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The optical constants, n and k, of three transition metals (Cr, Co, and Pd) were determined from the

measured reflection electron energy-loss spectroscopy (REELS) spectra, covering the spectral

energy range from visible to vacuum ultraviolet. To do this, a spectral data analysis technique [Xu

et al., Phys. Rev. B 95, 195417 (2017)], which combines a sophisticated Monte Carlo simulation

for modelling the experimental REELS spectrum and the simulated annealing algorithm for the

determination of the true energy loss function (ELF) was adopted. The validity of the obtained

ELFs was discussed by comparing with the previous data derived by optical methods and by apply-

ing the oscillator strength and the perfect screening-sum rules. Besides, the consistency of the cal-

culated data was evaluated for three in situ measurements for each sample at three primary

energies. The complex dielectric function, the refractive index n and the extinction coefficient k
were then derived from the obtained ELF via the analytical Kramers-Kronig relation. Published by
AIP Publishing. https://doi.org/10.1063/1.5012013

I. INTRODUCTION

The optical constants and the dielectric function are

defined by the response of the electrons of a solid to an

external electric field. Such information has fundamental

importance in both theoretical studies and practical applica-

tions of materials. To measure the optical properties of sol-

ids, typical sources of external fields are supplied either by

light beam or by monochromatic electrons.1,2 Three of the

most widely used optical methods with a light beam are

reflection spectroscopy, absorption spectroscopy and spec-

troscopic ellipsometry. These methods are based on Fresnel

relations for the reflection and transmission of radiation at a

flat and smooth interface between two media. The corre-

sponding commercial equipment is available in many labo-

ratories. However, the measurements are sensitive to

surface roughness and surface contamination, while they

are usually performed under atmospheric conditions, where

surface cleanliness is not guaranteed. Therefore, the accu-

racy of the optical constants obtained by reflection or ellips-

ometry measurements is limited. For example, the accuracy

of the optical properties of Cr can be strongly influenced in

an optical measurement, because of its easy oxidizing prop-

erty. In addition, the energy region and the range of the

measured optical constants are directly constrained by the

light source, where photon energies are usually below

6.5 eV. Further investigations at higher photon energies,

like for example, in the vacuum ultraviolet (VUV) region,

would require complex facilities, such as, a synchrotron

radiation source and an ultra-high vacuum (UHV), which

makes the laboratory measurement difficult. These draw-

backs can be overcome by applying electron probe techni-

ques, such as, electron energy-loss spectroscopy (EELS).

EELS is routinely carried out under UHV conditions and is

not as sensitive to the surface roughness as the optical

reflection or ellipsometry experiment. Being the intrinsic

property of a sample, the optical constants are independent

of the primary energy of an EELS spectrum. Therefore, the

optical constants of a solid can be determined from a single

EELS spectrum measured at one incident energy, where the

energy loss corresponds to the photon energy of the

obtained optical constants.

Historically, firstly, the EELS at the transmission mode

was studied3–5 for extracting the optical data. Since transmis-

sion EELS requires very high incident beam energy (tens or

hundreds of keV) and a very thin (less than 200 nm) and

free-standing film sample, reflection EELS (REELS) has

attracted more interest for its simplicity of measurement. In

REELS, the typical primary energy of the electron beam is

about thousands of eV. Usually, the surface chemical analy-

sis techniques, such as, x-ray photoelectron spectroscopy and

Auger electron spectroscopy, can also be easily integrated

into the experimental setup. In addition, there is no special

requirement for sample preparation. Despite the merits of

REELS, one main issue of the technique is about the quanti-

tative interpretation of the measured spectrum which is more

complex than the case of the transmission EELS. At energies

about keV, and under the oblique incidence and detectiona)Author to whom correspondence should be addressed: zjding@ustc.edu.cn

0021-8979/2018/123(4)/043306/11/$30.00 Published by AIP Publishing.123, 043306-1

JOURNAL OF APPLIED PHYSICS 123, 043306 (2018)



geometry of experimental configuration, the surface excitation

effect of electron inelastic scattering and multiple scattering

effects should be significant, which complicate to a great

extent the theoretical modeling of a REELS spectrum related

to optical data. To derive the photon energy (DE ¼ hx) or fre-
quency, and x-dependent optical constants from a measured

REELS spectrum, it is necessary to establish an accurate theo-

retical model of the dielectric function eðxÞ, or specifically,
the bulk energy loss function (ELF), Im½1=eðxÞ, from the

REELS spectrum.

