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ON RANDOM DISC-POLYGONS IN SMOOTH CONVEX DISCS

F. FODOR, P. KEVEI, AND V. VÍGH

Abstract. In this paper we generalize some of the classical results of Rényi

and Sulanke (cf. [27, 28]) in the context of spindle convexity. A planar convex
disc S is spindle convex if it is the intersection of congruent closed circular discs.

The intersection of finitely many congruent closed circular discs is called a disc-

polygon. We prove asymptotic formulas for the expectation of the number of
vertices, missed area and perimeter difference of uniform random disc-polygons

contained in a sufficiently smooth spindle convex disc.

1. Introduction and results

In their seminal papers, Rényi and Sulanke [27, 28, 29] investigated the geomet-
ric properties of approximations of convex discs by random convex polygons. In
particular, they considered the following probability model.

Let K be a convex disc (a compact convex set with nonempty interior) in the
Euclidean plane E2 and let y1, y2, . . . be independent random points chosen from K
according to the uniform probability distribution. Let Kn denote the convex hull
of Yn = {y1, . . . , yn}. The set Kn is called a uniform random convex polygon in
K. We use E(·) to denote the expectation of a random variable in this probability
model.

Rényi and Sulanke [27, 28] proved asymptotic formulas for the expectation of the
number of vertices of Kn and the expectation of the missed area of Kn under the
assumption that the boundary ∂K of K is twice continuously differentiable. They
also proved an asymptotic formula for the expectation of the perimeter difference of
K and Kn under stronger differentiability assumptions on ∂K and assuming that
the curvature κ(x) > 0 for all x ∈ ∂K. For later comparison, we state their results
below in a slightly modified form.

Let f0(Kn) denote the number of vertices of Kn, A(K) the area of K and Γ(·)
Euler’s Gamma function. Then (cf. Satz 3 on page 83 in [27])

(1) lim
n→∞

E(f0(Kn)) · n−1/3 = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

κ(x)1/3dx,

where integration is with respect to the one-dimensional Hausdorff measure on ∂K.
We note that with the help of Efron’s identity [12], (1) implies directly the following
statement

(2) lim
n→∞

E(A(K \Kn)) · n2/3 =
3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

κ(x)1/3dx.

Rényi and Sulanke derived (2) by direct computation, cf. formula (48) in Satz 1 on
page 144 in [28].
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Assuming that the boundary of K is sufficiently smooth and κ(x) > 0 for all
x ∈ ∂K, Rényi and Sulanke proved the asymptotic formula

(3) lim
n→∞

E(Per(K)− Per(Kn)) · n2/3 =
1

12
Γ

(
2

3

)
(12A(K))2/3

∫
∂K

κ(x)4/3dx

for the perimeter difference of K and Kn, cf. formula (47) in Satz 1 on page 144
in [28].

For more information about approximations of convex bodies by random poly-
topes we refer to the recent book by Schneider and Weil [33], and the survey articles
by Bárány [2], and by Schneider [32], and by Weil and Wieacker [36].

In this article, we investigate the R-spindle convex analogue of the above prob-
ability model. Let R > 0. R-spindle convex discs are those convex discs that are
intersections of (not necessarily finitely many) closed circular discs of radius R. For
a precise definition of spindle convexity, see Section 2. The intersection of finitely
many closed circular discs of radius R is a closed convex R-disc-polygon. Let X
be a compact set which is contained in a closed circular disc of radius R. The in-
tersection of all R-spindle convex discs containing X is called the R-spindle convex
hull of X, and it is denoted by convs,R (X).

Now we are ready to define our probability model. Let S be an R-spindle convex
disc in E2. Let x1, x2, . . . be independent random points in S chosen according
to the uniform probability distribution (the Lebesgue measure in S normalized
by the area of S). The R-spindle convex hull SRn = convs,R (Xn), where Xn =
{x1, . . . , xn}, is called a uniform random R-disc-polygon in S. We prove the R-
spindle convex analogues of (1), (2) and (3) in this probability model.

The notion of spindle convexity was first introduced by Mayer [22] in 1935 as a
generalization of linear convexity in the wider context of Minkowski geometry. In
the Euclidean plane E2, a closed convex set is the intersection of closed half-planes.
In the definition of an R-spindle convex set, the radius R closed circular discs play
the role of closed half-planes. Thus, formally, the R =∞ case corresponds to linear
convexity.

Early investigations of spindle convex sets were done, for example, by Blanc [8],
Buter [10], Pasqualini [26], Santaló [30], van der Corput [34], Vincensini [35]. For
a short survey of the early history of the subject and references see the paper by
Danzer, Grünbaum and Klee [11]. Fejes Tóth proved packing and covering theorems
for R-spindle convex discs in [15] and [16]. More recently, Bezdek et al. [6] and
Kupitz et al. [20], [21] investigated spindle convex sets and proved numerous results
about them, many of which are analogous to those of linearly convex sets. They
also considered higher dimensional R-spindle convex sets. Intersections of a finite
number of radius R closed balls in Ed are called ball-polyhedra (cf. [6]). Such objects
played important roles in the proofs of various results in the last 50 years, for a
list see Bezdek et al. [6]. Fodor and Vı́gh [17] proved asymptotic formulas for best
approximations of R-spindle convex discs by R-disc-polygons generalizing some of
the corresponding results of Fejes Tóth [14] and McClure and Vitale [25] about best
approximations of linearly convex discs by convex polygons. There is a wealth of
new information about properties of spindle convex bodies and ball-polyhedra in
the recent monographs [4] and [5] by Bezdek.

The notion of spindle convexity is related to diametrical completeness of convex
bodies through the so-called spherical intersection property. A convex body K is
diametrically complete if for any point x 6∈ K, the diameter of conv (K ∪ {x}) is
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strictly larger than that of K. It was proved by Eggleston [13] that in a Banach
space exactly those convex bodies are diametrically complete which have the so-
called spherical intersection property, that is, they are equal to the intersection of all
closed balls whose centre is contained in K and whose radius is equal to the diameter
of K. In Euclidean spaces diametrically complete convex bodies are exactly those of
constant width, however, in Minkowski spaces this is not the case. Recently, much
effort has been expended to investigating the properties of diametrically complete
sets in Minkowski spaces where sets that are intersections of congruent closed balls
play a fundamental role (see, for example, Moreno and Schneider [24] and the
references therein), and to investigating various properties of the ball hull, see, for
example, Moreno and Schneider [23] for more information.

