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Abstract

For a measure µ on the complex plane µ-regular points play an im-
portant role in various polynomial inequalities. In the present work it
is shown that every point in the set {µ′ > 0} (actually of a larger set
where µ is strong) with the exception of a set of zero logarithmic capacity
is a µ-regular point. Here “set of zero logarithmic capacity” cannot be
replaced by “β-logarithmic Hausdorff measure 0” with β = 1 (it can be
replaced by “β-logarithmic measure 0” with any β > 1). On the other
hand, for arbitrary µ the set of µ-regular points can be quite small, but
never empty.

Let ν be a Borel-measure with compact support S(ν) on the complex plane.
The class Reg of measures plays an important role in the theory of orthogonal
polynomials since it provides a weak global condition which appears in many
results. Let us recall its definition from [5]: if pn(z) = γnz

n + · · · denotes the
n-th orthonormal polynomial with respect to ν with the normalization γn > 0,
then it is always true that

lim inf
n→∞

γ1/n
n ≥ 1

cap(S(ν))
,

where cap(S(ν)) denotes the logarithmic capacity of the set S(ν) (see [3], [4] or
[6] for the concepts of logarithmic potential theory used in this work). Now ν
is said to be in the Reg class if cap(S(ν)) > 0, and

lim
n→∞

γ1/n
n =

1

cap(S(ν))
.

In some way measures in this class behave “normally” from the point of view of
orthogonal polynomials. ν ∈ Reg is a fairly weak global condition, see [5] for
different equivalent conditions and several regularity criteria.
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One characterization of regularity is via the set of ν-regular/irregular points.
We say that z ∈ S(ν) is a ν-regular point of

lim sup
n→∞

(
Pn(z)|

∥Pn∥L2(ν)

)1/n

≤ 1 (1)

for any sequence {Pn} of polynomials of corresponding degree at most n =
1, 2, . . .. Otherwise z is called a ν-irregular point. Let R(ν) resp. I(ν) be the
set of ν-regular resp. ν-irregular points of S(ν). Thus R(ν) ∪ I(ν) = S(ν).

Now [5, Theorem 3.2.1] (see in particular (iii) and (v) in that theorem)
claims that ν ∈ Reg if and only if I(ν) is of zero logarithmic capacity. In other
words, ν ∈ Reg means that with the exception of a set of zero capacity, on S(ν)
polynomials cannot be exponentially large compared to their L2(ν)-norm.

In the paper [2] the authors considered general measures ν on the real line
and showed that the set of ν-irregular points cannot be large on the set ν′ > 0
in the sense of β-logarithmic measure. Their setup was the following. Let
h : [0,∞) → [0,∞] be an increasing continuous function with h(0) = 0. Given
E ⊂ C the Hausdorff outer measure of E with respect to h is

mh(E) = inf


∞∑
j=1

h(rj) E ⊂
∪
j

∆rj

 ,

where the infimum is taken for all covers of E by balls ∆rj of radius rj . For

hβ(t) =

{
(log 1

t )
−β , t ∈ (0, 1),

∞, otherwise

this definition gives β-logarithmic Hausdorff measure. A theorem of Frostman
(see [6, Theorem III.19]) says that if E has zero logarithmic capacity then
mhβ

(E) = 0 for all β > 1, and conversely, by a theorem of Erdős and Gillis
(see [6, Theorem III.20]) mh1(E) < ∞ implies cap(E) = 0.

For a Borel-measure with compact support let H(ν) be the set of points
z ∈ S(ν) such that

lim inf
r→0

ν(∆r(z))/r
m > 0 (2)

for some m, where
∆r(z) = {w |w − z| < r}

is the disk of radius r with center at z. In other words,

H(ν) =

{
z lim sup

r→0

log 1/ν(∆r(z))

log 1/r
< ∞

}
. (3)

Note that e.g. for S(ν) ⊂ R this set includes all points where the classical
derivative of ν with respect to linear Lebesgue-measure is positive.
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With these notations E. Levin and D. S. Lubinsky [2] proved that for any ν
supported on the real line the set of ν-irregular points in H(ν) is of zero mhβ

-
measure for all β > 1. They also wrote ([2, Remark (a)]) “It seems unlikely
that the set of irregular points can have zero capacity in {ν′ > 0}”. Our first
result says that actually the set of ν-irregular points in H(ν) is always of zero
capacity, even if the measure is not supported on the real line.