To our knowledge, the first attempt to extract optical con-

stants from REELS spectra was performed by Ohno,6 where

as a coarse approximation, i.e., the ELF being proportional to

the REELS spectral intensity was assumed. Later, many

works7–15 have been done on this issue. As was mentioned

before, an accurate description of a REELS spectrum requires

careful consideration on two aspects, namely the surface exci-

tation effect of electron inelastic scattering and multiple scat-

tering effects for both electron inelastic and elastic scattering

processes. By assuming homogeneous scattering properties of

a solid, a formula was derived by Tougaard and

Chorkendorff,16 which allows determination of the energy

loss distribution of a single inelastic scattering from an EELS

spectrum. This algorithm was adopted by several authors7–9,15

for removing the multiple scattering effect, although the

homogeneous sample assumption is not fulfilled for the

REELS experiment because of the existence of surface excita-

tions. The REELS spectrum was analytically expressed as a

multi-convolution of a single inelastic scattering distribution

for bulk excitation, i.e., the differential inverse inelastic mean

free path (DIIMFP), by excluding the elastic scattering. To

account for the elastic scattering effect, a modification was

then made10,11 by simply applying a scaling factor to the

Landau formulation, which is called recently as the extended

Landau method. In this way, an effective ELF with ambiguous

physical meaning, which in fact embodies both the features of

bulk and surface excitations, can be obtained. To further deal

with the surface excitation problem, Werner has introduced

two components,12,17,18 i.e., a bulk and a surface energy loss

distribution function, into a single inelastic scattering distribu-

tion. Apart from the homogenous sample assumption,16

Werner’s algorithm also requires pre-knowledge of the elec-

tron inelastic mean free path (IMFP) and the surface excita-

tion parameter (SEP) as input parameters, which implies

logical contradiction if the algorithm is not performed self-

consistently, since such parameters should be determined by

the ELF of the sample. A more reasonable formula relating

the ELF and the DIIMFP of a sample was derived by Yubero

and Tougaard (YT-model).19,20 Using this technique, the opti-

cal constants of Fe, Pd and Ti were recently studied.15 The

accuracy of the YT-model is, however, questionable due to

two main assumptions of the model. The first assumption lies

in the procedure to determine the effective single scattering

cross-section by employing Tougaard and Chorkendorff’s

algorithm,16 where the extracted cross-section is not strictly

the single scattering cross-section taken into account for a

homogenous sample. Secondly, the electron trajectory was

assumed to be of V-shape,21 where only a single elastic scat-

tering event happens along the trajectory. Most importantly,

all these works that attempted to describe a REELS spectrum

with analytical formulas cannot provide absolute values of

optical constants. A scaling procedure is always required to

determine the absolute value by resorting to either the perfect-

screening (ps)- sum rule or/and the oscillator-strength (f)- sum
rule, which are used in a similar sense as a normalization pro-

cedure. Although the optical constants obtained by the YT-

model behave satisfactorily in reproducing the cross-sections

derived from the measured REELS spectra at several primary

energies,22–24 we will show that the evaluation of the f-sum
rule has poor agreement with the theoretical expectation.

As a special data analysis method of the measured

REELS spectrum, Da et al. have developed a reverse Monte

Carlo (RMC) technique14 to obtain the energy loss function

and the optical constants of the target materials. The Monte

Carlo (MC) method was employed to accurately account for

the elastic and multiple scattering effects, and the surface

excitation effect was also partially included with an extra

term. Mott’s cross-section25,26 and a dielectric functional

approach were used for the description of electron elastic scat-

tering and inelastic scattering, respectively. As an example,

and showing the virtue of the model, the optical constants of

SiO2 in absolute values were then obtained in their work with

acceptable errors, i.e., 14.72% and 0.9%, respectively, for

the f- and ps-sum rules. The relatively poor f-sum rule value

was mostly attributed to a rough treatment for the surface

excitation, which was partially accounted for by simply add-

ing a surface ELF term, Im½1=ðeþ 1Þ, to the bulk excitation
distribution, which is proportional to the bulk ELF, Im½1=e.
This approximation had been demonstrated to be poor by

Yubero and Tougaard,27 but the work of Da et al.14 has indi-
cated that the RMC method by a self-consistent computation

of optical constants from an experimental spectrum can, in

principle, work quite reasonably to present an absolute value

without the help of the sum rule normalization procedure.

