Q), then f has a pole at oo, therefore it is
repeated deg (R) — deg (Q) times and this pole at oo is taken into account in
the second term of maximum. Inequality (5) is sharp, the factor on the right
hand side cannot be replaced for smaller constant, see, e.g., [BE95], p. 324.

2 Mapping complement of a system of arcs onto
domains bounded by Jordan curves with ratio-
nal functions

Let K be a finite union of C? smooth, disjoint Jordan arcs on the complex plane,
that is,
K= U?(’:ﬂj, where v; Ny =0, j # k.

Denote the Cndpoints of i by C2j—17 ng, ] = 1, ey ko.

We need the following Proposition to transfer our setting. Although we will
use it for one analytic Jordan arc, it can be useful for further researches.

After we worked out the proof, we learned that Widom developed very simi-
lar open-up Lemma in his work, see [Wid69], p. 205-207. The difference is that
he considers C* smooth arcs with Holder continuous k-th derivative (see also
p. 145) while we need this open-up technique for analytic arcs. Furthermore,
there is a difference regarding the number of poles. This is discussed after the
proof.

Proposition 5. There exists a rational function F' and a domain G C C such
that C\ G is a compact set with kg components, O (Co \ G) = 0G is union of
finitely many smooth Jordan curves and F is a conformal bijection from G onto
Coo \ K with F(o0) = 0.

Furthermore, if K is analytic, then OG is analytic too.

Proof. First, we show that there are polynomials R, @ such that deg(R) =
kO + ]-7 deg (Q) = kOv

~ R(u)
Pl =G
and
F’(u):()(:)F(u)6{{1,...,C2k0}. (6)

Obviously, F' (u) = (R (u) Q (u) — R (u) Q' (u)) /Q? (u) and the numerator is
2ko

a polynomial of degree 2kq. Let A (u) := [];

i=1 (u—¢;). Taking reciprocal,



1/F" = Q?/A, that is, the location of the poles are known. Our goal is to find
ﬁ07517ﬂ27 e 762190 € C such that

1 . . .
P T du is a rational function.
Bo + ijl u—Gj

Or equivalently, F (u) := N (ufck)gg_::)%j T, G must have 0 residue

everywhere, Res (Fy,u) = 0 for all w € C. Since (;’s are pairwise different,
Hk# (u—"Cr),j=1,2,...,2ko and [ [, (u — (i) are linearly independent, so we
can choose ;s so that

Bo[Tw—=c)+ D 8 ] (w—G) = (w—ur)®™
k >0 k#j
where u* will be specified later. Write A (u) = [[, (v — (i) in the form A (u) =

Z?ioo ¢ (u— u*)? with suitable ¢;’s. It is easy to see that Res (Fy,u) = 0 for all
u # u*, furthermore Res (Fy,u*) = cap,—1. Comparing the coefficients of A (u),

we obtain cop, = 1, capy—1 = — (Z?i”l Cj> + 2kou*. Rearranging the expression
for cop,—1, u* must satisfy the following equation
2k
* ijol gj
2kg

With this choice, there exists F' = [ F; with the desired properties.

The domain G is constructed as follows. Denote the unbounded component
of F~1[Cy \ K] by G. We prove that G is a domain and its boundary consists
of finitely many Jordan curves and those curves are smooth. Locally, if z € v;
for some <y; and z is not endpoint of v;, then, by the construction, z is not a
critical value. In other words, for any u such that F (u) = z, we know F” (u) # 0
(u is not a critical place). If z € ; is an endpoint and u, is any of its inverse
image, then F’ (u;) = 0 by (6) and since the degree of R and () are minimal,
F" (uy) # 0. Therefore F (u) ~ ¢ (u—u1)? + 2, and the inverse image F~! [v;]
of ; near u; is a smooth, simple arc. So each bounded component of C\ G is
such a compact set that it is a closure of a Jordan domain.

Using continuity and connectedness, Co, \ F~![Co \ K] has at least ko
bounded components. If there were more than ky components, then we obtain
contradiction as follows. The boundary of each component is mapped into K, so
there should be more than 2kq critical points, but this contradicts the minimality
of F'. Denote the boundary of the components by «;, 7 =1,...,ko. These ;s
are smooth Jordan curves and assume k; = k; (t), t € [0, 27].

It is clear that each component has nonempty interior and contains at least
one pole of F', otherwise F' maps that component onto some open, bounded,
nonempty set and this set would intersect C, \ K. Therefore each component
contains exactly one pole which is simple by the minimality assumption.

Now, F = R/Q is univalent on G because of the followings. Take smooth
Jordan curves ks (t), t € [0,2n] satisfying the next properties: k;5 C G,
kjs(t) = Kj(t) as & — 0 and K} ;(t) — K} (t) as & — 0 and ros(t) =
1/éexp (it). Since deg(R) = deg(Q) + 1, F(u) = cqu+co+o(1l) as u — o0
therefore F (ko5 (t)) = oo as § — 0 and, by continuity, dist (F' (k;s),7;) — 0.



