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Abstract

Objective: Migraine is a complex and disabling neurological disorder. Recent

years have witnessed the development and emergence of novel treatments for

the condition, namely those targeting calcitonin gene-related peptide (CGRP).

However, there remains a substantial need for further treatments for those

unresponsive to current therapies. Targeting pituitary adenylate cyclase-

activating polypeptide (PACAP) as a possible therapeutic strategy in the pri-

mary headache disorders has gained interest over recent years. Methods: This

review will summarize what we know about PACAP to date: its expression,

receptors, roles in migraine and cluster headache biology, insights gained from

preclinical and clinical models of migraine, and therapeutic scope. Results:

PACAP shares homology with vasoactive intestinal polypeptide (VIP) and is

one of several vasoactive neuropeptides along with CGRP and VIP, which has

been implicated in migraine neurobiology. PACAP is widely expressed in areas

of interest in migraine pathophysiology, such as the thalamus, trigeminal

nucleus caudalis, and sphenopalatine ganglion. Preclinical evidence suggests a

role for PACAP in trigeminovascular sensitization, while clinical evidence shows

ictal release of PACAP in migraine and intravenous infusion of PACAP trigger-

ing attacks in susceptible individuals. PACAP leads to dural vasodilatation and

secondary central phenomena via its binding to different G-protein-coupled

receptors, and intracellular downstream effects through cyclic adenosine mono-

phosphate (cAMP) and phosphokinase C (PKC). Targeting PACAP as a thera-

peutic strategy in headache has been explored using monoclonal antibodies

developed against PACAP and against the PAC1 receptor, with initial positive

results. Interpretation: Future clinical trials hold considerable promise for a

new therapeutic approach using PACAP-targeted therapies in both migraine

and cluster headache.

Introduction to Migraine Biology

Migraine is a complex and heterogeneous brain disorder,

involving dysfunction of sensory, limbic, and homeostatic

regulation.1,2 It represents the most common and dis-

abling disorder presenting to secondary care and head-

ache clinics worldwide, thus there is a considerable need

for effective and tolerated acute and preventive therapies

for its management.3 Widespread dynamic and oscillating

changes in brain function throughout the migraine

cycle4–10 mediate a multisymptomatic clinical phenotype

involving headache, but also including symptoms such as

cognitive dysfunction, sensory sensitivities, altered arousal,

and mood change.11 Certainly, pain processing brain areas

are involved in migraine, including anterior cingulate cor-

tex (ACC), periaqueductal grey (PAG), prefrontal cortex

(PFC), and thalamus.12,13 In addition, areas distinct from

other pain syndromes have been shown to be involved on

ª 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited.

1

https://orcid.org/0000-0003-3260-5904
https://orcid.org/0000-0003-3260-5904
https://orcid.org/0000-0003-3260-5904
mailto:peter.goadsby@kcl.ac.uk
mailto:peter.goadsby@kcl.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Facn3.52119&domain=pdf&date_stamp=2024-06-18


functional imaging studies, including hypothalamus,9,12–14

ventral tegmentum (VTA),12,13 and the pons.13,15–17 These

areas are distinct from those involved in provoked cranial

pain,18 while sharing overlap with other primary headache

disorders, such as cluster headache19 and hemicrania

continua,20 suggesting at some level shared neurobiology

between these primary headache disorders, although cer-

tainly, of them, we understand the most about migraine

thus far.