Recently, the RMC method was further improved by a

more exact physical modeling of the surface effect,28,29

where the inhomogeneous surface excitation for electron

inelastic scattering in a vacuum and a sample near the sur-

face was considered with a depth dependent DIIMFP by a

semi-classical approach.30,31 The method has been then suc-

cessfully applied to determine the absolute values of the

ELFs of two transition metals (Fe28 and Ni29), where the

sum rule check was evaluated with very good agreement

with the theoretical values. In analogy to the mature tech-

nique of optical methods, the newly developed RMC method

can directly and rather accurately provide absolute values of

the desired optical constants from the measured REELS

spectra, where no artificial scaling factor is employed.

In this work, the energy loss function and the optical

constants of chromium, cobalt and palladium were deter-

mined with the help of the newly developed RMC method in

the photon energy range of 0–120 eV. Comparisons were

made between the present results and those by other models.

To verify the reliability and the consistency of the present

method, in situ measurements of REELS spectra for each

sample at three primary energies were performed. The accu-

racy of the ELF and optical constant calculations was
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verified by evaluating the oscillator-strength f-sum rule in

two forms and the perfect screening, ps-sum rule.

II. EXPERIMENT

The three transition metals (Cr, Co, Pd) were prepared as

polycrystalline sheets, which were mechanically polished

before being moved to the measurement chamber. REELS

spectra of the Cr and Co samples were recorded at primary

electron energies of 1000, 2000 and 3000 eV, and those of the

Pd sample were recorded at primary electron energies of

2000, 3000 and 4000 eV in an energy loss range of 0–120 eV,

by a home-built electron spectrometer (ESA-31) in

ATOMKI.32 The sample surface was cleaned with Arþ ion

etching at 3 keV with the beam intensity of 40lA/cm2 for

1–2min before each measurement. The incident angle of the

Arþ ion beam was 40 relative to the surface normal. The ana-

lyzer works in a fixed retardation ratio mode with a relative

energy resolution of 5 103. In the present experiment, pass

energies of the hemispherical electron analyzer were around

100 eV, and in this way, the analyzer energy resolution was

about 0.5 eV. The full widths at half maximum, being the con-

volution of the analyzer and the electron source generated

widening of the elastic peak, were around 0.6–0.7 eV. The

REELS spectra were recorded with electron incident and exit

angles of 50 and 0 with respect to the surface normal of the

sample. The energy calibration was done with high accuracy

with the help of XPS using atomic standards of Cu, Ag, and

Au with the binding energy values of photoelectron lines of

Cu 2p3/2 at 932.67 eV, Ag 3d5/2 at 368.26 eV, and Au 4f7/2 at

83.98 eV.33,34 The measurement time at each primary energy

was about 30–35min, during which the surface cleanness was

checked by XPS in several cases after the REELS measure-

ments. From the XPS, C 1s, O 1s and Ar 2p peaks demon-

strate surface contamination of no more than 2.5 at. %

(relative to the sample). The vacuum level during the mea-

surements was maintained stable at about 1.5 109 mbar.

III. THEORETICAL METHODS

A. MC modeling of electron elastic and inelastic
scattering

The main features of the physical model for the MC

simulation of an electron transport process in a REELS

experiment are the use of Mott’s cross-section for describing

electron elastic scattering and a dielectric functional

approach for electron inelastic scattering.

The relativistic expression of electron-atom scattering,

i.e., Mott’s cross-section, is given by25,26

dr
dX

¼ jf #ð Þj2 þ jg #ð Þj2; (1)

where the scattering amplitudes

f #ð Þ ¼ 1

2iK

X1

‘¼0

ð‘þ 1Þ e2id
þ
‘  1

 
þ ‘ e2id


‘  1ð Þ

n o
P‘ cos#ð Þ

g #ð Þ ¼ 1

2iK

X1

‘¼1

e2id
þ
‘ þ e2id


‘

 
P1
‘ cos#ð Þ (2)

are calculated by a partial wave expansion method,35 where

P‘ðcos#Þ and P1
‘ ðcos#Þ are the Legendre and the first-order

associate Legendre functions, and dþ‘ and d‘ are the spin-up and

spin-down phase shifts of ‘ th partial wave, respectively. Here,

Thomas-Fermi Dirac atomic potential is employed in the calcu-

lation,36 and the atomic number of the sample is the only input.

For an electron inelastic scattering process, several theo-

ries have been derived to deal with the surface excita-

tions.19,20,31,37–43 In order to judge the validity of the

available theoretical methods, an evaluation of two typical

models based on a semi-classical approach36 and a quantum

mechanical approach38 was carried out.30 From this calcula-

tion, one can conclude that the semi-classical approach can

provide as good agreement as the quantum mechanical

approach in most of the experimental conditions for the sim-

ulation of the REELS spectrum. Thus, we adopted the semi-

classical model in our calculation because it has much higher

computation efficiency than the quantum mechanical one.