Theorem 1 The set of irregular points in H(ν) is of zero capacity, i.e. cap
(
I(ν)∩

H(ν)
)
= 0.

As a corollary one can derive the main result of [2] without assuming the measure
to lie on the real line.

Before giving the proof first we note that the sets I(ν), R(ν) are Borel-
measurable. Indeed, if {Qk,n}∞k=1 is a countable dense set in the space of poly-
nomials of degree at most n equipped with the supremum norm on S(ν) and
if

Ak,m,n = {z ∈ S(ν) |Qk,n(z)| > en/m∥Qk,n∥L2(ν)},

then clearly

I(ν) =
∞∪

m=1

lim sup
n→∞

∞∪
k=1

Ak,m,n,

so it is a Borel-set, and R(ν) is just its complement relative to S(ν) (here

lim sup
n→∞

Bn :=
∞∩

N=1

∞∪
n=N

Bn).

Thus, by the capacitability of Borel-sets, we can talk of the logarithmic capacity
of I(ν) and R(ν) and their cousins that appear below.

Proof of Theorem 1. Suppose to the contrary, that the claim is not true. If
Hm is the set of points z for which

ν(∆r(z)) ≥
rm

m
, for all 0 < r <≤ 1/m, (4)

then H(ν) = ∪∞
m=1Hm. Similarly, if Iθ is the set

Iθ =
{
z ∈ S(ν) |Pn(z)| > eθn∥Pn∥L2(ν) for infinitely many Pn, n → ∞

}
, (5)

then I(ν) = ∪∞
k=1I1/k. Hence, by our contrapositive assumption, for some k,m

the set I1/k ∩Hm must be of positive capacity. Fix such a k and m, and select
a compact subset K of I1/k ∩Hm of positive capacity. By Ancona’s theorem [1]
we may assume that K is regular with respect to the Dirichlet problem in the
unbounded component of C \ K, i.e. the Green’s function gC\K(z,∞) of this

unbounded component with pole at infinity is continuous (and hence 0) on K.
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Thus, for every ε > 0 there is a δε > 0 such that for dist(z,K) ≤ δε we have
gC\K(z,∞) < ε.

Fix a z0 ∈ K. Let Pn be an arbitrary polynomial of degree at most n, let
M = ∥Pn∥K ≥ |Pn(z0)| be its supremum norm on K, and let zn ∈ K be a
point where this supremum norm is attained. For dist(u,K) ≤ δε we have by
the Bernstein-Walsh lemma [7, p. 77]

|Pn(u)| ≤ ∥Pn∥K exp
(
ngC\K(z,∞)

)
≤ Menε,

and then we obtain from Cauchy’s formula for the derivative of analytic func-
tions that for dist(v,K) ≤ δε/2 the estimate |P ′

n(v)| ≤ 2Menε/δε holds. This
implies that for |z − zn| ≤ rn with rn = δεe

−nε/4 we have

|Pn(z)| ≥ |Pn(zn)| −
(
2Menε/δε

)
|z − zn| ≥ M − (M/2) = M/2.

In other words, in the disk ∆rn(zn) we have |Pn| ≥ M/2. Since zn ∈ Hm, for
r ≤ 1/m we have ν(∆r(z0)) ≥ rm/m, and this gives with r = rn (for large n)∫

|Pn|2dν ≥
∫
∆rn (zn)

|Pn|2dν ≥ (M/2)2ν(∆rn(zn)) ≥
M2δmε e−nmε

m41+m
.