Migraine is well accepted to be a neurovascular

disorder21; in that the interaction between sensory affer-

ents supplying the intra- and extracranial vasculature, cra-

niofacial structures, and intracranial pain processing

areas, are involved in the pathophysiology. However, the

drivers for migraine initiation and maintenance remain

debated.2 It has become apparent that early symptoms

preceding headache during the attack have feasible neural

substrates, supporting a theory of central rather than

peripheral attack initiation.12,13,22,23 In addition, in those

with migraine with aura, which is 20–30% of all migraine

patients depending on age,24 the aura typically precedes

headache, and aura is thought to be caused by cortical

spreading depression (CSD), a wave of cortical depolari-

zation followed by repolarization, occurring mainly over

visual cortex.25–29 This may manifest as cortical hypoper-

fusion followed by hyperperfusion.25,28 How, and whether

this phenomenon is related to migraine headache remains

unclear, as does whether CSD occurs in migraine without

aura in an asymptomatic way, but clearly central changes

precede headache. The persistence of brainstem imaging

changes following successful abortion of headache with

sumatriptan, suggests that these areas may be important

to both headache initiation and maintenance.15

Neuropeptides and primary headache
disorders

The nociceptive innervation of the intracranial vessels and

the meninges is from C- and Ad fibers, primarily through

the first division of the trigeminal nerve (V1), and to a

lesser extent from V2 and V3, as well cervical dorsal root

ganglia which supply the dura mater.2,30 Axonal innerva-

tion of the dura mater involves several vasoactive neuro-

peptides, such as calcitonin gene-related peptide (CGRP),

vasoactive intestinal peptide (VIP), and pituitary adenylate

cyclase-activating polypeptide (PACAP), which are released

on neuronal stimulation and cause vasodilatation.1,21 Stud-

ies in migraine have shown that activation of perivascular

nociceptive nerve fibers intra- and extracranially causes

headache very similar to migraine, and with associated

symptoms like nausea and light aversion,31 whereas stimu-

lation further away from the vasculature is less nociceptive.

Additionally, stimulation of dural vasculature in animals

causes activation in the trigeminocervical complex (TCC)

in the brainstem, an area where sensory afferent input

from the trigeminal ganglion converges with that from

the upper cervical cord.32–35 The involvement of this area

likely accounts for the typical pain distribution of

migraine, involving the occipital region and neck.36 In

cluster headache and the other trigeminal autonomic

cephalalgias (TAC’s), unilateral activation of the trigemi-

novascular pathway, with prominent activation of the

parasympathetic trigeminal autonomic reflex via V1 is a

key feature of the pathophysiology,37,38 as is hypothalamic

involvement.39 It is unclear whether activation of dural

nociceptive fibers is the driver of migraine headache and

if the brain changes are secondary to this, or if, perhaps,

the brain changes in migraine cause a susceptibility to

nociceptive pathway activation: such that usually innocu-

ous stimuli, such as dural pulsation for example, may be

perceived as painful, in the same way as unchanged light

(photic hypersensitivity) and sound intensities (phono-

phobia) become uncomfortable during an attack. From

the TCC, ascending connections to other brain areas like

hypothalamus, thalamus and cerebral cortex enable pain

processing and cause other migraine-associated symptoms

such as cognitive and homeostatic changes.40 Similarly, in

the TAC’s, unilateral hypothalamic involvement has been

demonstrated on functional MRI studies,19,20,41,42 but the

link between peripheral dural nociceptor activation and

central brain changes in these conditions is also unknown.

Most recently evidence of premonitory symptoms occur-

ring in cluster headache has emerged,43–45 as has evidence

of cranial autonomic symptoms (CAS) occurring before

pain onset,43,44 both of which necessitate some reappraisal

of the mechanisms involved. Taken together, the new data

suggest cluster headache also involves central brain

changes mediating premonitory symptoms. These are

likely to occur before peripheral dural nociceptor activa-

tion, such that even activation of the parasympathetic

autonomic reflex via the sphenopalatine ganglion (SPG)

and superior salivatory nucleus (SSN) does not require

peripheral dural afferent activation and can occur prior to

headache.

Serotonin-based treatments for migraine

While vasodilatation may be a feature of the migraine

attack, it does not seem to be significant enough to occur,

at least on a level that can be captured by currently avail-

able imaging techniques, during spontaneous attacks.46

There is a suggestion of intracranial38 and extracranial

vasodilatation47 on imaging in cluster headache. In addition,

vasoconstriction for attack abortion is not necessary48,49 nor

temporally associated50 in both migraine and cluster head-

ache. This understanding and the appreciation that even the
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triptans: serotonin 5-hydroxytryptamine (5-HT)1B/1D recep-

tor agonists, which are the most widely used abortive ther-

apy in migraine, and in cluster headache along with oxygen

therapy, have a largely neural basis for their action.51 Simi-

larly, ergotamine, a more historic serotoninergic treatment

used in the management of both disorders has a plausible

neural action.51 Increased understanding of this biology has

broadened the scope of therapeutic treatment targets in

migraine and cluster headache, both within the serotoniner-

gic system and outside. While vasodilatation mediated by

vasoactive neuropeptides is a feature of both disorders, it is

not the only feature and central changes are likely to be

equally if not more important.2

A series of randomized controlled trials of lasmiditan, a

specific 5-HT1F receptor agonist, for the acute treatment

of migraine have demonstrated efficacy,48,49,52,53 even in

those with difficult to treat attacks54 and triptan non-

responders.55 These studies only identified post-dose diz-

ziness as an adverse effect that could limit use in some

settings.56 Providing a novel approach, this agent does

not cause vasoconstriction and therefore provides a safe

treatment option for the elderly57 and in those with car-

diovascular risk,58 patient groups that have historically

been underserved by the triptans and by the ergot alka-

loids. Lasmiditan is now US Food and Drug Administra-

tion (FDA) and European Medicines Agency (EMA)