In the adopted semi-classical model for surface excita-

tion, the depth dependent differential inelastic cross-section,

i.e., DIIMFP, where the bulk ELF and the surface ELF are

incorporated in a rather complex way, is given by

rðzÞ¼ 2

pv2

ðqþ
q

dq
1

q
Im

1

e q;xð Þ

" #
H zð Þ
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dq

ð p
2

0

dh
ð2p

0

d/
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~x2þq2kv
2
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2

0
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v?>0 (3)

and

rðzÞ¼ 2
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ðqþ
q

dq
1
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Im
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e q;xð Þ
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for an electron penetrating the surface from the solid/vacuum

side into the vacuum/solid side, respectively, where ~x ¼ x
qv sin h cos/ sin a, qk ¼ q sin h, and v? ¼ v cos a, a is the

angle between the interface normal and the electron moving

direction. The upper and lower limits of the integrals are

q6 ¼
ffiffiffiffiffiffi
2E

p
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE xÞ

p
. Details of the derivations were

elaborated in Ref. 30.

One may note that Eqs. (3) and (4) also take into

account the so called Begrezungs effect which is due to the

presence of the boundary, i.e., the surface.44,45 It reduces the

bulk losses compared to the case of an electron travelling

through an unbounded medium. The physical meaning of the

Begrezungs effect is that the excitation of surface modes

takes place at the expense of the excitation of bulk modes.

The total energy loss probability for the bulk excitation is

thus smaller than that of an infinite medium. To get a bulk

plasmon excitation probability which is positive, the nega-

tive bulk correction,  1
2
Im½1=eðqk;xÞ in Eqs. (3) and (4),

from the boundary effect has to be balanced by the infinite

bulk term.

B. Data analysis procedure of RMC

To obtain the true ELF of a solid from an experimental

REELS spectrum, a trial ELF is parameterized as a sum of N
Drude-Lindhard terms as

Im
1

e q;xð Þ

" #
¼

XN

i¼1

AiIm
1

e q;x;xpi; cið Þ

" #
; (5)

where the 3N oscillator parameters, Ai, xpi, and ci are the

oscillator strength, the energy, and the width of the i-th oscil-

lator, respectively. They are initially arbitrarily selected at

the long wavelength limit, q ! 0. For finite q-values, the
dielectric function eðq;xÞ is extended from the long wave-

length limit, namely the optical dielectric function eðxÞ, via
Ritchie and Howie’s scheme.46 Utilizing the initial ELF, the

REELS spectrum can be simulated by employing the MC

simulation method for electron transport. A goodness func-

tion of the ELF can be defined as the summed difference

between the simulated spectrum and the experimental spec-

trum. Consequently, the problem to find the true ELF of a

sample becomes the question to find the optimum set of 3N
oscillator parameters, where N is taken to be about 50–70,

which yields a minimum value of the goodness function and

corresponds to the desired real ELF. To solve such a global

optimization problem in 3N hyperspace, an evolution strat-

egy28 for the trial ELF was carried out by adopting a simu-

lated annealing (SA) method47 which is a powerful

algorithm for the global optimization. As a basic property of

the Metropolis importance sampling employed in the SA

method, the final equilibrium state of evolution is indepen-

dent of the initial state. Therefore, as mentioned, oscillator

parameters of the initial ELF can, in principle, be arbitrarily

assigned; but practically, in order to accelerate the warming

up of the computation leading to equilibrium, they are ini-

tially estimated from the available optical constants if any.

Once the final ELF, Im½1=eðxÞ, is obtained by the

RMC method, the corresponding real part, Re½1=eðxÞ, can

be deduced via Kramers-Kronig relation. Then, the complex

dielectric function can be expressed as

e1 ¼
Re 1=e xð Þ

 

Im 1=e xð Þ
 2 þ Re 1=e xð Þ

 2 ;

e2 ¼
Im 1=e xð Þ

 

Im 1=e xð Þ
 2 þ Re 1=e xð Þ

 2 :
(6)

The refractive index nðxÞ and the extinction coefficient

kðxÞ can be thus obtained by

n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p

2

s

;

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 þ e22

p

2

s

:

(7)

IV. RESULTS AND DISCUSSION

For comparison with the experimental spectrum, the

simulated raw REELS spectrum was convoluted with a

Gaussian function corresponding to the experimental energy

resolution, where the parameters of the Gaussian functions

are chosen to mimic the elastic peak shape of the experimen-

tal spectrum. Once the simulated REELS spectrum based on

the trial ELF agrees with the experimental spectrum, then

the convergence condition with the “goodness” function in

Ref. 28 is fulfilled and the final ELF is thus determined in

the oscillator parameter space. An intuitionistic view of the

evolution process can be seen in our previous work;28 here,

we just present the final results.