Random approximations of R-spindle convex sets by R-disc-polygons naturally
appear, for example, in the so-called Diminishing Process of Tóth, see Ambrus et
al. [1]. Let D0 = BR be the radius R closed circular disc in E2 centred at the
origin. Define the random process (Dn, pn) for n ≥ 1 as follows. Let pn+1 be
a uniform random point in Dn and let Dn+1 = Dn ∩ (BR + pn+1). Then each
Dn is a (non-uniform random) R-disc-polygon, and the process converges (in the
Hausdorff metric of compact sets) to a set of constant width R with probability
1. This process can be readily generalized for a general convex body K ⊂ Ed, in
place of BR, that contains the origin. If the body K is symmetric with respect to
the origin, then it determines a Minkowski metric and the sets Kn are all (random)
spindle convex bodies with respect to K in this Minkowski space.

Finally, we remark that there are various terms used for R-spindle convex sets
in the literature. Mayer introduced the word “Überkonvexität” in [22]. Authors
of early articles from the 1930s and 1940s used the translations of Mayer’s term.
Fejes Tóth in [15], [16] called such sets “R-convex”. Bezdek et al. [6] and Kupitz et
al. [20, 21] used the expression “spindle convex”. The notion of spindle convexity
arose naturally and was investigated from different points of view, which explains
the various names used for these sets and it also indicates their importance.

The main results of this article are described in the following theorems.

Theorem 1. Let R > 0, and let S be an R-spindle convex disc with C2 smooth
boundary and with the property that κ(x) > 1/R for all x ∈ ∂S. Then

(4) lim
n→∞

E(f0(SRn )) · n−1/3 = 3

√
2

3A(S)
· Γ
(

5

3

)∫
∂S

(
κ(x)− 1

R

)1/3

dx,

and

(5) lim
n→∞

E(A(S \ SRn )) · n2/3 =
3

√
2A(S)2

3
Γ

(
5

3

)∫
∂S

(
κ(x)− 1

R

)1/3

dx.

We note that the two statements are connected with an Efron-type relation [12],
see (31) in Section 5.

Theorem 2. Let R > 0, and let S be an R-spindle convex disc with C5 smooth
boundary and with the property that κ(x) > 1/R for all x ∈ ∂S. Then

(6) lim
n→∞

E(Per(S)− Per(SRn )) · n2/3

=
(12A(S))2/3

36
Γ

(
2

3

)∫
∂S

(
κ(x)− 1

R

)1/3(
3κ(x) +

1

R

)
dx.
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Theorem 3. Let R > 0, and let S = BR be a circular disc of radius R. Then

(7) lim
n→∞

E(f0(SRn )) =
π2

2
,

(8) lim
n→∞

E(A(BR \ SRn )) · n =
R2 · π3

2
,

and

(9) lim
n→∞

E(Per(BR)− Per(SRn )) · n =
R · π3

2
.

It is somewhat surprising that the expectation of the number of the vertices of
uniform random spindle convex polygons in circular discs tends to a (very small)
constant. Roughly speaking this means that after choosing many random points
from a circle, the spindle convex hull will have about 5 vertices. Note that this
phenomenon has no analogue in linear convexity.

Furthermore, for a (linearly) convex disc K with C2 smooth boundary and
strictly positive curvature, the asymptotic formulas (1) and (2) of Rényi and Su-
lanke follow from (4) and (5), respectively. Similarly, for a convex disc with C5

smooth boundary and strictly positive curvature, the asymptotic formula (3) of
Rényi and Sulanke follows from (6). Thus, the results of Theorems 1 and 2 are
generalizations of the corresponding results of Rényi and Sulanke.

The rest of the paper is organized as follows. In Section 2, we introduce the
necessary notations. In Section 3, we prove how the asymptotic formulas of Rényi
and Sulanke follow from our results. In Section 4, we investigate some properties
of disc-caps of spindle convex discs that are used in the subsequent arguments. We
give the proofs of Theorem 1 and Theorem 2 in Section 5. Finally, in Section 6, we
provide an outline of the proof of Theorem 3.

2. Definitions and notation

In this paper we work in the Euclidean plane E2. We denote points of E2 by
lowercase letters and sets of points by capitals, unless otherwise noted. For a point
set X ⊂ E2, we write clX for the closure of X, intX for the interior of X, XC for
the complement set of X, and ∂X for the boundary of X. We use the notation A(·)
and Per(·) for the area and perimeter of compact sets in E2, respectively, while
〈·, ·〉 denotes the usual Euclidean inner product in E2. The symbol BR denotes
the closed circular disc of radius R centred at the origin. We use S1

R to denote
∂BR. We tacitly assume that the plane is embedded in E3 and write x× y for the
cross product of the vectors x and y. For two functions f(n) and g(n), we write
f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1. We also use the O(·) and o(·) notations
throughout the article.

We say that the boundary of a convex disc K is Ck smooth if it is a k-times
continuously differentiable simple closed curve in E2. We use the notation κ(x)
for the curvature of ∂K at x. If the boundary of K is C2 smooth, then at every
x ∈ ∂K there exists a unique outer unit normal vector ux ∈ S1 to ∂K.

For a convex disc K, integration on the boundary of K with respect to the one-
dimensional Hausdorff measure (the arc-length of ∂K) is denoted by

∫
∂K
· · · dx. In

the case that the boundary of K is C2 smooth and f(u) is a measurable function
on S1,

∫
S1 f(u)du =

∫
∂K

f(ux)κ(x)dx, (cf. formula 2.5.30 in [31]).
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Let x, y ∈ E2 be such that their distance does not exceed 2R. We define the
closed R-spindle [x, y]s,R of x and y as the intersection of all closed circular discs
of radius R that contain both x and y. The closed R-spindle of two points whose
distance is greater than 2R is defined to be the whole plane E2. The shape of the
closed spindle of two points whose distance is less than 2R resembles a convex lens
or a spindle, which explains its name. A set S ⊆ E2 is called R-spindle convex if
from x, y ∈ S it follows that [x, y]s,R ⊆ S. Spindle convex sets are also convex in
the usual linear sense. In this paper we restrict our attention to compact spindle
convex sets. We call a compact set S ⊂ E2 with nonempty interior an R-spindle
convex disc if it has the R-spindle convex property.