Since F' has no critical values outside K, the F'(x;s)’s are smooth Jordan
curves. Fix b € C\ K, then there is (at least one) ¥’ € G with F (V') = b,
because F (G) is open, F(G) € C\ K and F (9G) = F (k1 U...Ukg,) C
K. If § > 0 is small enough, then b € IntF (ko) and b € C \ IntF (k,5)
(4 =1,...,ko), so index (b, F (kos) UF (k1,6)U...UF (Kiy,s)) = 1. Therefore
index (', ko,s Uk1,s U...Ukp,s) = 1, so there is exactly one inverse image, this
shows the univalence of F.

We can give another proof for the univalence as follows. There is a (local)
branch of F~1 such that F~![z] = z/c; + .. as 2 — oo, in other words, oo
is not a branch point of FF~!. Furthermore, the function F has branch points
only at (;’s, j = 1,...,2ko and it behaves as a square root there. Therefore
every analytic continuations along any curve in C\ K give the same function
element. Now we use Lemma 2, p. 175 in [SFS89] with this (local) branch.
Therefore we can choose a (global) regular branch of F~! such that F~! [oo] =
00. Since this branch is regular and F' is a rational function, there is no other
inverse image of oo by F~! in G. By the construction of G and applying the
maximum principle, we have gc_\x (F (u),00) = gg (u,00), u € G. Using the
majorization principle (see [Kal08|, Theorem 1 on p. 624) or Theorem 4.4.1
on p. 112 from [Ran95], we obtain that F' is conformal bijection from G onto
Cy \ K.

As for the smoothness assertion (OG analytic), this follows from standard
considerations as follows. Without loss of generality, we may assume that z =
k(t) =t + et + et + ..., is a convergent power series for 0 < ¢t < ty and
z = F(u) is such that F(0) = 0, F'(0) = 0 and F” (0) # 0. It is known,
see e.g. [Sto62], p. 286, that the two branches of the inverse of F' near z = 0
can be written as Gy (2) & /2G4 (2) where Gy, Gy are holomorphic functions.
Denote them by ;' and Fy . This way 1 (t) :== F; ' [k (£2)] = Go (r (£?)) +
t\/1+ k1 (t?)G1 (k (£?)) is a convergent power series in ¢ € [0,#1] and similarly
for yo (t) == Fy ' [ (t?)] and 4] (0) # 0. Considering v (—t) for ¢ € [0,#],
we see that v2 (t) = 71 (—t), so 1 is actually a convergent power series and it
parametrizes the two joining arc. O

As for the number of poles, Widom’s open-up mapping is constructed as
iterating the Joukowskii mapping (composed with a suitable linear mapping in
each step) for each arc and that open-up mapping has 2%¢ different, simple poles
and the location of poles also depends on the order of arcs. In contrast, our
open-up rational function has kg simple poles.

With this Proposition, we switch from polynomials on Jordan arcs to ra-
tional functions on Jordan curves as follows. We use the following notations,
assumptions.

Fix one, C? smooth Jordan arc  with endpoints ¢; and ¢, and let z € 7,
z # (1, z # (2. Denote the two normal vectors of unit length at z to v by
n1 (z), na (z), where ny (z) = —ng (2). We may assume that n; and ng depend
continuously on z. We use the same letter for normals in different planes and
from the context, it is always clear that which arc we refer to. We use the
rational mapping F' and the domain G5 := G from the previous Proposition for
~. Denote the inward normal vector to G at u € G by ns (u) and the outward
normal vector to G at u by nj (u), ng (u) = —ng (u). It is easy to see that
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Figure 1: The v, z, G; and G2 with the normal vectors

there are two inverse images of z: u; = uy (2), uz = ug (2) € OG (such that
F(u1) = F (uz) = z) and we can assume that uj,us are continuous functions
of z.

By reindexing u; and wup, we may assume that the normal vector ng (uq)
is mapped by F' to the normal vector ng(z). This immediately implies that
ny (u1), na (uz), n1 (uz) are mapped by F' to nj (2), n1 (2), na (z) respectively.

Let us denote the domain C\ (G U 0G) by G;. Since deg F' =2 and F' is a
conformal bijection from Gg onto C \ 7, F is a conformal bijection from G;
onto C \ 7. For simplicity, let us denote the inverse of F onto Gy by F| ! and
onto Go by Fy '

These geometrical objects are depicted in Figure 1 where we indicated the
normal vectors ng (z) and ns (u1) with dashed arrows (we fix the notations with
their help) and we indicated the other normal vectors with simple (not dashed)
arrows (their indexings are consequence of the earlier two vectors).

Proposition 6. Using the notations above, for the Green’s functions of G = Go
and G1 and for b € Cy \ K we have

9 d
B 0 (20 = Gomrsgen (w7 0) /1F ()
0
= By () 962 (v Fa " (0) /|F" ()
and, similarly for the other side,
0 b . /
mgcw\K (Z;b) = mgcl (’LLQ,Fl (b)) / ‘F (U2)|
0
= By (a9 (00 T2 ) /1F (w)]

For arbitrary polynomial P, let fp (u) = f (u) := P (F (u)). Then ||P|. =
1fllo-
Proof. This immediately follows from the conformal invariance of Green’s func-
tions
9ok (F (u),b) = ga, (u, F ' (b))
and
gk (F (u),b) = ga, (u, Fy (b)) -
See e.g. [Ran95], p. 107, Theorem 4.4.4. O



This Proposition implies that it is enough to take into account the normal
derivatives at, say, u; only , i.e. #(71,1)96;2 (u1, Eyt (b)) and ﬁ(ul)ggl (w1, Frt (b))
only.