Since the complex dielectric function eðxÞ is principally
not related to the experimental conditions, the ELF should

not be dependent on the primary energy of the incident elec-

tron beam. To verify that this demand is satisfied in our data

analysis, REELS measurements were performed at three pri-

mary energies, at 1000, 2000 and 3000 eV for Cr and Co and

at 2000, 3000 and 4000 eV for Pd, in a wide energy loss

range from the infrared to the ultraviolet. The final simulated

REELS spectra are compared and presented in Figs.

1(a)–3(a) for each element. For comparison, the simulated

and measured spectra were all normalized to the height of

the elastic peak (i.e., zero-loss peak). It is worth mentioning

that the theoretical spectra have been convoluted Gaussian

functions, which fit exactly with the experimental elastic

peak, as shown by the inset of Figs. 1(a)–3(a). The ELF

obtained from the spectrum at each primary energy was dis-

played in Figs. 1(b)–3(b), in the same energy loss range. The

agreement among the ELFs at the three energies is very good

for all three elements.

A. Chromium

As is shown in Fig. 1(b), ELFs obtained from the experi-

mental REELS spectra excited at the primary energies of

1000, 2000 and 3000 eV are almost the same in the whole

energy loss region studied. In the case of 3000 eV, the ELF

has negligible minor deviations compared to the results of
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1000 and 2000 eV, in the M2,3-edge peak (43 eV) and in the

highest plasmon peak near 24 eV. Such good agreement is

expected for a successful model. The slight differences may

arise from random fluctuations of the experimental spec-

trum, the surface roughness and the possible small contami-

nation of the sample. Reducing the uncertainty, the three

ELFs in Fig. 1(b) were averaged to form a mean ELF. To

examine the obtained ELF, a comparison with available

experimental data is shown in Fig. 4. Like the case of many

other metals, Palik’s database of optical data always lack

some data in the vacuum ultraviolet region. Our ELF data

generally agree well with Palik’s data as well as Henke’s

data in the high energy loss region above the M1-edge

(74 eV). Deviations mainly occur at the peak around 9 eV

and at the M2,3-edge peak (43 eV). Since chromium oxi-

dizes readily and the optical measurements were not per-

formed under high vacuum conditions, such discrepancy

can be attributed to the presence of chromium oxides during

the measurement.

To do further investigation of the obtained ELFs and the

related optical constants, the oscillator-strength (f) sum rule

in two forms

Zeff jELF ¼ 2

pX2
p

ð1

0

xIm 1=e xð Þ
 

dx; (8)

FIG. 1. (a) The final simulated REELS spectra (solid lines) of chromium at 1000, 2000 and 3000 eV, in comparison with experimental results (dash lines). (b)

The final energy loss functions, Im½1=eðxÞ, obtained from the REELS spectra.

FIG. 2. (a) The final simulated REELS spectra (solid lines) of cobalt at 1000, 2000 and 3000 eV, in comparison with experimental results (dash lines). (b) The

final energy loss functions, Im½1=eðxÞ, obtained from the REELS spectra.

FIG. 3. (a) The final simulated REELS spectra (solid lines) of palladium at 2000, 3000 and 4000 eV, in comparison with experimental results (dash lines). (b)

The final energy loss functions, Im½1=eðxÞ, obtained from the REELS spectra.

043306-5 Xu et al. J. Appl. Phys. 123, 043306 (2018)



Zeff jk ¼
4

pX2
p

ð1

0

xk xð Þdx; (9)

whose ideal values are the atomic number of the element, as

well as the perfect-screening (ps) sum rule

peff ¼
2

p

ð1

0

1

x
Im 1=e xð Þ

 
dx; (10)

whose ideal vale is unity, where Xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnae2=me

p
and na

is the atomic density of the sample, were applied. In Fig. 5,

the ELF data are checked by the f- and ps-sum rules, where

we compare Palik’s and our present ELF data. Above

120 eV, the ELF data taken from Henke’s measurements48

are used in the evaluation of sum rules. As an intrinsic prop-

erty, the f- and ps-sum rules should converge to the theoreti-

cal limits being the atomic number and the unit, respectively,

when the upper integral limits of Eqs. (8)–(10) become large

enough. In the present case, the upper limit is extended to

30 keV, which is higher than the binding energy of the K-

shell, with the use of Henke’s data. However, it can be seen

from Fig. 5(a) that, as the ps-sum rule is dominated by the

lower energies, the present data occupy almost 98% contri-

bution to the ps-sum rule up to 120 eV. While Fig. 5(b)