In view of M ≥ |Pn(z0)| this shows that

lim sup
n→∞

(
|Pn(z0)|/∥Pn∥L2(ν)

)1/n ≤ emε/2,

which is impossible for mε/2 < 1/k by the choice of I1/k because z0 ∈ I1/k.
Since ε > 0 is arbitrary, we can make mε/2 smaller than 1/k, and then the
contradiction obtained proves the theorem.

Next, with the ideas used in Theorem 1, we derive a criterion for regularity.
First we prove

Theorem 2 For a measure ν with support of positive capacity the following are
pairwise equivalent:

(a) ν is in the Reg class,

(b) the set of ν-irregular points is of zero capacity,

(c) the set of ν-regular points is of full capacity (i.e. cap(R(ν)) = cap(S(ν)).

The equivalence of (a) and (b) was proven in [5, Theorem 3.2.1] (see in
particular (iii) and (v) in that theorem), but it is interesting to know that they
are also equivalent to (c) which is seemingly much weaker than (b). Thus, the
complementary sets I(ν), R(ν) behave in a rather unexpected way: if I(ν) is
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of positive capacity, then necessarily R(ν) has smaller capacity than S(ν) (in
general, complementary sets may both have full capacities).

This theorem combined with Theorem 1 gives (see (3) for the definition of
H(ν))

Corollary 3 If cap(H(ν)) = cap(S(ν)), then ν is in the Reg class.

This was Criterion Λ in [5, Sec. 4.2].

Proof of Theorem 2. As we have already mentioned, the equivalence of
(a) and (b) was proven in [5, Theorem 3.2.1], and (b) clearly implies (c) since
R(ν) = S(ν) \ I(ν). Thus, it is left to show that (c) implies (b).

Suppose to the contrary that cap(R(ν)) = cap(S(ν)) and at the same time
cap(I(ν)) > 0. Then for some θ > 0 the set Iθ in (5) is of positive capacity. Fix
such a θ > 0.

If

RN =
{
z ∈ S(ν) |Pn(z)| ≤ eθn/3∥Pn∥L2(ν) for n ≥ N and all Pn, deg(Pn) ≤ n

}
,

(6)
then ∪∞

N=1RN contains the set R(ν), hence it is of full capacity. Therefore, as
N → ∞, we have cap(RN ) → cap(S(ν)), and we can select increasing compact
sets KN ⊂ RN such that cap(KN ) → cap(S(ν)). We claim that then the
equilibrium measures µKN

converge in the weak∗-topology to the equilibrium
measure µS(ν) of the support S(ν). In fact, since from any subsequence of
{µKN

}N we can select a weak∗-convergent subsequence (Helly’s theorem), it is
enough to show that if σ is a weak∗-limit of some subsequence of {µKNj

}j , then
σ = µS(ν). But this is clear: if

I(ρ) =
∫ ∫

log
1

|u− t|
dρ(u)dρ(t)

is the logarithmic energy of a measure ρ, then, by the principle of descent (see
[4, Theorem I.6.8, (6.16)]), we have

I(σ) ≤ lim inf
j→∞

I(µKNj
).

However,

I(µKNj
) = log

1

cap(KNj )
,

and the right-hand side tends to log 1/cap(S(ν)) = I(µS(µ)) as j → ∞. Thus, we
get I(σ) ≤ I(µS(ν)), and at the same time σ is a unit Borel-measure supported
on S(ν). By the minimality and unicity of the equilibrium measure this implies
σ = µS(ν), as was claimed.
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Thus, µKN
→ µS(ν) in the weak∗-topology, and then it follows from the

lower envelope theorem [4, Theorem I.6.9] that for the logarithmic potentials

UµKN (z) =

∫
log

1

|z − t|
dµKN

(t)

we have
lim inf
n→∞

UµKN (z) = UµS(ν)(z) (7)

for quasi-every z ∈ C, i.e. for all z ∈ C with the exception of a set of capacity
zero.