3 Conformal mappings on simply connected do-
mains

Here GGy is the bounded domain from the previous section and G5 is the un-
bounded domain from the previous section. Actually, G; = Co \ (Gf). As
earlier, D= {v: |v|] <1} and D* = {v: |v] > 1} U{occ}. With these notations,
0G1 = 0G,. Using Kellogg-Warschawski theorem (see e.g. [Pom92] p. 49, The-
orem 3.6), if the boundary is C*'® smooth, then the Riemann mappings of D, D*
onto G1, Gy respectively and their derivatives can be extended continuously to
the boundary.

Under analyticity assumption, we can compare the Riemann mappings as
follows.

Proposition 7. Let ug € 0G1 = 0Gs be fived. Then there exist two Riemann
mappings ®1 : D — Gy, &3 : D* — Ga such that ®; (1) = ug and |<I>; 1) =1,
j=1,2.

If 0G1 = 0G4 is analytic, then there exist 0 < 11 < 1 < ro < 0o such that
@y extends to Dy == {v: |v]| <1}, G} := @ (Dy) and ®; : Dy — Gf is a
conformal bijection, and similarly, ®o extends to Dy := {v: |v] > ri} U {o0},
G;‘ := @y (D3) and Oy : Dy — G;‘ s a conformal bijection.

Proof. The existence of ®; follows immediately from the Riemann mapping
theorem by considering arbitrary Riemann mapping and composing this map-
ping with a suitable rotation and hyperbolic translation toward 1 (that is,
xt(z)=(z—1t)/(1—tz) witht € (-1,1) and t — —1, x} (1) = 0, and ¢t — 1,
¥ (1) = +00).

The existence of @5 follows the same way, using the same family of hyperbolic
translations.

The extension follows from the reflection principle for analytic curves (see
e.g. [Con95] pp. 16-21). O

From now on, we fix such two conformal mappings and let a; := @;1 [Ff 1 [oo]]
and ap := @, " [oo] = @5 [Fy " [o0]].

The domains of these analytic extensions are depicted on Figure 2 where D
is the grey region on the right and is mapped onto Gf by ®; which is the grey
region on the left.

Using these mappings, we have the following relations between the normal
derivatives of Green’s functions and Blaschke factors.

Proposition 8. The followings hold

d ~ 1—Jay?

7F 1 = 1) = b

B (agy 96 (10 P17 [oel) = rgyom (hen) = 5= s
d o d lag)® — 1
_ ,F = * 1’ = )
anQ (uo)gG2 (UO 2 [OO]) anZ (1)gD ( (12) |1 - a2‘2



Figure 2: The two Riemann mappings and the points

and if ag = oo, then

0 0
—Z Fylioo]) = ———gp- (1,00) = 1.
8n2 (UO)gG2 (u()? 2 [OO]) 8712 (1)gD ( 700)

Proof. The second equalities in all three lines follow from (2), (3) and (4).

We know that ®; (1) = ug and ®3 (1) = ug, moreover |®] (1)| =1, |P4 (1)| =
1 imply that n; (1) is mapped to n; (ug) by ®;, j = 1,2 and the mappings ®;,
j = 1,2 also preserve the length at 1 (there is no magnifying factor ‘<I>; (1)’_1
unlike at Proposition 6). Using the conformal mappings ®; and ®3, and the
conformal invariance of Green’s functions, we obtain the first equalities in all
three lines. O

4 Proof of Theorem 1 with rational functions

4.1 Auxiliary results, some notations

Before we start the proof, let us recall three results. The first one is Gonchar-
Grigorjan estimate when we have one pole only. See [GG76], Theorem 2 on p.
572 (in the english translation).

Theorem. Let Dg C C be a simply connected domain and its boundary is C*
smooth. Let fg : Dg — Co be a meromorphic function on Dg such that it has
only one pole. Assume that fo can be extended continuously to the boundary
0D¢ of Dg. Denote fa., the principal part of fo in Dg (with fg,(c0) =0)
and let fan denote the holomorphic part of fa in Dg. Denote the order of
the pole of fo by ng. Then fo = far + fan and there exists Cy (Dg) > 0
depending on Dg only such that

Ifenllop, < Cr(Dg)(logneg +1) | fallap,, (7)
where ||.||5p,, denotes the sup norm over the boundary of Dg.

In the main result of this paper we are interested in asymptotics as n —
oo. In particular, if ng > 2, then logng + 1 < 3log (ng), so we may write
logng +1 =0 (logng).

The second result is a special case of the Bernstein-Walsh estimate, see
[Ran95], p. 156, Theorem 5.5.7 a) or [ST97], p. 153.



Theorem. Let G C Co be a domain, co € G and denote its Green’s function
by g (u, 00) with pole at infinity. Let f G — Cyx bea meromorphic function
which has only one pole at infinity and we denote the order of the pole by n.
Assume that f can be extended continuously to the boundary dG of G. Then

Fw|<|f

| 7]], - exp G (. 00)) (®)

where ||.||5¢ denotes the sup norm over G.

The third result is a special case of a general construction of fast decreasing
polynomials by Totik, see [Tot10], Corollary 4.2 and Theorem 4.1 too on p.
2065.