shows that the present data contribute only about 40% to the

f-sum rule, as in the higher energy loss region, Palik’s data

are also Henke’s data, a comparison of the f-sum rule

between the present RMC data and Palik’s data is still rela-

tively meaningful. The obtained ELF by the RMC method

generally is of better accuracy with relative errors being

0.46%, 2.96% and 5.7% for Zeff jELF, Zeff jk and peff ,
respectively, as compared with 7.71%, 10.25% and 5.2%

for Palik’s data from optical measurements. Though the ps-
sum rule check is almost the same, the present RMC data

perform much better than the Palik’s data for the f-sum rules.

It can be seen from the f-sum rule calculations in Figs. 5(b)

and 5(c) that the underestimation of about two effective elec-

trons in Palik’s data is mainly due to the lower ELF values

above the M2,3-edge (43–80 eV). Since above this region, the

ELF data for Palik’s and ours are very close to each other,

our data are more accurate and give almost the expected

number of effective electrons of Cr. We note that, although

theoretically both versions of the f-sum rules must converge

to the value of the atomic number (24 for Cr) in the high

energy loss limit, however, as was stated by Smith and

Shiles49 in their study of f-sum rules, generally minor differ-

ences should occur compared to the ideal value. In their case

of aluminum, data in the x-ray region were neglected in

order to reach the expected value of integration. In our case,

the small difference may occur from the possible uncertainty

of Henke’s data in the x-ray energy region.

Applying Eqs. (6) and (7), the optical constants, i.e., the

refractive index n and the extinction coefficient k, and the

complex dielectric function e were derived and displayed in

Figs. 6 and 7. For comparison, Palik’s and Henke’s data are

FIG. 4. Comparison for the ELFs of Cr. Red line: present results obtained

from REELS measurement by the RMC method; open square: from the opti-

cal measurements compiled in Palik’s database;2 solid circles: from Henke’s

atomic scattering factors.48

FIG. 5. The f- and ps-sum rule checks for ELFs of Cr derived from REELS spectra by the RMC method (red line) and from Palik’s compiled optical data2

(black line). (a) The ps-sum rule calculated by Eq. (10). (b) The f-sum rule calculated by Eq. (8). (c) The f-sum rule calculated by Eq. (9). The arrows indicate

the ideal values.
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shown as well. In Fig. 6, a distinct difference in the intensity

of the M2,3-edge (43–80 eV) of the k-spectra can also be seen

among the RMC and the other two measurements. To evalu-

ate the correctness of these data, the f-sum rule regarding k,
according to Eq. (9), was calculated and is displayed in Fig.

5(c). For the case of our RMC model, the obtained Zeff jk is

closer to the ideal value. In Fig. 7, the real part of the dielec-

tric function from the optical measurements by Johnson and

Christy50 is also displayed. An extensive peak of the real

part of Palik’s dielectric function is observed around 1.2 eV

(inset of Fig. 7), which was not obtained in the present RMC

data. Although it seems that this may be partly due to the

broadening of the elastic peak, for the value of the elastic

peak in the REELS spectra is 1.5 eV in Fig. 1, the inset in

Fig. 1 indicates that the real elastic peak is limited to

0.5 eV, and there is no obvious feature around 1 eV. In

addition, the current data obtained by the RMC method still

show good agreement with the data of Johnson and Christy.

B. Cobalt

In the case of Co, the three ELFs obtained by the RMC

method in Fig. 2 were averaged and displayed in Fig. 8.

Werner’s ELFs17 determined from the REELS measure-

ments and from first principles calculation based on density

functional theory (DFT), as well as those from Palik’s2 and

Henke’s database,48 are shown together for comparison. In

the whole photon energy range shown, our ELF partially

agrees with other datasets. For example, in the low energy

loss region (below 18 eV), it agrees with Werner’s two ELFs

and with Palik’s data. In the intermediate region, our ELF

agrees either with Werner’s ELF from the REELS experi-

ment or with his DFT calculation. Above the M2,3-edge

threshold (60 eV), our ELF is nearly the same as Henke’s

data. On the other hand, Palik’s data are generally lower than

others, especially in the intermediate energy loss region

above 20 eV. Such behavior can be understood from two

aspects: (a) the influence of surface contamination and (b)

the nearly constant unit value for refractive index n, as is

shown in Fig. 10. For a quantitative evaluation of the ELFs,

sum rules are evaluated and plotted in Figs. 9(a) and 9(b).