Below, we list those properties of spindle convex discs that are directly relevant
to our arguments. For more detailed information about spindle convexity we refer
to Bezdek et al. [6].

A compact convex set S is R-spindle convex if and only if it is the intersection
of (not necessarily finitely many) congruent closed circular discs of radius R (cf.
Corollary 3.4 on page 205 in [6]). If the closed circular disc BR + p contains an
R-spindle convex disc S and there is a point x ∈ ∂S such that also x ∈ ∂BR + p,
then we say that BR + p supports S at x. Let P be a convex R-disc-polygon, and
BR+p a circle supporting P at the set H = ∂P ∩(∂BR+p). Then H either consists
of only one point, called a vertex, or it consists of the points of a closed circular
arc, called a side (or edge) of P . It is clear that the number of edges of P equals
the number of vertices of P (except in the case that P is a circle of radius R); we
denote this number by f0(P ).

If S is an R-spindle convex disc with C2 smooth boundary, then κ(x) ≥ 1/R for
all x ∈ ∂S, and for every unit vector u ∈ S1, there exists a unique point x ∈ ∂S
such that u = ux; we denote this point by xu. We also note that if x ∈ ∂S, then
BR + x−R · ux supports S at x.

3. The limiting case

In this section we show how Theorems 1 and 2 imply the asymptotic formulas
(1), (2), and (3) of Rényi and Sulanke.

Let K be a (linearly) convex disc with C2 smooth boundary and κ(x) > 0 for

all x ∈ ∂K. Let κmin = min∂K κ(x) > 0. It follows from Mayer’s results (cf. (Ü4)

and (Ü5) on page 521 in [22], or for a more recent and more general reference see
also Theorem 2.5.4. in [31]) that K is R-spindle convex for all R ≥ R0 = 1/κmin.
For R ≥ R0 and n sufficiently large, we introduce the following notation

δRS (n) = E(A(K \ SRn )) · n 2
3 ,

δ(n) = E(A(K \Kn)) · n 2
3 ,

IRS =
3

√
2A2

3
· Γ
(

5

3

)∫
∂K

(
κ(x)− 1

R

) 1
3

dx,

I =
3

√
2A2

3
· Γ
(

5

3

)∫
∂K

κ
1
3 (x)dx,

with A = A(K).
We claim that (5) implies the asymptotic formula (2) of Rényi and Sulanke.
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Let ε > 0 be fixed. Then limR→∞ IRS = I yields that there exists R1(ε) > R0

such that

(10) 1− ε < IRS
I
< 1 + ε

for all R > R1(ε).
Elementary calculations show that there exists R2(ε) ≥ R0, depending only on

K and ε such that for all R > R2(ε),

(11)
A([p, q]s,R)

A([p, q]s,R0)−A([p, q]s,R)
< ε,

for any points p, q ∈ K.
Let DR

m denote an R-disc-polygon in K with vertices p1, . . . , pm indexed in the
cyclic order, and let Pm denote the (linear) convex hull of p1, . . . , pm. Note that
this is a polygon with vertices p1, . . . , pm. If R > R2(ε), then (11) yields

1 <
δ(n)

δRS (n)
= 1 +

E(A(SRn )−A(Kn))

E(A(K)−A(SRn ))

< 1 + sup
DRm⊂K,
2≤m≤n

A(DR
m)−A(Pm)

A(DR0
m )−A(DR

m)
< 1 + ε.(12)

Now assume that R > max{R1(ε), R2(ε)}. It is clear that for any such R, the
convergence limn→∞ δRS (n)/IRS = 1 yields that there exists n(R) such that

(13) 1− ε < δRS (n)

IRS
< 1 + ε

for all n ≥ n(R).
Thus, from (10), (12), (13), and from

δ(n)

I
=

δ(n)

δRS (n)
· δ

R
S (n)

IRS
· I

R
S

I
,

we obtain that

1− 3ε <
δ(n)

I
< 1 + 7ε

for all R > max{R1(ε), R2(ε)} and n > n(R), which proves that

lim
n→∞

δ(n)

I
= 1.

A similar argument shows that (6) implies the asymptotic formula (3) of Rényi
and Sulanke. Finally, formula (1) for the number of vertices follows by Efron’s
equality (31).

4. Caps of spindle convex discs

From now on we restrict our attention to the case when R = 1 and we omit R
from the notation. We use the simpler terms spindle convex and disc-polygon in
place of 1-spindle convex and 1-disc polygon, respectively. In particular, B = B1

denotes the unit disc. The R-spindle convex analogues of the following lemmas can
be obtained by simple scaling.

Let S be a spindle convex disc with C2 smooth boundary and assume that
κ(x) > 1 for all x ∈ ∂S. A subset D of S is a disc-cap of S if D = cl (S ∩ (B+ p)C)
for some point p ∈ E2. Note that in this case ∂B + p intersects ∂S in at most
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two points. (This follows, for example, from Theorem 2.5.4. in [31].) Thus, the
boundary of a nonempty disc-cap D consists of at most two connected arcs: one
arc is a subset of ∂S, and the other arc is a subset of ∂B + p. In order to define
the vertex and the outer normal of a disc-cap we need the following claim.

Lemma 1. Let S be a spindle convex disc with C2 smooth boundary and assume
that κ(x) > 1 for all x ∈ ∂S. Let D = cl(S ∩ (B + p)C) be a non-empty disc-cap of
S (as above). Then there exists a unique point x0 ∈ ∂S ∩ ∂D such that there exists
a t ≥ 0 with B + p = B + x0 − (1 + t)ux0

. We refer to x0 as the vertex of D and
to t as the height of D.