approved and is providing an option for acute treatment

for many migraine patients. However, for a condition

which affects more than 1 billion people worldwide, and

has such global impact,3 there remains a paucity of tar-

geted and effective treatments in migraine, and an ever

increasing need to develop more. In particular, there is an

emerging need to develop non-vasoactive drugs to treat

the disorder, given that vasoconstriction is not needed for

an acute therapeutic effect, and ideally ones that do not

contribute to medication overuse, which forms another

challenge in the acute management of migraine.

New treatments are still required for
migraine

Understanding the many facets to migraine and primary

headache neurobiology is important to allow therapeutic

development strategies to be explored. As peptidergic

neurotransmission at the level of the dura mater is

involved in migraine and cluster headache, and results in

vasodilatation and secondary central phenomena,59,60 tar-

geting vasoactive neuropeptides has become a substantial

area of interest in migraine and cluster headache thera-

peutics. Recently, over three decades of research into

CGRP’s role in migraine as one of these neuropeptides,61

has led to the emergence of small molecule receptor

antagonists (gepants) and monoclonal antibodies against

the CGRP peptide or the receptor (mAbs) becoming part

of our clinical practice and transforming the lives of

many with migraine.62 All the phase 3 trials of the four

different mAbs and seven gepants have shown consistent

efficacy and good tolerability; however, these drugs are

not useful for everyone and in some, may be contraindi-

cated by active vascular disease because of theoretical con-

cerns about inhibition of CGRP causing vasoconstriction.

There is suggestion that there is an association between

erenumab response and triptan response,63 and an

increased response to triptans in mAb super-responders,64

while increasing numbers of previous preventives tried

negatively impacts mAb efficacy.65 The need for addi-

tional therapies for groups like triptan non-responders,

who may be less likely to respond to CGRP-targeted ther-

apies, and those with more refractory disease with several

failed preventives, is therefore real. The use of treatment

prediction and treatment biomarkers is an area in

migraine that has been disappointing thus far, so identify-

ing targets with distinct downstream intracellular signal-

ing mechanisms that lack vasoactive effects is crucial to

advance therapeutics in this area.

One such strategy that has been explored has been tar-

geting PACAP.66

Pituitary Cyclase-Activating
Polypeptide 38 (PACAP38)

Structure, function, and distribution in the
nervous system

PACAP67 belongs to the vasoactive intestinal polypeptide

(VIP)–secretin–growth hormone-releasing hormone–glu-
cagon superfamily,68,69 and is found as a 38-amino acid

peptide (PACAP38) and a truncated 27-amino-acid pep-

tide (PACAP27).70 PACAP shares 68% of its amino acid

homology with VIP and therefore these two peptides

share four receptors: PAC1, VPAC1, VPAC2, and a Mas-

related G-protein-coupled receptor (member B2 in mouse

and X2 in humans).71

PACAP38 is the predominant mammalian peptide and

represents more than 90% of the total PACAP content in

most tissues, including the central nervous system

(CNS)68; but both isoforms have similar functions and

receptor binding affinity.71 PACAP was first identified in

bovine hypothalamus in 1989. It was found to localize in

sensory neurons72 and could depress C-fiber-evoked

responses.73 Furthermore, it was demonstrated that

PACAP extract could stimulate anterior pituitary cells in

rats.74 PACAP was subsequently found to be involved in

many physiological and endocrinological functions,

including vasodilatation,75,76 and circadian rhythm77 and

feeding regulation.78

ª 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 3

N. Karsan et al. PACAP in Migraine and Cluster Headache

 23289503, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acn3.52119 by U

niversity O
f Szeged, W

iley O
nline L

ibrary on [19/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PACAP expression