Theorem. Let K C C be a compact set, i € OK be a boundary point. Assume
that K satisfies the touching outer-disk-condition, that is, there exists a closed
disk (with positive radius) such that its intersection with K is {}. Then there
exist Ca, Cs > 0 such that for all fu there exists a polynomial Q with the following

properties: deg (Q) < {109/110, Q(ﬂ) =1, |Q - <1landifuelk, |lu —al >
7910 then ‘Q (u)‘ < Chexp (—Csit/19).

To apply this third theorem, we introduce several notations.
We need 9 (v) := 1=22% = 4 and its inverse ! (w) = 2% Note that

v—asg w—az

¥ (ag) = 00, 9 (1) = =2 and let by := {=22. Obviously, 1 (D) = ID.
Let Ty = {w:|w|=1+4} and §; > 0 is chosen so that 'y C ¢ (Dy). This
01 depends on G5 only.

Let D3 := {w:|w — 2by| < 1}, this disk touches the unit disk at b;. Fix
553 > 0, (5£3 < 1, such that {w dlw <1 —|—5£?§} C ¢ (D1). Then for every

da3 € (0, 5273}, {w: |w| =1+ d23}NID; consists of exactly two points, wj =
wi (02,3) and wi = w3 (d2,3). It is easy to see that the length of the two arcs
of {w Dlwl =14 6503)} lying in between wj and wj are different, therefore,
by reindexing them, we can assume that the shorter arc is going from wj to

w; counterclockwise. Elementary geometric considerations show that for all
w, 1 < |w| < 1+ 0y3 with argw € {argw} (02,3) : j = 1,2}, we have (since

5273 < 1) .
3V/023 < fw—bi| <2¢/055. (9)

Let
K¥ = {w: | < 1+5§?§}\Dg.

Obviously, thls K is a compact set and satisfies the touching-outer-disk con-
dition at b; = Zz of Totik’s theorem. See figure 3 later.
Consider

K} :=®0¢p 'K ND*UD o [K: ND*|UG.
This is a compact set and also satisfies the touching-outer-disk condition at

ug = P2 (1) of Totik’s theorem. Obviously, 0Gy C K, G1 C K , up € K and
if we K, then ®; 0y~ (w) € K} and ®3 09~ ! (w) € K too. Now applying

10



Totik’s theorem, there exists a fast decreasing polynomial for K at ug of degree
at most n; which we denote by Q = @ (ni;u). More precisely, @ has the

following properties: @ (ug) =1, |Q (u)] <1onu € K, deg@ < niog/no <n

and if |u — ug| > n1—9/10’ u € K7, then

u?

|Q (u)] < Cyexp (—ani/llo) . (10)
Let ny := |\/n], ng := Lng/‘lJ, 891 :=1/n and da 3 := n~2/3.

4.2 Proof

In this subsection, we let f (u) := P, (F'(u)) where P, is a fixed polynomial of
degree n and F' is the open-up rational function (see Proposition 5) for K (from
Theorem 1).

Actually, we use only the following facts. f is a rational function such that it
has one pole in G; and one in G. We know that the poles of f are oo = Fy; ! [0
and F; ! [00], and the order of the pole in G is n.

It is easy to decompose f into sum of rational functions, that is,

f=f+f

where f1 is a rational function with pole in Gy, f1 (00) = 0 and f5 is a polynomial
(rational function with pole at oo). This decomposition is unique. We use the
Gonchar-Grigorjan estimate (7) for fo on G, so we have

12lloc, < C1(GY) (logn+1) [ fllag, - (11)

Obviously, we have

Iflloe, < (1+C1L(GT) (ogn+ 1)) [ fllag, - (12)

Consider
e1(v) = f1(P1(v)).

This is a meromorphic function in D;. We may assume that ; has only one
pole in D; otherwise we can decrease ro > 1 so that the pole in G5 is not in
®, (D) = Gf. We know that

le1llon = If1lloc, (13)

and |} (1) = [f (uo)]-
We decompose “the essential part of” ; as follows

Qo®1 -1 =91+ P1e (14)

where @1, is a rational function, @1, (00) = 0 and 1, is holomorphic in D. We
use the Gonchar-Grigorjan estimate (7) again for ¢; on D, this way the following
sup norm estimate holds

[@1ellop < C1 (D) (logn + 1) [|Q 0 @1 - ¢1]lgp < C1 (D) (logn+ 1) |1l op (15)

where Cy (D) is a constant independent of ¢ .
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As a remark, let us note that we may write logn + 1 < O (logn) for sim-
plicity since we are interested in asymptotics as n — oo in the main theorem.
Otherwise, if n = 0 or n = 1, then P, is a constant or linear polynomial and
the error term o(1) in the main theorem (Theorem 1) can be sufficiently large
(depending on K and zg) for these two particular values of n. In this manner,
we write (logn 4 1) in general, but we simplify it to O(logn) frequently.