Let gC\KN
(z,∞) be the Green’s function of the unbounded component of

C \ KN with pole at ∞. Now cap(KN ) → cap(S(ν)) and (7) give, in view of
the formula (see e.g. [4, (I.4.8)])

gC\KN
(z,∞) = log

1

cap(KN )
− UµKN (z),

that
lim sup
N→∞

gC\KN
(z,∞) = gC\S(ν)(z,∞)

for quasi-every z ∈ C, and note also that the right-hand side is 0 for quasi-every
z ∈ S(ν) by Frostman’s theorem (see e.g. [3, Theorem 3.3.4 and Sec. 4.4]).
Hence, for quasi-every z0 ∈ S(ν) we have

lim
N→∞

gC\KN
(z0,∞) = 0. (8)

In particular, there is a point z0 ∈ Iθ where (8) holds (note that Iθ has positive
capacity by our assumption). Therefore, for large N , say for N ≥ Nθ, we have
gC\KN

(z0,∞) ≤ θ/3.

Now let Pn be a polynomial of degree at most n and let n > N > Nθ. Then,
by the definition of the set RN in (6) and by KN ⊆ RN , we have ∥Pn∥KN

≤
enθ/3∥Pn∥L2(ν), and hence, by the Bernstein–Walsh lemma [7, p. 77],

|Pn(z0)| ≤ exp(ngC\KN
(z0,∞))∥Pn∥KN ≤ exp(nθ/3)enθ/3∥Pn∥L2(ν)

= e2nθ/3∥Pn∥L2(ν).

This shows that z0 cannot lie in the set Iθ (see (5)). But z0 was chosen to be
an element of Iθ, and this contradiction proves the theorem.

Since zero logarithmic capacity implies zero β-logarithmic measure ([6, The-
orem III.19]), Theorem 1 gives that I(ν) ∩ H(ν) is always of zero hβ-measure
for β > 1 (when S(ν) ⊂ R this is Theorem 1.1 in [2]). However, it need not be
of zero h1-measure as the following example shows.
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Example 4 There exists a compact set K ⊂ R of positive h1-measure and a
Borel-measure ν on K with support equal to K such that

lim inf
d→0+0

ν([x− d, x+ d])/d > 0 (9)

for every x ∈ K and all but countably many points of K are ν-irregular points.

Note that in view of Theorem 1 such a K is necessarily of zero logarithmic
capacity.

Proof. Starting from K0 = [0, 1] do the Cantor construction (in each step
removing a middle portion of the remaining intervals) in such a way that at

level k we have a set Kk consisting of 2k intervals each of length 2−2k+1

, and
set K = ∩∞

k=1Kk. Note that the complementary intervals at level k, i.e. the

intervals of [0, 1] \Kk all have length ≥ (7/8)2−2k .

Let νk be the measure that puts mass 2−2k to each left endpoint of the
intervals at level k and let ν =

∑
k≥1 νk. With this choice condition (9) is

satisfied at every point x of K: if 2−2k+1 ≤ d < 2−2k , then

ν([x− d, x+ d]) ≥ νk([x− 22
k+1

, x+ 2−2k+1

]) = 2−2k ≥ d.

Let P2n be the monic polynomial of degree 2n with zeros at the left endpoints
of the intervals at the n-th level. For an x ∈ K let Jk(x) ⊂ Kk be the interval at
the k-th level that contains x. Then there is one zero closer (= not farther) to x

than 2−2n+1

in Jn(x), another zero closer than 2−2n in Jn−1(x), and in general

for each k = 0, 1, ..., n−2 there are 2k zeros closer than 2−2n−k

in Jn−k−1(x) not
accounted for before. Finally, there are 2n−1 zeros closer than 1 in J0 = [0, 1].
Therefore,

|P2n(x)| ≤ 2−2n+1
n−2∏
k=0

(
2−2n−k

)2k
= 2−(n+1)2n ,

and hence, since P2n is zero on the support of ν1, . . . , νn, the L
2(ν)-norm of P2n

is at most

∥P2n∥L2(ν) ≤ ∥Pn∥L∞(K)

( ∞∑
i=n+1

νk(C)

)1/2

≤ 2−(n+1)2n
(
2n+22−2n

)1/2
. (10)