Peripherally, PACAP is expressed in several cranial ganglia

relevant to migraine and cluster headache biology, includ-

ing the sphenopalatine ganglion (SPG)79–82 and trigeminal

ganglion,83,84 which have been examined the most closely

with regards to co-expression of CGRP and PACAP.85,86

PACAP mRNA for three PACAP receptors is found in

middle meningeal artery.87 Whereas CGRP is widely

expressed on trigeminal neurons within the trigeminal

ganglion, PACAP38 is found in far fewer trigeminal

neurons,72,81 but is more widely distributed in parasym-

pathetic neurons, leading to interest in the involvement

of this peptide in both migraine and the TACs; the latter

include prominent cranial autonomic symptoms in their

canonical phenotypes. VIP has been historically been

implicated in the biology of cluster headache, because of

its role in mediating cranial autonomic symptoms, and a

study suggesting its release during spontaneous cluster

attacks.88 It has been hypothesized that via PACAP stimu-

lating trigeminal CGRP release, the sensory and auto-

nomic systems interact in migraine and cluster headache

biology.89,90 Centrally, PACAP and its receptors, like

CGRP, are also widely expressed in brain areas of interest

in migraine, such as thalamus, locus coeruleus, parabra-

chial nucleus and TNC. Recent work showed that

PACAP38 had a weak expression with CGRP in trigemi-

nal neurons; experiments showed that PACAP38 was only

released from the trigeminal neurons and not the trigemi-

nal nerve fibers and that its receptors were observed only

on the adjacent satellite glial cells,91 suggesting a some-

what distinct role in pain processing as compared to that

of CGRP. A summary of the main areas of PACAP

expression of interest in the primary headache disorders

is shown in Figure 1.

PACAP receptors

PACAP mediates its actions via three G-protein-coupled

receptors: VPAC1 and VPAC2 receptors, for which

PACAP and VIP have equal affinity, and the PAC1 recep-

tor, which is about 100-fold more PACAP specific.92

Receptor activation causes cAMP release, which is among

one of the mechanisms responsible for the intracellular

and physiological effects of PACAP38. The PAC1 receptor

also stimulates intracellular calcium and protein kinase C

activation.93 Experimental animal models have shown that

elevated cAMP can sensitize trigeminal neurons.94 In

addition, recent evidence has shown PACAP38 can acti-

vate the meningeal mast cells through Mas-related

G-protein coupled receptor member B2 (MrgprB2) and

promote pain behavior in mouse through the mouse

homologue receptor to the human MRGPRX2 receptor,67

so this has emerged as a fourth PACAP receptor of inter-

est. See Figure 2 for a summary of the four PACAP recep-

tors, and their downstream intracellular signaling

mechanisms by which receptor activation causes physio-

logical effects of PACAP.

Each of the PAC1, VPAC1, and VPAC2 receptors and

their mRNA are expressed on human cerebral arteries87

and cranial sensory and autonomic ganglia.95 In an exper-

imental migraine model, superior sagittal sinus stimula-

tion causes PACAP release into the extracerebral

circulation, where it mediates vasodilatation.96,97 Interest-

ingly, this is only reversed by VPAC1 antagonism, sug-

gesting that PAC1 agonism does not contribute to

vasodilatation.98 In another study, both VIP and PACAP-

38 caused short-lived meningeal vasodilation mediated by

the VPAC2 receptor independently of activation of central

trigeminovascular neurons. Intravenous delivery of a

PAC1 receptor antagonist specifically inhibited the men-

ingeal vasodilatory effects of dural trigeminovascular acti-

vation, whereas only central (intracerebroventricular)

administration of the drug inhibited dural nociceptive-

evoked action potentials in central trigeminovascular neu-

rons, suggesting that a central role of PACAP in migraine

is likely in addition to the primary afferent innervation in

the meninges.99 In another animal model, middle menin-

geal artery dilatation was only inhibited via the PAC1

receptor, and not via VPAC1 or VPAC2,
87 again suggest-

ing that PAC1 may be a target without vasoconstrictive

effects. Notably, in the sphenopalatine ganglion only the

VPAC1 receptor was found and not VPAC2 or PAC1,
95

which has led to interest in this receptor in particular in

migraine and cluster headache therapy.

PACAP38—Preclinical Evidence in
Migraine and Cluster Headache

The PAC1 receptor is more specific to PACAP compared

to VIP, and has therefore had the most interest in

migraine,100 particularly given initial suggestions that VIP

was not implicated in the pain part of migraine,101

although there are suggestions of its role in inducing epi-

sodic cluster headache in bout when administered

intravenously.102 PACAP and VIP, as well as being from

the same neuropeptide family and acting on similar

receptors, also functionally interact. PACAP fibers inner-

vate VIP neurons103 and PACAP promotes VIP gene

expression104 and VIP release,105 suggesting a possible role

of both peptides in both migraine and cluster headache.