Palik’s data yield relative errors of 12.4%, 7.1% and

16.9% for Zeff jELF, Zeff jk and peff , while they are merely

1.5%, 3.6% and 8.5%, respectively, for the present RMC

data. As explained earlier, the ps-sum rule emphasizes more

the accuracy of lower energy data, while the f- sum rules

emphasize the intermediate and high energy data. However,

above 120 eV, there is no difference between the two ELFs;

thus, the differences in f- and ps-sum rules between two data

are mostly contributed by the difference in ELFs above

20 eV. Therefore, we can conclude that the absolute value of

ELF of Co obtained by the RMC analysis of REELS spectra

is much more accurate than that by optical methods. For clar-

ification, the sum rules for Werner’s data are not shown here,

FIG. 6. The refractive index n and the extinction coefficient k of Cr obtained
by the RMC method (lines). Palik’s2 (squares) and Henke’s data48 (circles)

are shown for comparison.

FIG. 7. Comparison of the real and imaginary parts of the complex dielectric

function of Cr obtained from the RMC method (lines), and from Palik’s2

(squares) and Henke’s data48 (circles). The inset shows data in the energy

loss range of 0–15 eV; the real part of the dielectric function by Johnson and

Christy50 is also displayed. Shadow area in the inset indicates the overly

estimated broadening region of the elastic peak in the experimental REELS

spectra.

FIG. 8. Comparison of the ELFs of Co. Red line: present results obtained

from the REELS measurement by the RMC method; blue dotted line: ELF

from Werner’s REELS data; green dotted line: ELF from Werner’s DFT cal-

culation;17 open square: optical measurements compiled in Palik’s data-

base;2 and solid circle: from Henke’s atomic scattering factors.48
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simply because their ELFs were scaled so as to satisfy both

the f- and ps-sum rules.17 A common feature of Werner’s

ELFs is that both the REELS and DFT data have very strong

intensities at the M2,3-edge, which has not been found in

other data sources. It is clearly seen that this edge peak in the

REELS spectrum is not so sharp, either from Fig. 2(a) or

from Fig. 13 in Ref. 17.

From Eqs. (6) and (7), the optical constants and the

complex dielectric function e are derived and displayed in

Figs. 10 and 11, respectively. For comparison, Palik’s and

Henke’s data are shown as well. One good evidence to show

the validity of the RMC model is that, although significant

discrepancies between the ELFs of Palik’s and ours exist

(see Fig. 8), the relevant extinction coefficients k (see Fig.

10) are almost the same above 40 eV. Moreover, at the high

energy limit, the Zeff jk value calculated with the present

results of k is closer to the ideal value than with Palik’s data.

Therefore, the discrepancy between our present ELF and

Palik’s ELF mostly resulted from the refractive index in a

large photon energy range of Palik’s data. We also note that

we found very good agreement between Palik’s data and the

RMC data in the low energy loss region, as is shown in the

inset of Fig. 11, for the complex dielectric function. This

indicates that in the region below 10 eV, both the n and k val-
ues by Yu et al.51 are sufficiently accurate.2

C. Palladium

In the case of Pd, the ELFs derived by different groups

are more scattered than in cases of Cr and Co. As was stated

in Palik’s Handbook,2 the optical constants of Pd depend on

the sample preparation, accuracy of the optical measurement

and the method by which the experimental data are analyzed.

To sum up, only the general tendency of ELFs exists among

different data sources, as shown in Fig. 12, where the present

RMC-ELF was obtained by taking average over primary

energies of 2000, 3000 and 4000 eV in Fig. 3. In Fig. 12, a

FIG. 11. Comparison of the real and imaginary parts of the complex dielec-

tric function of Co obtained from the RMC method (lines), and from

Palik’s2 (squares) and Henke’s database48 (circles). The inset shows data in

the energy loss range of 0–15 eV.

FIG. 10. The refractive index n and the extinction coefficient k of Co

obtained by the RMC method (lines). Palik’s2 (squares) and Henke’s data2

(circles) are shown for comparison. Palik’s data are compiled from several

different sources.