On the other hand, if x belongs to the right interval of Jn(x) ∩Kn+1 (note
that this set consists of two intervals), then its distance from either of the 2k

zeros in Jn−k−1 considered before is at least

2−2n−k

− 2 · 2−2n+1−k

= 2−2n−k
(
1− 2−2n−k+1

)
≥ 2−2n−k

(7/8)
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for k = 0, . . . , n− 2, this distance is ≥ 7/8 for k = n− 1 and it is ≥ (7/8)2−2n+1

for the only zero in Jn(x). These give that

|P2n(x)| ≥ (7/8)2
n

2−2n+1
n−2∏
k=0

(
2−2n−k

)2k
= (7/8)2

n

2−(n+1)2n ,

and so, in view of (10),

|P2n(x)|/∥P2n∥L2(ν) ≥ (14/8)2
n

/2(n+2)/2.

This shows that if x lies in infinitely many “right” intervals, then it is ν-
irregular. But the only points inK that lie in only finitely many “right” intervals
are the left endpoints of intervals in different levels, so unless x is a left endpoint
of an interval at some level, then x is ν-irregular.

Now we show that K, and hence also the set of ν-irregular points, has
positive h1-measure. In fact, let K ⊂ ∪l

j=1Ij be a cover of K by open intervals
Ij , j = 1, 2, . . .. By compactness we may assume that their number l is finite.
Now K is the intersection of the compact sets Km constructed on the individual
levels m = 1, 2, . . ., hence the open cover ∪l

j=1Ij contains all the intervals on

some level, say KM ⊂ ∪l
i=jIj . Let Ij contain kj subintervals J1,j , . . . , Jkj ,j of

KM (each of length 2−2M+1

). Then for kj > 1, say for 2s < kj ≤ 2s+1, s ≥ 0, the
interval Ij must contain at least one complementary interval at level M − s (for
otherwise all the subintervals J1,j , . . . , Jkj ,j would belong to the same interval
at level M − s, which is not possible, since an interval at level M − s has at
most 2s subintervals at level M). But all subintervals of [0, 1] \ KM−s are of

length ≥ (7/8)2−2M−s

, and so

1

log 1/|Ij |
≥ 1

log 1/((7/8)2−2M−s)
≥ 2s−M

2 log 2
≥ kj2

−M/4.

If kj = 1 then we just use

1

log 1/|Ij |
≥ 1

log 1/|J1,j |
=

2−M−1

log 2
≥ kj2

−M/4.

Hence
l∑

j=1

1

log 1/|Ij |
≥

l∑
j=1

kj2
−M/4 = 2M2−M/4 =

1

4
,

which proves the claim.

Example 4 is rather extreme: it exhibits a measure ν such that its support
S(ν) is relatively large (has positive h1-measure), but the set R(ν) of regular
points is small (countable). This raises the question if R(ν) can even be smaller,
for example can it be empty? Our last result claims that the answer is no:
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Theorem 5 For any measure ν-almost all points are regular, i.e. ν(C\R(ν)) =
0.

Proof. Define the Christoffel functions associated with ν as

λn(z) = inf
Pn(z)=1

∫
|Pn|2dµ.

With this the definition of ν-regularity in (1) clearly takes the form

lim sup
n→∞

1

λn(z)1/n
= 1.

It is well known that if pk are the orthonormal polynomials associated with ν
then

1

λn(z)
=

n∑
k=0

|pk(z)|2.

Now for a q > 1 the set

Gn,q = {z ∈ S(ν) 1/λn(z) > qn}

is of measure at most (n+ 1)/qn since

qnν(Gn,q) ≤
∫
Gn,q

1

λn(z)
dν(z) ≤

∫ ( n∑
k=0

|pk|2
)
dν = n+ 1.

Therefore, the set

lim sup
n→∞

Gn,q :=
∩

N→∞

∞∪
n=N

Gn,q

is of zero ν-measure. Now this proves the claim, since the set of ν-irregular
points is ∪

q>1

lim sup
n→∞

Gn,q = lim
q↘1

lim sup
n→∞

Gn,q,

and hence it has zero ν-measure.
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