Proof. Pick any x ∈ ∂S∩∂D, and consider the vectors −→px and the outer unit normal
ux. We claim that there is a unique x for which −→px is a positive multiple of ux. The
existence follows from a simple continuity argument since the angles formed by the
two vectors have different orientations at the endpoints of ∂S ∩ ∂D. Uniqueness is
proved as follows. Suppose that both x1 6= x2 fulfil the requirements. Let ϕ be the
(positive) angle between ux1 and ux2 and denote by I the arc of ∂S between x1

and x2 (according to the positive orientation), and by ∆s the length of I. By the
spindle convexity of S, we obtain that x1 and x2 can be joined by a unit circular arc
in S. The length of this circular arc is clearly smaller then ∆s, on the other hand
it is larger than ϕ, and thus ∆s > ϕ. Using the assumption that the curvature of
∂S is strictly larger than 1, we obtain that

ϕ =

∫
I

κ(s)ds >

∫
I

ds = ∆s > ϕ,

a contradiction. �

Let D(u, t) denote the disc-cap with vertex xu ∈ ∂S and height t. Note that for
each u ∈ S1, there exists a maximal positive constant t∗(u) such that (B + xu −
(1+ t)u)∩S 6= ∅ for all t ∈ [0, t∗(u)]. Let V (u, t) = A(D(u, t)) and let `(u, t) denote
the arc-length of ∂D(u, t) ∩ (∂B + xu − (1 + t)u).

Lemma 2. Let S be a spindle convex disc with C2 boundary such that κ(x) > 1
for all x ∈ ∂S. Then for a fixed x ∈ ∂S, the following hold

(14) lim
t→0+

`(ux, t) · t−1/2 = 2

√
2

κ(x)− 1
,

and

(15) lim
t→0+

V (ux, t) · t−3/2 =
4

3

√
2

κ(x)− 1
.

Proof. Assume that x = (0, 0) and ux = (0,−1). Then, in a sufficiently small
open neighbourhood of the origin, ∂S is the graph of a C2 smooth function f(σ).
Taylor’s theorem yields that

(16) f(σ) =
κ(x)

2
σ2 + o(σ2), as σ → 0.

In the same open neighbourhood of the origin, the boundary of B + x− (1 + t)ux
is the graph of the function gt(σ) = t+ 1−

√
1− σ2. Simple calculation yields that



8 F. FODOR, P. KEVEI, AND V. VÍGH

the positive solution of the equation gt(σ) = f(σ) is

σ+ =

√
2

κ(x)− 1
· t1/2 + o(t1/2), as t→ 0+.

Clearly, `(ux, t) ∼ 2σ+ as t→ 0+ by the fact that the ratio of the lengths of an arc
and the corresponding chord tends to 1 as the length of the arc tends to 0.

Let σ− denote the negative solution of the equation gt(σ) = f(σ). Then

V (ux, t) =

∫ σ+

σ−

gt(σ)− f(σ)dσ

= 2

∫ σ+

0

[
t+

σ2

2
− κ(ux)

2
σ2 + o(σ2)

]
dσ

=
4

3

√
2

κ(x)− 1
· t3/2 + o(t3/2), as t→ 0+.

This finishes the proof of Lemma 2. �

Let x1, x2 ∈ S be two distinct points. Then there are exactly two disc-caps of
S, say D−(x1, x2) = cl (S ∩ (B + p−)C) and D+(x1, x2) = cl (S ∩ (B + p+)C) with
the property that x1, x2 ∈ ∂B + p− and x1, x2 ∈ ∂B + p+. Let V−(x1, x2) =
A(D−(x1, x2)) and V+(x1, x2) = A(D+(x1, x2)), respectively, and assume that
V−(x1, x2) ≤ V+(x1, x2).

Lemma 3. Let S be a spindle convex disc with C2 boundary and κ(x) > 1 for
all x ∈ ∂S. Then there exists a constant δ > 0, depending only on S, such that
V+(x1, x2) > δ for any two distinct points x1, x2 ∈ S.

Proof. We note that [x1, x2]s cannot cover S because of the C2 smoothness of ∂S
and the assumption that κ(x) > 1 for all x ∈ ∂S. Thus, by compactness, there
exists a constant δ > 0, depending only on S, such that A(S \ [x1, x2]s) > 2δ for any
two distinct points x1, x2 ∈ S. Now, the statement of the lemma readily follows
from the fact that S = D−(x1, x2) ∪D+(x1, x2) ∪ [x1, x2]s. �

Let K be a convex disc with C2 boundary and with the property that κ(x) > 0
for all x ∈ ∂K. Let κ0 > 0 denote the minimum of the curvature of ∂K. Then there
exists an ε0 > 0, depending only on K, with the property that for any x ∈ ∂K
the (unique) circle of radius 1/κ0 that is tangent to ∂K at x supports K in a

neighbourhood of radius ε0 of x. Moreover, Mayer proved (see statement (Ü5) on
page 521 in [22], or for a more recent and more general reference see also Theorem
2.5.4. in [31]) that in this case the tangent circles of radius 1/κ0 of ∂K not only
locally support K but also contain K and thus they globally support K.

Let S be a spindle convex disc with C2 smooth boundary and with the property
that κ(x) > 1 for all x ∈ ∂K. Then, by the above, there exists 0 < %̂ < 1, depending
only on S, such that S has a supporting circular disc of radius %̂ at each x ∈ ∂S.
Thus, Lemma 2 yields that there exists a 0 < t0 ≤ %̂ with the property that for any
u ∈ S1

(17) `(u, t) ≤ 4

√
2%̂

1− %̂
t
1
2 for t ∈ [0, t0].
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A convex disc K has a rolling ball if there exists a real number % > 0 with the
property that any x ∈ ∂K lies in some closed circular disc of radius % contained
in K. Hug proved in [19] that the existence of a rolling ball is equivalent to the
exterior unit normal being a Lipschitz function on ∂K. This implies that if the
boundary of K is C2 smooth, then K has a rolling ball. We remark that this last
fact was already observed by Blaschke [7].

It follows from the assumption that the boundary of S is C2 smooth that there
exists a rolling ball for S with radius 0 < % < 1. The existence of the rolling ball
and (15) yield that there exists 0 < t̂ < % such that for any u ∈ S1

(18) V (u, t) ≥ 1

2

(
4

3

√
2%

1− %

)
t
3
2 for t ∈ [0, t̂].