Furthermore, we can estimate ¢1. (v) on v € Dy \ D as follows

lp1e (0)] = [(Q - f1) 0 @1 (v) = @1r (V)] < [(Q - f1) © @1 (V)] + |1, (V)] (16)

We also need to estimate @ outside D (and K) as follows. Using deg @ <

n}og/llo < n; and Bernstein-Walsh estimate (8), we can write for v € D; \ D

1Q (@1 (0))] < 1+ exp (19, (@1 (1))
Since the set @1 (D \ D) is bounded,
Cs :=sup {gg, (P1 (v),00) : v € Dy \D} < oo.
Therefore, for all v € D1 \ D,
(@ f1) o @1 (v)] < eP™ || fillgg, -

This way we can continue (16) and we use u = ®; (v) here and that ¢, is
a rational function with no poles outside D and the maximum principle for ¢,

C C
< e fr ()] + lerrllop < €7 |l fillag, + lleillap + [[@1ellon

and here we used that f; has no pole in Gy and the maximum principle. We
can estimate these three sup norms with the help of (12) and (13), (12) and
(15), (13), (12). Hence we have for v € D; \ D

p1e (v)] < (9™ +14C1 (D) (logn + 1)) (1+ C1 (GF) (logn + 1)) | £l o,
=0 (log (n) eCGnl) ||fHaG2 - (17)

Approximate and interpolate 1. as follows with rational function which has
only one pole, namely at ay = ®; ' [oc]. Consider ¢1,0t~" (w) on ¢ (Dy). Using
the properties of 1, we have

e1ellop = ||#1e © ¢_1H8D

and ¢, 0 1~! is a holomorphic function in v (D;). We interpolate and use
integral estimates for the error, see e.g. [Ran95], p. 170, proof of Theorem 6.3.1
or [SL68], p. 11. Therefore, let

an (w) == w™ (w— b1)2

where N = n+ [y/n] + [n*/4] = n(1+0(1)). We define the approximating
polynomial

_ 1 P10 (W) gy (w) — gn (W)
PN (w) = i . o (@) p— dw.

12



It is well known that p; y does not depend on I';. Since b; is a double pole
of g, therefore p; v and p) y coincide there with ¢y, o Y1 and (p1e0 7721*1)/
respectively.

The error of the approximating polynomial p; x to @1, 0 9~! is

- 1 p1e 0! (W) g (w)
ereow™ () = prv ) = o [ BB RN,

1 1 @1 0P (w)
=5 e qn (w) de, (18)

here w € D can be arbitrary. It is easy to see that for w € D, gy (w)| < 4 and

1
2 T

1

w—w

1441

\|dw| <

Therefore, using (17), we can estimate the error (of approximation of p; y to
109~ 1) as follows

B 4(1+6 n 1
i 007! ) =y ()] < ZE0 (g (0 ™) Ul
_ 4(1+6,)0 (10g (n) ecﬁnl) Kl
5 (145" e

which tends to 0 as n — oo, because ny = [/n] and

eCsTL]

m =exp (Cev/n —log (1 +61)n(1+o0(1))) — 0.
1

Considering pi v 01, it is a rational function with pole at as only, the order of
its pole at as is at most IV and we know that

e = Prv o Pllgp = 0 (1) I flloc, (19)

where o (1) is independent of P,, and f and depends only on G2 and tends to 0
as n — oo, furthermore

e (1) = (prvov) (1). (20)

Now we interpolate and approximate fo o ®;. As earlier, we do not need the
full information of this function, it is enough to deal with f5 0 ®; locally around
1 and preserve the sup norm. Therefore we “chop off” “the unnecessary parts of
fo o ®,” with the fast decreasing polynomial Q.

We have the following description about the growth of Green’s function.

Lemma 9. There exists Cy > 0 depending on 55?32, that is, depending on Go

only and is independent of P,,n and f such that for all 1 < |w| <1+ 5§?§ we
have

(Yo®;'od;o @Zfl)l (w)
Dod; o ovt (w) < Cy.
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and

96, (@109 (w),00) < Cy (jw| - 1). (21)
Furthermore, there exists Cs > 0 which depends on Gy and independent of Py, n
and f such that for all 1 < |{| <1+ 55?% we have

(Yo odop1) (C)
Yo®yod; 0y (()

<14C5[¢— by
and

96, (P1o9 ™ (¢),00) < (I¢| = 1) (1 +C5]¢ = bul). (22)

Proof. For simplicity, let ¢* := arg ¢ where arg( = (/|¢|, if ( # 0 and arg0 = 0.
We can express Green’s function in the following ways for u € Ga,

96, (u,00) = log |1 0 @5 (u)]
and for w € D*
9Gs (<I>1 o (w) 7oo) = log |1/) ) <I>2_1 oPoyp! (w)| .
The first displayed inequality in the Lemma comes from continuity consider-

ations and the conformal bijection properties. Integrating this inequality along
radial rays, we obtain (21). If we are close to 1, then more is true:

’(d}o@;l o ¥y oz/fl)’(bl)‘ =1.

Using continuity, we see that there exists C5 > 0 such that for all {, 1 <
<1+ 6(0), we have
2,3

<1+Cs5|C—by.