Unlike CGRP, which is a somewhat larger molecule

peptide and is thought to not penetrate the blood–brain
barrier in significant concentrations, PACAP has a trans-

porter pump offering the ability to cross the blood–brain
barrier.106 This may explain why premonitory symptoms
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are less readily clinically provoked by CGRP compared to

NTG and PACAP.107–110 PACAP is heavily expressed in

the hypothalamus,71 and this area of the brain is thought

to be crucial in mediating premonitory symptoms.8,13,111

Moreover, these symptoms have also been more recently

been identified as occurring in cluster headache.12,43–45

Interestingly, PACAP is only released in the trigeminal

ganglion and not from the sensory nerve fibers or in the

dura mater of rat.91 PACAP receptors: PAC1 and VPAC1/2,

are found on trigeminal ganglion neurons and satellite

glial cells.112 Taken together, these data suggest a poten-

tial therapeutic target against PACAP may need to

include the central nervous system to some extent.85,99

Germane to this, post-traumatic stress disorder is asso-

ciated with PACAP, particularly via PAC1-mediated

mechanisms.113,114

PACAP and the trigeminovascular system

In animal models, PACAP has a role in trigeminovascular

sensitization and photophobia.115 PACAP and VIP both

cause vasodilatation,87 but only PACAP causes TCC acti-

vation and hypersensitivity to somatosensory cranial

stimulation.99 When PACAP is locally applied to menin-

geal afferents, it promotes the central release of CGRP

from the TNC, whereas VIP has no effect.89 In line with

these observations, PACAP38-induced migraine-like

attacks do not involve changes in blood CGRP levels.116

When complete Freund’s adjuvant is applied to rat dura

mater or orofacially to provoke inflammation, tissue

necrosis, and ulceration, PACAP immunoreactivity was

increased in the TNC.117,118 PACAP also causes mast cell

degranulation, which may contribute to its effect in

Figure 1. Summary of the main expression sites of PACAP and its receptors within the brain, cranial and spinal ganglia, spinal cord, and

extracranial vasculature. DRG; dorsal root ganglion, PAG; periaqueductal grey, SPG; sphenopalatine ganglion, TG; trigeminal ganglion, TNC;

trigeminal nucleus caudalis. Image created using BioRender.com.
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migraine.119 PACAP is elevated in the TNC in rat after

nitroglycerin (NTG) injection,120 and NTG is a com-

monly used migraine trigger in experimental study of

migraine in humans and in animal models of migraine.

PACAP centrally

NTG promotes PACAP immunoreactivity in the TNC in

a rodent model,115,120 and nitric oxide mechanisms may

therefore play a role in neuronal sensitization via PACAP

in migraine. Unlike CGRP which is pro-nociceptive,

PACAP has pro- and antinociceptive properties and can

reduce TCC responses to dural stimulation when locally

injected into the VTA parabrachial pigmented nucleus.121

PACAP-deficient mice exhibit increased thermal allodynia

(antinociceptive), but centrally PACAP mediates neuronal

excitation in areas like PAG and somatosensory cortex

(pro-nociceptive), so there are divergent effects peripher-

ally and centrally.122,123 Central excitatory effects of

PACAP have been demonstrated in other studies, via

areas of interest in migraine such as the hypothalamus,124

and the TCC.99 A rodent study of nociceptive trigemino-

vascular activation demonstrated that PACAP causes acti-

vation of trigeminocervical neurons with sensitization and

that this effect is reversed only through a centrally admin-

istered PAC1 receptor antagonist. The same drug adminis-

tered intravenously reduced the peripheral result of

central trigeminovascular activation, with reduced menin-

geal vasodilatation. This study, therefore, suggested that a

central PAC1 mechanism is important in migraine and

could be exploited for clinical therapeutics.99 PACAP may

also have a modulatory role in facilitating trigeminovas-

cular nociception at the level of the hypothalamus via a

PAC1 mechanism.124 In addition, kynurenic acid125

Figure 2. Summary of the intracellular downstream effects of PACAP. PACAP binds to four different G-protein-coupled receptors (PAC1, VPAC1,

VPAC2, and MRGPRX2) to exert its effects. Receptor activation of PAC1, VPAC1, and VPAC2 causes release of intracellular cyclic adenosine

monophosphate (cAMP) from adenosine triphosphate (ATP) via adenylate cyclase (AC). cAMP is degraded to 50adenosine monophosphate