Note that although the statements in Lemma 2 are not uniform in u, both (17)
and (18) are uniform in u.

5. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. We essentially use the method invented by Rényi and Sulanke
[27]. Note that it is enough to prove the theorem for R = 1, from that the statement
follows by a scaling argument. Thus, from now on we assume that R = 1, and omit
R from the notation.

Let A = A(S). First, observe that the pair of random points x1, x2 determine
an edge of Sn if and only if at least one of the disc-caps D−(x1, x2) and D+(x1, x2)
does not contain any other points from Xn. Thus

E(f0(Sn)) =

(
n

2

)
Wn,

where

(19) Wn =
1

A2

∫
S

∫
S

[(
1− V−(x1, x2)

A

)n−2

+

(
1− V+(x1, x2)

A

)n−2
]

dx1dx2.

Note that if all points of Xn fall into the closed spindle spanned by x1 and x2, then
x1 and x2 contribute two edges to Sn (since in this case convsXn = [x1, x2]S), and
accordingly this event is counted in both terms in the integrand of (19).

Lemma 3 yields that

lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V+(x1, x2)

A

)n−2

dx1dx2

≤ lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S

e−
δ
A (n−2)dx1dx2

= lim
n→∞

n−
1
3

(
n

2

)
e−

δ
A (n−2) = 0.

Thus, the contribution of the second term of (19) is negligible, hence, in what
follows, we will consider only the first term. Note that a similar argument yields
that in the first term of (19) it is enough to integrate over pairs of random points
x1, x2 such that V−(x1, x2) < δ. Let 1(·) denote the indicator function of an event.
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Then

(20) lim
n→∞

E(f0(Sn))n−
1
3

= lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

1(V−(x1, x2) < δ)dx1dx2.

Now, we re-parametrize the pair (x1, x2) as follows. Let

(21) (x1, x2) = Φ(u, t, u1, u2),

where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u) are chosen such that

D(u, t) = D−(x1, x2),

and
(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2).

Note that u1 and u2 are the unique outer unit normal vectors of ∂B+xu−(1+t)u
at x1 and x2, respectively. This yields that, for fixed u and t, both u1 and u2 are
in the same arc of length `(u, t) in S1. We denote this unit circular arc by L(u, t).

Note that since V−(x1, x2) < δ, D−(x1, x2) is uniquely determined by Lemma 3.
Now, the uniqueness of the vertex and height of a disc-cap guarantees that Φ is
well-defined, bijective, and differentiable (see the Appendix) on a suitable domain
of (u, t, u1, u2). To continue the estimate of Wn we need the Jacobian of the trans-
formation Φ. This calculation can be found in Santaló’s paper [30], but for the sake
of completeness, we give a sketch in the Appendix.

We obtain that the Jacobian of Φ satisfies

(22) |JΦ| =
(

1 + t− 1

κ(xu)

)
|u1 × u2|.

We note that |u1 × u2| equals the sine of the length of the unit circular arc
between x1 and x2 on the boundary of D(u, t). Also note that there exists t1 > 0
with the property that V (u, t) < δ for all 0 ≤ t ≤ t1 and for all u ∈ S1.

Now, (20) and (22) yield that

(23) lim
n→∞

E(f0(Sn))n−
1
3

= lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S1

∫ t1

0

∫
L(u,t)

∫
L(u,t)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
|u1 × u2|du1du2dtdu.

Integration by u1 and u2 yields

(23) = lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

0

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu.

Now, we will split the domain of integration with respect to t into two parts. Let
h(n) = (c lnn/n)2/3, where c is a positive (absolute) constant to be specified later.
From (18) it follows that there exists n0 ∈ N and γ1 > 0, depending only on S,
such that if n > n0, then h(n) < t1, and V (u, t) > γ1 · h(n)3/2 for all h(n) ≤ t ≤ t1
and for all u ∈ S1.
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Lemma 4. Let h(n) be defined as above. Then

lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

h(n)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu = 0.

Proof. Note that t1 ≤ 2π, and there exists a universal constant γ2 > 0 such that
`(u, t)− sin `(u, t) ≤ γ2 for all 0 ≤ t ≤ t1 and u ∈ S1. Hence, for any fixed u ∈ S1

and any n > n0, it holds that∫ t1

h(n)

(
1− V (u, t)

A

)n−2(
1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dt

≤ 3γ2

∫ t1

h(n)

(
1− γ1h(n)3/2

A

)n−2

dt

≤ 3γ2

∫ t1

0

(
1− γ1c(lnn/n)

A

)n−2

dt

≤ 6γ2n
− cγ1A .

Now, let c > 5A/(3γ1). Then

lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

h(n)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu

≤ γ2
24π

A2
lim
n→∞

n−
1
3

(
n

2

)
n−

cγ1
A = 0.

�

Now, for n > n0 we define

(24) θn(u) = n−
1
3

(
n

2

)∫ h(n)

0

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dt

and so

(25) lim
n→∞

E(f0(Sn)) · n− 1
3 = lim

n→∞

2

A2

∫
S1

θn(u) du.

We recall formula (11) from [9] that states the following. For any β ≥ 0, ω > 0
and α > 0 we have that

(26)

∫ g(n)

0

tβ (1− ωtα)
n

dt ∼ 1

αω
β+1
α

· Γ
(
β + 1

α

)
· n−

β+1
α ,

as n→∞, assuming (
(β + α+ 1) lnn

αωn

) 1
α

< g(n) < ω−
1
α ,

for sufficiently large n.
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Formula (17) implies that there exists γ3 > 0 such that `(u, t)−sin `(u, t) < γ3t
3/2

for all 0 < t < t0 and u ∈ S1. We recall that 1 + t− 1/κ(xu) < 3 for all u ∈ S1 and

0 ≤ t ≤ t1. Now (18) and (26) with α = β = 3/2 and ω = (2/(3A))
√

2ρ/(1− ρ)
yield that there exists γ4 > 0, depending only on S, such that θn(u) < γ4 for all
u ∈ S1 and sufficiently large n. Thus, Lebesgue’s dominated convergence theorem
implies that

(27) lim
n→∞

E(f0(Sn)) · n− 1
3 =

2

A2

∫
S1

lim
n→∞

θn(u) du.