(Yody od opt) (¢)
Yodylod 0yl (()

In particular, for all  from the segment [¢*, (], n € [¢*, (],

<1+4Cs|n— b

(Vo dy 0d; 0yt) ()
Yodylod o1 (n)

and | — b1| < |¢ — by|. Therefore, integrating with respect to n along [(*, (], we
obtain

C(podytodioph) (n)
¢ Yodytod oyl (n)

(wofbg_loqhow_l)/(’?) /C
dn| < 1+Cs5|¢C—b]|d
1/)0@2_1 o¢1 Ow,I (77) ‘ 77| = o + 5 |C 1|| T"

9c, (P1ov™ (), 00) =R

¢
<.
C*

dn

== A +C5[C—bl).
O
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Figure 3: K and the arcs that make up I'y

Now we give the approximating polynomial as follows

1 Q- f2)oPioy (W) gn (W) — gn (w)

= 2mi r qn (w) w—w

pa.N (w) : dw

where I' can be arbitrary with D C IntI’ and I' C ¢ (D). We remark that
we use the same interpolating points, but we need a different I for the error
estimate.

Now we construct I' = I'y for the estimate and investigate the error. We
use 021 = 1/n, 023 = n=2/3 and ny = Ln3/4J. We give four Jordan arcs that
will make up I's. Let I's 3 be the (shorter, circular) arc between wj (d2,3) and
14021 1+62.1
14623 146237
Too:i={w: 141 <|w| <1423, argw = arg (wj (d2,3))} and similarly I' 4 :=
{w: 14021 < |w| <1+ 623, argw = arg (w3 (d2,3))} be the two segments con-
necting I'; ; and I'y 3. Finally let I'y be the union of I'y 1, ' 2, I'2 3 and I'y 4.
Figure 3 depicts these arcs and K, defined above.

We estimate the error of ps y to (Q - fa)o®101)~! on each integral separately:

w3 (02,3), I'21 be the longer circular arc between wy (d2,3)

and w3 (d2,3)

dw

(Q~f2)o¢’10¢_1(w)—p2,1v(w)—L/F (@ fa) o @10y (W) gw (w)

- 2mi w)

w—w gn (
1
:—./ +/ +/ +/ .
2mi oy Tao Ta3 Ty,

For the first term, we use Bernstein-Walsh estimate (8) for the polynomial f;
on G and the fast decreasing polynomial @) as follows. If w € I's ;, then with
(21), ga, (P10 (w),00) < Cyba,1 = Cy/n, therefore

C
|2 (@1 097" (w))] < lIf2lloe, exp (”;) < fllag, C1 (GT) (logn + 1) e

= O (log (n)) | flloc,
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where we used (11). Now we use the fast decreasing property of @ as fol-
lows. We know that I'o; C K (if n > 1/55??2 ) and with the elementary

geometric considerations (9) we have /d23/2 > nl_g/ ' which is equivalent
to n=1/3/2 > n=9/20 (this is true if n is large). It is also important that

sup{‘(@loz/fl)l(w)’: wE 1/J(D1)} < oo and K} C 1 (D;) therefore the

growth order of the distances is preserved by ®; o ~'. Hence the fast decreas-
ing polynomial @ is small, see (10), and we can write

exp (Cyn1/220)

Q- f2) (Prov ™ (w))| <O (log(n)) 1 fllag,

and integrating along I's 1, we can write for w € D

dw

1 Q- f2)o®109™" (w) gi (w)
/Fz,l

2mi w—w gn (w)

1 1 log (n) 1
< — o 44— |dw
= o /1“2,1 |w _w| (exp (an1/220)> Hf||aG2 (1 +52,1)N 5%71 ‘ |
2 27 (1+402,1) log (n) n?log (n)
< - ——0 —0 — ==\
T (14 650)" 5 (exp (C3nt/220) 17llac: exp (C3nl/220) 1£locz,

here we used d21 = 1/n.

We estimate the third term, the integral on I'y 3, as follows for w € D

1 Q- f2) o @109 () gn (w) "

2 /F23 w—w an (w)d
<1 L 1@ f) (@100 ()] —2— [de]. (23)
=27 Jo,, ol )

Here, |w| =14 023, |lw —w| > d2.3, |gn (w)| > 55’3 1+ 52,3)N. Roughly speak-
ing, fo grows and this time @ grows too (the bad guys) and only |gn (w)|_1
decreases (the good guy). We estimate their growth using Bernstein-Walsh es-
timate (8) for f2 on G2 and Lemma 9 (and estimate (11) as well) in the following
way. Here, as earlier, w € I'y 3

[f2 (21007 (W))] < I fllag, exp (nge, (P1 o9 ™" (W), )
< €1 (G7) (logn + 1) [|fllpc, exp (n (jw] = 1) (1 + C5 [w — ba))
< Cy (GY) (logn+ 1) || flloe, exp (nég’g + C’5n62732\/a)
— €1 (G}) (logn + 1) /o, exp (nba) 2

where in the last two steps we used |w — by | < 2,/35 3 from (9) and d93 = n=2/3.
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As for gy,

1 1 1 1

——— < o ————= = ——exp(— (n+n1 +n2)log (1 + Jo,
lav (W) ~ 035 (14 823)" 933 (= ma)logil+ 1))

1 &3
S (ST exp (—n(5273 — n152,3 — ﬂ25273 + (TL + ni1 + TLQ) 2273>
2,3

1
< 52 exp (—nda,z — n1d2,3 — N2da 3) €Xp (3n n_4/3)
2,3

< &P (—nd2,z —n1d23 — 71252,3)63
N 05

where we used n; = [nl/QJ, Ny = Ln3/4J and 6y 3 = n~2/3.
As for @ (this time it is a bad guy), we use Bernstein-Walsh estimate (8) for
Q on G1 UJG and that G1 UOG, C K. Therefore, [|Q| 55, = 1 and we know

that deg Q < n}09/110 < nl09/220 hence

Q (1097 (W) < Qllag, exp (n1ge, (R1 o™ (w),00))
<exp(ni (Jwl—1) (14 Cs|w—01])) <exp <n109/22062’3 (1 + C52 623))

— exp (71109/2205273 T 20571109/22071’1) < exp (n109/2205273) o2Cs

Here we used again (9) and the definition of dg 3.