FIG. 9. The f- and ps-sum rule checks for ELFs of Co derived from REELS spectra by the RMC method (red line) and from Palik’s compiled optical data2

(black line). (a) The ps-sum rule calculated by Eq. (10). (b) The f-sum rule calculated by Eq. (8). (c) The f-sum rule calculated by Eq. (9). The arrows indicate

the ideal values.
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unique feature of Werner’s DFT-ELF demonstrates fluctua-

tions, especially in the intermediate energy loss region near

the N2,3-edge. Other data sources have relatively smooth

ELFs. By the YT model and the RMC method, the N2,3-edge

threshold around 51 eV is more clear than other ELFs. Using

the ELF obtained by our RMC model, the threshold energy

of the N2,3-edge is evaluated as 50.9 eV, which is identical to

the energy determined by photoelectron spectroscopy.52 In

Figs. 13(a) and 13(b), the f- and ps-sum rules are displayed

to test the ELFs calculated from our RMC model with a lin-

ear interpolation with Henke’s data after 120 eV, from

Palik’s data and from the YT model. The Palik’s ELF has

relative errors of 2.5%, and 13.1% for f- and ps-sum rules,

respectively. This indicates that Palik’s ELF is overestimated

in the low energy loss region and is underestimated in the

intermediate and high energy loss regions. Since the ELF

by the YT model was normalized with the ps-sum rule,15 the

ps-sum rule almost gives the ideal value of 1. However, as

mentioned in the Introduction, the ELF by the YT model

does not always behave well in the f-sum rule check. In the

case of Pd, the f-sum rule integration result is 39.42, and

therefore at least 6 effective electrons were not correctly

accounted for in the ELF. In contrast, the RMC-ELF behaves

very well for both sum rules, with relative errors of 1.6%,

and 4.3% for f- and ps-sum rules, respectively. For compari-

son, the optical constants and the complex dielectric function

of Pd derived from the RMC data are shown in Figs. 14 and

15, respectively, with Palik’s and Henke’s data. To sum up,

the RMC data are in moderate agreement with Palik’s data

in the low energy loss region, while in the high energy loss

region, they agree with both Palik’s and Henke’s data. It is

worth mentioning that for the extinction function k and the

imaginary part of the dielectric function, the RMC data agree

well with Palik’s data in almost the whole energy loss region

studied. This partly indicates that data for the refractive

index n of Palik’s are not as accurate as the extinction

FIG. 12. Comparison of ELFs of Pd obtained from REELS measurements

by the RMC method in this work (red line), with the ELF obtained from the

YT model (dash line),15 Werner’s REELS data and DFT calculation (dotted

line),17 optical measurements compiled in Palik’s database2 (open square)

and from Henke’s atomic scattering factors48 (solid circles).

FIG. 13. The f- and ps-sum rule checks for ELFs of Pd derived from REELS spectra by the RMC method (red line), from Palik’s compiled optical data2 (black

line) and from the YT model (magenta line).15 (a) The ps-sum rule calculated by Eq. (10); (b) the f-sum rule calculated by Eq. (8); and (c) the f-sum rule calcu-

lated by Eq. (9). The arrows indicate the ideal values.

FIG. 14. The refractive index n and the extinction coefficient k of Pd

obtained by the RMC method (lines). Palik’s2 data (squares) and Henke’s

data2 (circles) are shown for comparison.
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coefficient k. In Fig. 13(c), the f-sum rule for the extinction

coefficient was calculated, where the relative errors for the

theoretical limit (atomic number of Pd, 46) were determined

to be 5.7% for the Palik data and 3.6% for the RMC

results. Therefore, in the inset of Fig. 15, the deviation in the

real parts of the dielectric function of the RMC data and the

Palik data can be understood as a result of the discrepancies

in the refractive index n. We can conclude that the current

ELF and optical constants determined by the RMC method

are obtained with higher accuracy, as indicated by the sum

rules.

V. CONCLUSION

In summary, we have calculated the ELFs and the optical

constants of three transition metals, Cr, Co, and Pd, in the

photon energy range of 0–120 eV from the analysis of three

REELS spectra at three primary energies. A recently devel-

oped RMC method was applied to extract the absolute ELF

values from each REELS spectrum, where a Monte Carlo sim-

ulation of electron scattering in the REELS experiment and a

global optimization technique for oscillator parameter fitting

were employed. With implementation of a spatially varying

DIIMFP derived under the semi-classical framework for elec-

tron inelastic scattering and Mott’s cross-section for electron

elastic scattering, an accurate description of electron transport

was established for the REELS spectral analysis. The validity

of the obtained ELF of the RMC method has been confirmed

by the fairly good performance of the f- and ps-sum rule

checks and by good consistency of the ELFs obtained at dif-

ferent primary energies. This work then proves that the RMC

method with REELS spectra enables establishing a database

of optical constants for many materials at a higher accurate

level than the previous databases.
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