Let u ∈ S1 and ε ∈ (0, 1). It follows from Lemma 2 that there exists 0 < tε < t1
such that

(28) (1− ε)4

3

(
2

κ(xu)− 1

) 3
2

t
3
2 ≤ `(u, t)− sin `(u, t) ≤ (1 + ε)

4

3

(
2

κ(xu)− 1

) 3
2

t
3
2

and

(29) (1− ε)4

3

√
2

κ(xu)− 1
t
3
2 ≤ V (u, t) ≤ (1 + ε)

4

3

√
2

κ(xu)− 1
t
3
2 ,

for any t ∈ (0, tε).
Now (28) and (29) yield that

(30) lim
n→∞

θn(u) =
4
√

2

3

(
1

κ(xu)− 1

) 3
2

×

κ(xu)− 1

κ(xu)
lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
3
2 dt

+ lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
5
2 dt

 .
Note that (26) with α = 3/2, β = 5/2 implies that the second term of (30) is 0.

Now, (26) yields that

lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t
3
2

)n−2

t
3
2 dt

=
2

3

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.

Thus,

lim
n→∞

θn(u) =
8
√

2

9

(
1

κ(xu)− 1

) 3
2 κ(xu)− 1

κ(xu)

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.
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Therefore,

lim
n→∞

Ef0(Sn) · n− 1
3 =

2

A2

∫
S1

lim
n→∞

θn(u)du

=
3

√
2

3A
Γ

(
5

3

)∫
S1

1

κ(xu)
(κ(xu)− 1)

1
3 du

=
3

√
2

3A
Γ

(
5

3

)∫
∂S

(κ(x)− 1)
1
3 dx.

To compute the expectation of the missed area by Sn, we use the following
identity

(31) E(f0(Sn)) =
nE(A(S \ Sn−1))

A
.

(31) is the spindle convex analogue of Efron’s identity [12]. The proof of (31) is as
follows.

E(f0(Sn)) =

n∑
1

P(xi is a vertex of Sn) = nP(x1 is a vertex of Sn)

= nP(x1 /∈ convs (x2, . . . , xn)) =
nE(A(S \ Sn−1))

A

Now, combining (4) and (31) yields (5), thus completing the proof of Theorem 1. �

Now we turn to the proof of Theorem 2. The argument is based on ideas devel-
oped by Rényi and Sulanke in [28], and it is similar to the argument of the proof
of Theorem 1.

We start with a refinement of Lemma 2 under the hypothesis that the boundary
of S is C5 smooth and that κ(x) > 1 for all x ∈ ∂S.

Lemma 5. Let S be a spindle convex disc with C5 smooth boundary and with the
property that κ(x) > 1 for all x ∈ ∂S. Then uniformly in u ∈ S1

`(u, t) = l1t
1/2 + l2t

3/2 +O(t5/2) as t→ 0+, and(32)

V (u, t) = v1t
3/2 + v2t

5/2 +O(t7/2) as t→ 0+,(33)

with

l1 = l1(u) = 2

√
2

κ(xu)− 1

l2 = l2(u) =
23/2

(
15b(xu)2 − (κ(xu)− 1)(1 + 6(c(xu)− 1/8)− κ(xu))

)
3(κ(xu)− 1)7/2

v1 = v1(u) =
4

3

√
2

κ(xu)− 1

v2 = v2(u) =
25/2

(
5b(xu)2 − 2(c(xu)− 1/8)(κ(xu)− 1)

)
5(κ(xu)− 1)7/2

,

where b(x) and c(x) are functions depending only on S and x.
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Proof. With the same notation and choice of coordinate system as in the proof of
Lemma 2, Taylor’s theorem and the C5 smoothness of the boundary yield that in
a sufficiently small neighbourhood of the origin

f(σ) =
κ

2
σ2 + bσ3 + cσ4 +O(σ5) as σ → 0,

uniformly in u ∈ S1. We suppress the notation of dependence of the coefficients
on u for brevity. Let gt(σ) = t+ 1−

√
1− σ2. From the equation f(σ) = gt(σ) we

obtain

t =
κ− 1

2
σ2 + bσ3 +

(
c− 1

8

)
σ4 +O(σ5) as σ → 0,

and routine calculations yield that the positive and negative solutions of the equa-
tion f(σ) = gt(σ) are

σ+ = σ+(t) = d1t
1/2 + d2t+ d3t

3/2 +O(t2) as t→ 0+,

σ− = σ−(t) = −(d1t
1/2 − d2t+ d3t

3/2) +O(t2) as t→ 0+,
(34)

where

d1 =

√
2

κ− 1
,

d2 = − 2b

(κ− 1)2
,

d3 =

√
2
(
5b2 − 2(c− 1/8)(κ− 1)

)
(κ− 1)7/2

.

Now, using that `(u, t) = arcsinσ+ + arcsin |σ−| and that V (u, t) =
∫ σ+

σ−
[gt(σ) −

f(σ)]dσ, a short calculation finishes the proof. �

Proof of Theorem 2. Let L = Per(S) for brevity. Let x1, x2 ∈ S, and let i(x1, x2)
denote the length of the shorter unit circular arc joining x1 and x2. We define Un
with

E(Per(S)− Per(Sn))

= L−
(
n

2

)
E [1(x1, x2 is an edge of Sn) · i(x1, x2)] =: L−

(
n

2

)
Un.

Using the same notation as in the proof of Theorem 1, similar arguments show that

Un =
1

A2

∫
S

∫
S

[(
1− V−(x1, x2)

A

)n−2

+

(
1− V+(x1, x2)

A

)n−2
]
i(x1, x2) dx1dx2,

and

lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V+(x1, x2)

A

)n−2

i(x1, x2)dx1dx2 = 0,

and also that

lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

× 1(V−(x1, x2) > δ)i(x1, x2)dx1dx2 = 0.
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Now, the integral transformation Φ in (21) yields that

1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

1(V−(x1, x2) ≤ δ)i(x1, x2)dx1dx2

=
1

A2

∫
S1

∫ t1

0

∫
L(u,t)

∫
L(u,t)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
· |u1 × u2| arccos〈u1, u2〉du1du2 dtdu,

where arccos〈u1, u2〉 is the length of the arc of S1 spanned by u1 and u2. Routine
calculations show that∫

L(u,t)

∫
L(u,t)

|u1 × u2| arccos〈u1, u2〉du1du2

= 2 (2− 2 cos `(u, t)− `(u, t) sin `(u, t)) .