We multiply together all these three last displayed estimates, this way we can
continue our main estimate (23). Note that exp (nds 3) cancels, and exp (—n1d2 3)
kills the factor exp (n'%9/2294, 5), in more detail:

2 1
< - / —C1 (GY) (logn +1) || fll o, exp (nda 3) €
ys 02,3

™

exp (—ndz 3 —n1da3 —n2da3 5
Cexp ( ; - : , )63 exp (n109/2206273) €205 | du|
2,3

2640530 (G logn +1
= 2O g, B [
2,3

2]
- exp ((n109/220 - m) 62,3) exp (—n2023) < || flloe, O < n” log (n) )

exp (n1/12)

where we used several estimates: length of I's 5 is at most 4, the definitions of
ny,ng and 02 3 and that n; > n109/220 therefore exp ((n109/220 — nl) 52’3) <1

For I'; 5 and I'z 4, we apply the same estimate which we detail for I'z 5 only.
We again start with the integral for w € D

dw

2mi w—w an (w)
1 1

T 27 Jr,, |lw — w]

L[ @ peter e mw

(@ f2) (Prov™" (w)) |dwl. (24)

| lan (W)
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Since w € I'y 2, we can rewrite it in the form w = (1 + ) wi/|wj| where d3 1 <
§ < da3 (with wi = wi (d2,3) ). We use essentially the same steps to estimate
f2 (the only one bad guy this time) and ¢y and @ (this time it is a good guy).
In estimating fo, the only difference is that |w| — 1 =4, so

[f2 (21097 ()| < I f2llag, exp (nga, (B1 09" (w),00))
< 1 (G}) logn + 1) [fllgq, exp (1 (Jo] — 1) (1 + Cs | — by])
< C1 (GF) (logn + 1)1, ex (06 + Csnin2/52s)
=1 (GY) (logn + 1) || fllg, exp (nd) >
Similarly for gy, we can write

1 1 1 1
T < ——x% = ex n+ny+n9)log(l+4
v @] = 8%, G a0y 5, P ) log(t+0)
2
3)

< P (—nd —n1d — nad) 4 < OXP (—nd) 4
N 031 05,

1
< 2 exp( nd —n1d —nad + (n 4+ nq + n2)
2,1

< 21 exp (—nd — n1d — n2d) exp <3n n-
031

As for @@, we know that w is far from b; so @ is small there. More precisely,
following the same argument as for I'; 1, we know that /92 3/2 > nl_g/ 10, hence
(10) holds for @ at w, that is, we can write

|Q (<I>1 oy 1 (w))| < Cyexp (_an1/220) .

Putting these all together, we see that exp (nd) cancels and actually ) make
the integrand small. So we can continue the estimate (24)

2 exp (—nd) -
< — / —C’l (G+) (logn +1) [|fll 5, exp (nd) 6205¥e‘3
Ty 02,1 03,1

Qmw@q()UMG/|W|

logn +1 1/220 n” log (n)
2 ——exp <—C’3n ) < ||fHaG2 o W

- Cyexp (—an1/220> |dw| =

where we used that the length of I's 5 is at most 1 (since (592 <1)and dz1 = 1/n.
Summarizing these estimates on I's 1, I'; 3 and I'; » (and also on I' 4), we
have uniformly for |w| <1,

P2,y (w) = (Q - f2) 0 1o~ (w)| =0 (1) || fllpg,

where o (1) tends to 0 as n — oo but it is independent of P, and f5. Obviously,
p2,n © % is a rational function with pole at v = as only, the order of the pole at
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az (of ponyot )isdegpay =N =n+n;+ne =
properties of w = ¢ (v), we uniformly have for |v| <

p2.n 0 (v) = (Q- f2) o @1 (v)] = 0 (D) [[fll5c, »

(14+0(1))n and using the
1

that is,
[p2.v ot = (Q - f2) 0 Pullgp = 0 (1) [ flloe, - (25)

Since by is double zero of g, ph y (b1) = (Q- f2)o®10 ¢‘1)/ (b1), and dividing
both sides with (w_l)/ (b1), we obtain

(p2v o) (1) =((Q- f2) o ®1) (1). (26)

Consider the “constructed” rational function

h(v) = @1, (v)+pinvop(v) +panoth(v).