(507AMP) via phosphodiesterases (PDE). cAMP causes protein kinase A (PKA) activation and phosphoprotein production. Activation of PAC1 also

causes release phopsholipase Cß (PLC), which hydrolyzes phosphatidylinostiol 4,5-biphosphate (PIP2) and produces intracellular mediators inositol

triphosphate (IP3) and diacylglycerol (DAG), which lead to increased intracellular calcium (Ca2+) release from the endoplasmic reticulum (ER) and

phosphoprotein production via protein kinase C (PKC), respectively. These are responsible for the physiological effects of PACAP, including

trigeminal neuronal sensitization. ALD1910 and AMG301 are two mAbs developed for migraine treatment. Lu AG09222 (ALD1910) binds to the

PACAP ligand, and AMG301 binds to the PAC1 receptor. Both hold therapeutic scope for migraine. Image created using BioRender.com.

6 ª 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

PACAP in Migraine and Cluster Headache N. Karsan et al.

 23289503, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/acn3.52119 by U

niversity O
f Szeged, W

iley O
nline L

ibrary on [19/06/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://biorender.com


inhibits increased expression of PACAP in the trigeminal

nucleus caudalis evoked by trigeminal ganglion

stimulation,126 suggesting that PACAP may be mediating

its role in migraine via glutamatergic neurotransmission.

PACAP, photophobia, and allodynia

A shared role of CGRP and PACAP in migraine biology

is in mediating photophobia. However, these mechanisms

are likely to be distinct, given that both can trigger light

aversive behaviors in animal models, but CGRP-mediated

light aversion could only be inhibited by a CGRP mono-

clonal antibody and not a PACAP one, and vice versa.127

PACAP can also provoke periorbital allodynia in animal

models, and this can be reversed with a PACAP receptor

antagonist.128 Other mouse models have also suggested

distinct roles of CGRP and PACAP in mediating

migraine-like behaviors, such as hypersensitivity as a cor-

relate for allodynia.129 Mice pretreated with an anti-CGRP

antibody and receptor activity-modifying protein 1

(RAMP-1) knockout mice lacking CGRP receptors can

still display allodynic behaviors in response to PACAP,

but NTG-mediated allodynia could be prevented by anti-

CGRP antibodies and in the RAMP-1 knockout mice.

NTG and CGRP, therefore, are likely to act via shared

mechanisms and these are distinct from PACAP in medi-

ating sensory sensitivities, but the interactions of these

molecules in the wider migraine phenotype remain

unclear. A role of PACAP in intracellular signaling path-

ways, some shared with CGRP given the co-expression of

both peptides in many brain regions involved in

migraine, like those via cAMP, is also likely.130

PACAP38—Clinical Evidence in
Migraine and Cluster Headache

PACAP is released in migraine and cluster
headache

PACAP, like CGRP, is released during acute migraine in

both experimental and clinical settings, and blood levels

are reduced following sumatriptan administration.96

PACAP is also released into the circulation during epi-

sodic cluster headache bouts compared to the interbout

period.131 There is also suggestion that blood levels of

PACAP fluctuate in a dynamic fashion during different

phases of migraine and may actually be lower in patients

with migraine compared to healthy controls interictally,

but peak ictally.132 Interestingly, PACAP levels are ele-

vated in migraine attacks, but VIP levels are only elevated

if there are cranial autonomic sysmptoms associated,59

and both are elevated in the cranial circulation in cluster

headache,88,131 a condition in which CAS are necessary

for diagnosis. This suggests that PACAP and VIP are both

involved in the mediation of CAS, with PACAP having

additional roles in trigeminovascular nociceptive proces-

sing. Inter-attack PACAP levels in migraine patients cor-

relate with mean diffusivity in white matter,133 so these

may serve a biomarker role as therapeutic avenues are

explored.

PACAP administration can trigger migraine
and cluster headache attacks

PACAP38 can also trigger migraine-like attacks,134 cluster

headache attacks,102,135 and premonitory symptoms asso-

ciated with migraine107 when infused intravenously into

patients with migraine, cluster headache in bout or

chronic cluster headache. PACAP38 triggers migraine

when infused more readily than VIP in a double-blind

crossover head-to-head study (73% vs. 18%).136 More

recently, a prolonged VIP infusion has been shown to

provoke migraine attacks in 71% in one study (compared

to 5% with placebo),137 and VIP infusion was associated

with prolonged extracranial vasodilatation.138 An earlier

study had suggested no difference in headache reporting

following VIP and placebo, despite marked extracranial

vasodilatation after VIP.101 PACAP and VIP triggering

rates in episodic cluster headache in bout and in chronic

cluster headaches were equivalent between the two pep-

tides in one study.102 VIP-targeted treatments have thus

far not been explored in migraine or cluster headache.