Let ε > 0 be arbitrary. According to Lemma 5 we may choose t2 > 0 such that
for all t ∈ (0, t2) and for all u ∈ S1∣∣∣`(u, t)− (l1t

1/2 + l2t
3/2)

∣∣∣ ≤ ε

2
t3/2,∣∣∣V (u, t)− (v1t

3/2 + v2t
5/2)

∣∣∣ ≤ εt5/2.(35)

For any ε′ > 0 for sufficiently small x it holds that∣∣∣∣2 (2− 2 cosx− x sinx)−
(
x4

6
− x6

90

)∣∣∣∣ ≤ ε′x6,

which, together with (35), implies that there exists t3 > 0 with the property that
for any t ∈ (0, t3) and for all u ∈ S1

(36)

∣∣∣∣2 (2− 2 cos `(u, t)− `(u, t) sin `(u, t))− 1

6

[
l41t

2 +

(
4l31l2 −

l61
15

)
t3
]∣∣∣∣ ≤ ε

6
t3.

The second order Taylor expansion of the function log(1 − y) at y = 0 yields

that there exists t4 > 0 such that for 0 < y ≤ nminu∈S1 v1(u)t
2/3
4 /A and for any

c ∈ [−a1, a1], with a1 = A2/3 maxu∈S1

∣∣∣v2(u)/v
5/3
1 (u)

∣∣∣, and for all u ∈ S1

(37) e−ye−(c+ε)y5/3n−2/3

≤
[
1− y

n
− c

( y
n

)5/3
]n
≤ e−ye−cy

5/3n−2/3

and

(38) e−(1+ε)y ≤
[
1− y

n
− c

( y
n

)5/3
]n
≤ e−(1−ε)y.

Let δ = δ(ε) be small enough such that for all |y| ≤ δ

(39) e−y ≤ 1− (1− ε)y,

and let n0 be large enough such that

(40) max
u∈S1

|v2(u)|A2/3

v
5/3
1 (u)

≤ n1/3
0 δ.
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Finally, let t′ := min{t2, t3, t4}. A similar argument as in the proof of Lemma 4
yields that

lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S1

∫ t1

t′

(
1− V (u, t)

A

)n−2

× 2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ(xu)

)
dtdu = 0.

Thus we need to determine the limit

lim
n→∞

n2/3

[
L−

(
n

2

)
1

A2

∫
S1

∫ t′

0

(
1− V (u, t)

A

)n
× 2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ(xu)

)
dtdu

]
.

By Lemma 5, for sufficiently small t it holds uniformly in u ∈ S1 that

1 ≤
(

1− V (u, t)

A

)−2

≤ 1 +
3 maxu∈S1 v1(u)

A
t3/2.

Therefore changing the exponent from n− 2 to n in the inner integral above does
not affect either the main or the first order term.

By (35) and (36), we have that

θ̂n(u) :=
1

A2

∫ t′

0

(
1− V (u, t)

A

)n
2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ

)
dt

≤ 1

6A2

∫ t′

0

(
1− v1

A
t3/2 − v2 − ε

A
t5/2

)n
×
[
l41

(
1− 1

κ

)
t2 +

(
l41 +

(
1− 1

κ

)(
4l31l2 −

l61
15

)
+ ε

)
t3
]

dt.

To shorten the notation put
(41)
D1 = l41

(
1− κ−1

)
, D1D

ε
2 = l41 +

(
1− κ−1

) (
4l31l2 − l61/15

)
+ ε, and D2 = D0

2.

Letting t′′ = (t′)3/2v1/A, the substitution t3/2v1/A = y/n yields

θ̂n(u) ≤ D1

6A2

∫ nt′′

0

[
1− y

n
− v2 − ε

A

(
Ay

nv1

)5/3
]n(

Ay

nv1

)4/3

×

[
1 +Dε

2

(
Ay

nv1

)2/3
]

2

3
y−1/3

(
A

nv1

)2/3

dy

=
D1

9n2v2
1

∫ nt′′

0

[
1− y

n
− (v2 − ε)A2/3

v
5/3
1

( y
n

)5/3
]n [

1 +Dε
2

(
Ay

nv1

)2/3
]
ydy

=: In + Jn,

where In stands for the integral over the interval [0, n1/5], and Jn stands for the
integral over the interval [n1/5, t′′n]. Using (38), for Jn we obtain that

Jn ≤
D1

9n2v2
1

∫ nt′′

n1/5

e−(1−ε)y 2nt′′dy ≤ D1

9v2
1

e−(1−ε)n1/5

,
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which tends to 0 faster than any polynomial of n. For In, using (37), (39) and (40)
for n ≥ n0 we have that

In ≤
D1

9n2v2
1

∫ n1/5

0

e−y exp

{
− (v2 − ε)A2/3

v
5/3
1

y5/3

n2/3

}[
1 +Dε

2

(
Ay

nv1

)2/3
]
ydy

≤ D1

9n2v2
1

∫ n1/5

0

e−y

(
1− (1− ε) (v2 − ε)A2/3

v
5/3
1

y5/3

n2/3

)[
1 +Dε

2

(
Ay

nv1

)2/3
]
ydy

≤ D1

9n2v2
1

∫ n1/5

0

e−y

[
1 + n−2/3A2/3

(
Dε

2

v
2/3
1

y2/3 − (1− ε)v2 − ε
v

5/3
1

y5/3 + ε

)]
ydy

≤ D1

9n2v2
1

[
1 + n−2/3A2/3

(
Dε

2

v
2/3
1

Γ(8/3)− (1− ε)v2 − ε
v

5/3
1

Γ(11/3) + 2ε

)]
,

where in the last inequality we extended the domain of the integration, and used
the definition of the Γ( · ) function.