This function h has a pole at a; (because of ¢1,) and the order of its pole at
a1 is at most n, and h has a pole at ay (because of p1 x 09 and psy y 0 1) and
the order of its pole at ag is at most N =n (1 + o0(1)). We use the identity

fol1=(Q - f+(1-Q) - f)ody
to calculate the derivatives as follows
(1=Q)-NHo®) ()= (1-Q)f) (w)-®) (1) + (1= Q) - ) (w1) - ¥ (1)

where the second term is zero because of the fast decreasing polynomial (Q (u1) =
1) and for the first term we can apply Theorem 1.3 from [NTO05] in the following

way (1 - Qlag, < 2)
(1= Q) ()] < (14 (1) de (@) 25 s (11, )

where 0(1) depends on G2 and wu; only and tends to 0 as deg@ — oo (note:
deg Q < n'09/220 <\ /n ). Therefore

(1=Q) - f) (wr) - @5 (D] < [ flloe, VP2 (1+0(1)) (%ga(ul)ng (u1,00)

= 7l © (V) 50—

N (ul) 9aG, (Ul, OO)

< 0 g, mx (- Fomsses (1:09) s (i) ) - (21)

This way we need to consider (@ - f) o ®; only. The derivatives at 1 of the
original f and h coincide, because of (14), (20) and (26), so

W' (1) =¢h, (1) + (prvow) (1) + (v ow) (1) =((Q- f)o®) (1). (28)

As for the sup norms, we use (14), (19), (25), so we write

Q- f)o®1—hlyy =0(1) ||fH8G2' (29)
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Now we apply the Borwein-Erdélyi inequality (5) for h as follows:

W ()] < [|Allop max (Z anla Z 8 91D>* )> (30)

where the summation is taken over all poles in D and in D* respectively, count-
ing multiplicities. We will continue this estimate later after simplifying these
expressions. Using Propositions 8 and 7, we can write

0 0 9 .
Za: mfm (1,a) < TLWQD (1,a1) = nmggl (uo, Fy " [o0))

0

[ /
= g Gy 0 (,90) [ ()

where in the last step we used Proposition 7 with zg = F (ug) and identifying
ug = up. Similarly, we can simplify the second term in the maximum in (30)

3 ey (10 = s o+ 22 g s e (1.02)

<N ana(l)g (1az) = (1+ o(l))ﬂanf(gez (uo, Fy " [o0])

UO)

= (1 0 (1)) g0 e (:09) | (o)

where o (1) here does not depend on anything. Note that we “used a slightly
bit more the pole at as”, but it does not cause problem. So we can continue the
main estimate (30)

0 -
< g s (5= g, (o, Py [o<]),
0

(1+0 (1) ng 50, (uo, Fy ! [ox)) )
< ||l (L +o(1))n
o 0 962 (o, F5 " [00]) )) :

- max (8n1( )9G1 (uo, Fy [o<]) ang (ug)

Summarizing these estimates, we have for h

[P (D] < [7flop (140 (1) n

g )gg2 (uo,Fgl [oo]) )) )

0
- max (3711( )gGl (o, 17" [oc]) Ina (uo)

Now we rewrite this inequality for @ - f using (28) and (29), so
Q1) (w)] <1Q fllog, (1 +o(1)n
0 —1 0 —1
- max <8nl(uo)gal (uo, Fy ' [o0]) MQGZ (uo, Fy ' [00]) )>

+o (1) n || fll5g, max (anla(u())gcl (uo, Fy * [o0]) ana()ng (uo, Fy " [00]) )) :

2 (Uo
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Figure 4: The sets K and K*

Now, we use the estimate [|Q - f[l5¢, < [ fllsq, and (27), so

[ ()l < [ fllag, (L+0(1))n

- max ((anla(uo)gg1 (uO,Ffl [oo]) , (%ga(uo)g% (U(),F;1 [OO]) )) . (31)

In the final step, we use f = P, o F' and Proposition 6, so we get the main
theorem.

5 Sharpness

In this section we show that the result is asymptotically sharp, that is, we prove
Theorem 2. The idea is similar to that of [NT13]. Note that we assume C?
smoothness only.

Proof. We may assume that
)gcm\K (20, 00).

0

o, (zo)gc‘”\K (20,00) < ona (20

Furthermore, we assume that n; (.) and ns (.) are defined on the component of
K containing zy and they are continuous there except for the endpoints.

Tt is easy to see that for every € > 0 there exists a compact set K* = K* (¢)
such that OK* is finite union of disjoint, C? smooth Jordan curves, K C K*,
zo € OK* and the normal vector n (K™, z9) to K* (pointing outward) at zp is
equal to ng (29) and

0 0
— P *
an2 (ZO) JC\K (ZOa OO) (1 6) = on (K*, ZO) JC\K (ZOa OO)

< mgcm\K (20,00) .
These conditions, roughly speaking, require that near zo, K* is on the ny (zp)-
side of K and the whole K* shrinks to K as ¢ — 0. Figure 4 depicts K and the
grey area is K*.

Now we apply the sharpness result of [NT05] (Theorem 1.4, p. 194). This
gives a sequence of polynomials for K* (¢), say FP:,, with deg P.,, < n such
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that

0
‘Psl,n (ZO)| >n(l—o:(1)) ||Ps,n||K*(5) mgcw\K* (20,00)

> 0 (1= 00 (1) (1= &) [Penl g 500 e (0, 0)

where o, (1) depends on K* (¢) and zy and tends to 0 as deg P-,, — co. Since
¢ was arbitrary, we see that (1 —o. (1)) (1 —¢) =1 — 0(1), that is, choosing a
suitable subsequence of {P; ,,} we obtain the assertion. O
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