Interestingly, PACAP38 infusion is not associated with

regional cerebral blood flow changes in human healthy

volunteers,139 but PACAP-triggered migraine can be pre-

vented with pre-.medication with sumatriptan.140 Angio-

graphic imaging has shown that like NTG and CGRP,

PACAP is a vasodilator of the extracranial vasculature

and does not affect intracranial arteries.136,141,142 PACAP-

triggered migraine is associated with widespread func-

tional brain network changes.143 There is a suggestion

that PACAP27 can also trigger migraine,144 and cause

extracranial vasodilatation.145

A summary of the similarities and differences between

CGRP and PACAP receptors, expression and mechanisms

in migraine is shown in Table 1.

PACAP—Therapeutic Scope in
Migraine

Targeting the PAC1 receptor

A rodent-specific PAC1 receptor antibody reduced TCC

firing in response to stimulation, mediated via its binding

at the trigeminal and sphenopalatine ganglia, without

central binding.146 This study further supported the role

ª 2024 The Author(s). Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. 7
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of targeting the PAC1 receptor in migraine therapeutics.

A subsequent phase 2 clinical study unfortunately showed

that a PAC1 receptor antibody: AMG 301, was ineffective

in migraine prevention at different doses.147

A preclinical study used a PAC1 receptor antibody to

map PAC1 receptor expression in the trigeminal-

autonomic system in both rat and man using immunohis-

tochemistry and in situ hybridization.81 The study dem-

onstrated PAC1 immunoreactivity in SPG with only weak

expression in trigeminal ganglion, and strong immunore-

activity in spinal trigeminal nucleus, but no expression in

dura mater vessels, and these findings were confirmed

with in situ hybridization.81 This finding was consistent

with previous data and suggests that the vascular effects

of PACAP are mediated by the VPAC receptors rather

than the PAC1 receptor,95 making targeting PAC1 an

exciting strategy for migraine potentially without substan-

tial vascular effects, akin to specific targeting of the 5HT1F

receptor in the serotoninergic system.

The disappointing lack of success of a PAC1 receptor

antibody led to the development of strategies to target the

PACAP ligand, and also raised the possibility of targeting

VPAC1/2 receptors as an approach in migraine. This work

has also led to consideration of the concept that PACAP

may be mediating its actions in migraine, such as direct

actions at the TNC, to stimulate CGRP release where

PACAP and CGRP are co-localized,89 or via its effect on

mast cells,67 or at alternative yet-to-be identified

receptors.

Recently, PAC1 small molecule antagonists have been

identified, one of which seems to show anti-allodynic

effects in an animal neuropathic pain model when admin-

istered orally or intrathecally,148 and another showing

anti-nociceptive effects in a rodent inflammatory pain

model.149 Interestingly, a role of these agents in anxiety

behaviors has also been identified.150 Whether these are

tested in migraine models remains to be seen.

Targeting PACAP directly

Lu AG09222 (ALD1910) is a high-affinity PACAP-

neutralizing antibody which binds the ligand. A phase 1

double-blind parallel-group placebo-controlled study

showed it could inhibit cephalic vasodilatation induced

by PACAP in healthy volunteers, as well as reduce

PACAP- and VIP-induced facial vasodilatation and mild

headache.151 Subsequently, a phase 2 double-blind

placebo-controlled trial showed a high dose (750 mg) of

Lu AG09222 compared to a low dose (100 mg) and to

placebo reduced migraine frequency over a 4-week end-

point in participants with 2–4 previous preventive treat-

ment failures.152 High dose Lu AG0222 reduced monthly

Table 1. A summary of some of the similarities and differences between CGRP and PACAP in migraine biology (developed using129).