We may obtain a lower estimate for θ̂n(u) in a similar way, and as ε > 0 was

arbitrary, we have that θ̂n(u) asymptotically equals to the last upper bound with
ε = 0. Since D1/(18v2

1) = κ−1 and
∫
S1 κ

−1(xu)du = L, we have that

lim
n→∞

E(L− Per(Sn)) · n2/3 = lim
n→∞

n2/3

(
L−

(
n

2

)∫
S1

θ̂n(u)du

)
=

∫
S1

D1A
2/3

18v2
1

(
D2

v
2/3
1

Γ(8/3)− v2

v
5/3
1

Γ(11/3)

)
du.

Substituting to the formula above the values of D1, D2 from (41) and l1, l2, v1, v2

from Lemma 5 we obtain that

D1A
2/3

18v2
1

(
D2

v
2/3
1

Γ(8/3)− v2

v
5/3
1

Γ(11/3)

)

=
A2/3Γ(8/3)

κ

(3/2)2/3
[
60b2 + (κ− 1)

(
5(κ− 1)2 + 9(κ− 1) + 3− 24c

)]
10(κ− 1)8/3

,

and thus

lim
n→∞

E(L− Per(Sn)) · n2/3

=
(12A)2/3Γ(2/3)

36

∫
∂S

(κ− 1)
(
24c− 5(κ− 1)2 − 9(κ− 1)− 3

)
− 60b2

(κ− 1)8/3
dx.(42)

To finish the proof of Theorem 2, we must show that the constant in (42) is the
same as in (6). Let r(s) be the arc-length parametrization of ∂S. It is not difficult
to verify that

b(r(s)) =
1

6

〈
r′′′(s),

r′′(s)

κ(r(s))

〉
,

c(r(s)) =
1

24

(〈
r(4)(s),

r′′(s)

κ(r(s))

〉
− 4κ(r(s))〈r′′′(s), r′(s)〉

)
.

After substituting these formulas into (42), some tedious but straightforward cal-
culations yield (6). �
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6. The case of the unit circular disc

In this section we discuss the case, when S = BR. Note that in the hypothe-
ses of Theorems 1 and 2 it is assumed that κ(x) > 1/R for all x ∈ ∂S. This
assumption no longer holds in the case that S = BR, and therefore we may not
use Lemma 3. However, the arguments of the proofs of Theorems 1 and 2 can be
modified slightly to yield a proof of Theorem 3. Below we provide the outline of
the proof of Theorem 3 and leave the technical details to the interested reader.

Proof of Theorem 3. As in the previous section, we may and do assume that R = 1.
First note that by Efron’s identity (31), it is enough to prove (7) and (9). Also

note that for any u ∈ S1 and 0 ≤ t ≤ 2 simple calculations yield

(43) `(u, t) = `(t) = 2 arcsin

√
1− t2

4
,

and

(44) V (u, t) = V (t) = t

√
1− t2

4
+ 2 arcsin

t

2
.

Let Wn and Un be defined as in the proofs of Theorems 1 and 2, respectively, and
let Φ and L(t) = L(u, t) be defined as in the proof of Theorem 1. Then

Wn =
1

π2

∫
S1

∫ 2

0

∫
L(t)

∫
L(t)

(
1− V (t)

π

)n−2

t|u1 × u2|du1du2dtdu,

Un =
1

π2

∫
S1

∫ 2

0

∫
L(t)

∫
L(t)

(
1− V (t)

π

)n−2

t arccos〈u1, u2〉|u1 × u2|du1du2dtdu.

Integration by u1, u2 and u yields

Wn =
4

π

∫ 2

0

(
1− V (t)

π

)n−2

t(`(t)− sin `(t))dt,

Un =
4

π

∫ 2

0

(
1− V (t)

π

)n−2

t(2− 2 cos `(t)− `(t) sin `(t))dt.

Formulas (43), (44) and the substitution t = 2 sin(σ/2) yield

Wn =
4

π

∫ π

0

sinσ (π − σ − sinσ)

(
1− sinσ + σ

π

)n−2

dσ ,

Un =
4

π

∫ π

0

sinσ (2 + 2 cosσ − sinσ(π − σ))

(
1− sinσ + σ

π

)n−2

dσ.

(45)

Now, by similar arguments as in the proofs of Theorems 1 and 2, we obtain that

Wn ∼
π2

n2
,

Un ∼
4π

(n− 2)2

[
1− 1

n− 2

(
π2

4
+ 3

)]
+O(n−3),

which yield the statements of Theorem 3. �
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7. Appendix

In this section we sketch the calculation of the Jacobian of the transformation Φ
defined in (21). We remark that JΦ was calculated by Santaló in [30].

Let r : [0, 2π) → ∂S be a parametrization of ∂S such that the outer normal
ur(α) = (cosα, sinα). We introduce α, φ1 and φ2 such that u = (cosα, sinα),
u1 = (cosφ1, sinφ1) and u2 = (cosφ2, sinφ2). Clearly, dudu1du2 = dαdφ1dφ2.

To make the calculation more apparent, we add an extra step: let (v, w) be
the centre of the unit circle that defines D−(x1, x2) (here v, w ∈ R). Then x1 =
(v + cosφ1, w + sinφ1) and x2 = (v + cosφ2, w + sinφ2), and by differentiation we
obtain that

dx1dx2 = |(sinφ1 cosφ2 − sinφ2 cosφ1)|dφ1dφ2dvdw.

Next, observe that (v, w) = (r1(α)− (1 + t) cosα, r2(α)− (1 + t) sinα), thus

dvdw = |(−r′1(α) sinα+ r′2(α) cosα− (1 + t))|dαdt,

and hence

dx1dx2 = |(−r′1(α) sinα+ r′2(α) cosα− (1 + t)) sin(φ1 − φ2)|dφ1dφ2dαdt.

Using the special choice of r(α) one can see that −r′1(α) sinα + r′2(α) cosα =
1/κ(r(α)), and by assumption κ > 1, thus

|(−r′1(α) sinα+r′2(α) cosα−(1+t)) sin(φ1−φ2)| = (1+t−1/κ(r(α))) sin(|φ1−φ2|).
We note that |u1 × u2| equals the sine of the length of the unit circular arc

between x1 and x2 on the boundary of D(u, t), that is, sin(|φ1 − φ2|) = |u1 × u2|,
which proves (22).
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