CGRP PACAP

Receptors (all G-protein-coupled) Canonical CGRP receptor (GPCR calcitonin

receptor-like receptor CLR and RAMP1)

AMY1 with equal affinity

Lower affinity for CLR/RAMP2 and CLR/

RAMP3 adrenomedullin receptors

PAC1

VPAC1

VPAC2

MRGPRX2

Migraine mechanisms Vasodilation, dural mast cell degranulation,

pro-nociceptive

Vasodilation, dural mast cell degranulation,

peripherally antinociceptive, centrally

nociceptive

Infusion triggers migraine-like headache 63% 72%

Infusion triggers premonitory symptoms before

migraine-like headache

9% 48%

Vasodilatory side effects of infusion (flushing,

feeling hot, palpitations, and light-headedness)

Yes Yes

Nervous system distribution Shared other than CGRP more in trigeminal

ganglion

Shared other than PACAP more in

sphenopalatine ganglion

Role in anxiety behaviours Yes Yes

Role in light aversion Yes Yes (mechanism distinct to CGRP)

Role in allodynia Yes Yes (although perhaps via mechanisms distinct

to CGRP/nitric oxide)

Intracellular mechanisms Less robust intracellular mechanisms via

inositol 1,4,5-triphosphate

More robust intracellular mechanisms via

inositol 1,4,5-triphosphate (via non-canonical

cAMP mechanisms and exchange protein

directly activated by cAMP (EPAC’s)

Action on ATP-sensitive potassium channels Yes Only partial effect
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migraine days by �6.2 (compared to placebo �4.2), with

a baseline migraine frequency across the groups of mixed

episodic and chronic migraine, of 16.7 migraine days per

month.153 This study has paved the way for further devel-

opment of approaches to this target.

PACAP—Therapeutic Scope in Cluster
Headache

While no dedicated studies using PACAP-targeted treat-

ments have been conducted in cluster headache, PACAP

targeting poses an exciting opportunity for treating cluster

headache based on the known pathophysiology. Features

of cluster headache include the prominent cramial auto-

nomic symptoms are experienced by most cluster head-

ache patients, and the equivalent triggering of cluster

headache attacks by VIP and PACAP38, which share

receptors, as well as the shared neurobiology between

migraine and cluster headache suggest that targeting

PACAP may hold promise in cluster headache in the

future. If phase 3 studies with Lu AG09222 are successful

in migraine, this could lead to dedicated cluster headache

trials, for a population of patients who have very few

available treatment options.

The Need for More

While PACAP poses an exciting therapeutic avenue in

migraine and cluster headache, thus far we only have a

failed phase 2 trial of a PAC1 receptor antibody and an

encouraging phase 2 trial of a ligand PACAP antibody

with results available. Given emerging evidence that VIP

may have a role in migraine induction, based on the

more recent triggering data,137 and demonstration of ele-

vated blood levels interictally in migraine,154 as well as

ictally in both blood and saliva,155 contrary to what had

been thought previously, further targeting of VPAC1/2

receptors is likely to be an avenue of future interest.

While treatment prediction and biomarkers of treatment

response are not currently available, the emergence of tar-

geted peptidergic therapies and the ability of these pep-

tides to trigger migraine and cluster attacks in some

patients may allow us to witness a time where triggering

efficacy allows treatment efficacy to be estimated. This

would ideally lead to personalization of treatment with

potentially high-cost drugs.

The CGRP-related peptides; adrenomedullin and amy-

lin, both of which are able to provoke migraine attacks in

patients via the amylin analog pramlintide (with equiva-

lent efficacy to CGRP),156 and intravenous

adrenomedullin,157 have also gained interest as possible

therapeutic substrates in migraine, providing alternative

receptors as targets. The CGRP-targeted therapies used in

migraine management may have weak effects at the amy-

lin receptor AMY1,
158–160 and also alter adrenomedullin

signaling at the canonical CGRP receptor.161

As well as targeting neuropeptides, intracellular targets

such as nitric oxide, and ion channel targets like potas-

sium channels, are also of interest in advancing migraine

therapeutics.162

Conclusion

Targeting the PACAP pathway, as a neuropeptide path-

way distinct from CGRP, holds therapeutic promise in

migraine therapeutics going forwards. Further targeted

treatment development against the VPAC1/2 receptors

may yield exciting results in this area. Moreover, the pres-

ence of cranial autonomic symptoms may serve as a

future biomarker for response to targeted therapeutics

against the cranial parasympathetic projection, modulated

via PACAP.163

In migraine therapeutics development, there has not

yet been a false-positive phase 2 study, so it is hopeful

that PACAP-targeted therapies will be the next big

advance in migraine therapeutics, offering some mecha-

nisms distinct from CGRP to help those underserved by

these therapies. This effect may be translated to other pri-

mary headache disorders, including cluster headache and

the other TAC’s in due course, exploiting cranial auto-

nomic symptoms as a potential biomarker. However,

there will always remain a need for the identification of

new targets to help deal with the burden that is migraine.
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