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Abstract

Recently it has been shown, that if a weight has the doubling property
on its support [−1, 1], then the zeros of the associated orthogonal poly-
nomials are uniformly spaced: if θm,j and θm,j+1 are the places in [0, π],
for which cos θm,j and cos θm,j+1 is the j-th and the j + 1-th zero of the
m-th orthogonal polynomial, then θm,j − θm,j+1 ∼ 1

m
. In this paper it is

shown, that this result is also true in a local sense: if a weight has the
doubling property in an interval of its support, then uniform spacing of
the zeros is true inside that interval. The result contains as special cases
some theorems of Last and Simon on local zero spacing of orthogonal
polynomials.

1 Results

Let µ be a measure with compact support on the real line. The m-th associated
orthonormal polynomial of degree m is denoted by pm = pm(µ, x). For a long
while it has been well known that its zeros are distinct, single, and lie in the
convex hull of the support. In the literature a lot of articles have dealt with
the zeros of orthogonal polynomials and their asymptotic distribution, see e.g.
[10, Chapter VI], [2, Chapter 5], [1, Chapter 2], [7] or [8, Chapter 1,8]. For
establishing the distribution of the zeros relatively weak assumptions are needed,
see e.g. [9, Chapter 2], but finer questions like the spacing between neighbouring
zeros need stronger conditions. A relatively mild property, namely the doubling
property will be used in this work. The measure µ is called doubling on an
interval [a, b] if for some constant L we have µ(2I) ≤ Lµ(I) for all intervals
2I ⊆ [a, b], where 2I is the interval twice the length of I and with midpoint at
the midpoint of I. When using this terminology we tacitly will always assume
that µ is not identically zero on [a, b], and then the doubling property easily
implies that [a, b] must be part of the support of µ. Recently G. Mastroianni
and V. Totik [5] proved that if the support of µ is the interval [−1, 1] and µ has
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the doubling property on it, then the zeros array themselves fairly regularly,
namely if xm,j = cos θm,j and xm,j+1 = cos θm,j+1 are adjacent zeros of the
m-th orthonormal polynomial then

1
A

(√
1−x2

j,m

m + 1
m2

)
≤ xm,j+1 − xm,j ≤ A

(√
1−x2

j,m

m + 1
m2

)
or, in another form,

1
A

1
m
≤ θm,j − θm,j+1 ≤ A

1
m

with some constant A depending only on the doubling constant of µ. Observe
that this implies that the distance between neighbouring zeros lying in a fixed
closed subinterval of (−1, 1) is ∼ 1

m .
In this paper we prove that this regular spacing of the zeros holds inside

every interval on which the measure is doubling, i.e. the aforementioned uniform
spacing is actually a consequence of a local property of the measure.

Theorem 1. Let µ be a measure with compact support on the real line and with
the doubling property on [a, b]. Then for every δ > 0 there exists a constant A
independent of m such that

1
Am

≤ xm,j+1 − xm,j ≤
A

m
, j = k, k + 1, . . . , l − 1, (1)

where xm,k < xm,k+1 < . . .< xm,l are the zeros of pm in [a + δ, b− δ].

Remark 1. The assumptions of the theorem imply that for large m there are
zeros in [a+δ, b−δ], and their number actually tends to infinity with m. In fact,
because of the compactness of the support the moment problem is determinate
[2, II.2. Theorem 2.2], so if x ∈ supp(µ) and ε̂ > 0 then there is a zero of pn in
(x− ε̂, x+ ε̂) for large n [8, 1.2 11. Fact 1], which shows that the roots eventually
fill [a + δ, b− δ] for every δ > 0.
Remark 2. It is clearly enough to prove the existence of a threshold m0 such
that for m ≥ m0 the theorem holds with a constant A′.
Remark 3. Monitoring the constants in the proof of this theorem and Lemma
6 it follows that A′ depends only on δ, diam(supp(µ))

b−a and µ(R)
µ([a,b]) .

This theorem is about the zeros lying inside [a+δ, b−δ], i.e. about the zeros
that do not lie too close to a or b. For zeros lying close to a or b the result
may not be true, as is shown by any Jacobi weight and [a, b] = [−1, 1] (Jacobi
weights are doubling, but around ±1 their zero spacing is ∼ 1/m2).

The claim in the theorem can be formulated in the following way:

0 <
1
A
≤ lim inf

m→∞
m(xm,j+1 − xm,j) ≤ lim sup

m→∞
m(xm,j+1 − xm,j) ≤ A < ∞. (2)

From this form it immediately follows that the result above generalizes Y. Last
and B. Simon’s following two theorems:

A ∼ B means that the ratio of the two sides is bounded from below and from above by
two positive constants.
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Corollary 2 (Theorem 8.5 in [4]). Suppose dµ is purely absolutely continuous
in a neighbourhood of the point E0, and for some q > 0,

0 < lim inf
x→E0

w(x)
|x− E0|q

≤ lim sup
x→E0

w(x)
|x− E0|q

< ∞. (3)

Then
lim sup
m→∞

m|x(1)
m (E0)− x(−1)

m (E0)| < ∞,

where x
(1)
m (E0) is the smallest zero and x

(−1)
m (E0) is the largest zero of pm for

which x
(−1)
m (E0) ≤ E0 < x

(1)
m (E0).

Corollary 3 (Theorem 9.3 in [4]). Suppose dµ = w dx + dµs, where, for the
singular part, µs([x0 − δ, x0 + δ]) = 0 and, for the absolutely continous part,

0 < inf
|y−x0|≤δ

w(x) ≤ sup
|y−x0|≤δ

w(x) < ∞. (4)

Then for any ε < δ,

inf
|y−x0|<ε

lim inf
m→∞

m|x(1)
m (y)− x(−1)

m (y)| > 0.

We should only remark that the assumptions (3) and (4) imply the doubling
property, so Theorem 1 can be applied.

Before starting the next theorem we recall the definition of the m-th Christof-
fel function and Cotes numbers associated with the measure µ:

λm(ξ) := min
p(ξ)=1

deg p≤m

∫
p2(x) dµ(x),

where the infimum is taken for all polynomials of degree at most m taking the
value 1 at ξ, and

λm,k := λm(xm,k)

respectively.

Theorem 4. If µ is a measure with compact support on the real line and with
the doubling property on [a, b], then for every δ > 0 there exists a constant
B = Bδ such that

1
B
≤ λm,k

λm,k+1
≤ B, (5)

whenever xm,k and xm,k+1 ∈ [a + δ, b− δ].

Theorem 1 and Theorem 4 together have a converse.

Theorem 5. Let µ be a measure with compact support. If (1) and (5) hold on
every interval [a+ δ, b− δ] ⊂ supp(µ), δ > 0 (with some A and B in (1) and (5)
that may depend on δ), then µ has the doubling property on every such interval.
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2 Preliminaries

For the upper estimate in Theorem 1 we need the following lemma:

Lemma 6. Let µ be a measure with compact support on the real line and with
the doubling property on [a, b]. Then for every δ > 0 there is a constant D such
that for m > 2

δ

1
D

µ
([

ξ − 1
m , ξ + 1

m

])
≤ λm(ξ) ≤ Dµ

([
ξ − 1

m , ξ + 1
m

])
,

whenever ξ ∈ [a + δ, b− δ].

Before proving this we cite two lemmas, that we shall use in this article.

Lemma 7 (Example 2 in [3]). There exist positive constants C, c such that for
every m there are polynomials Pm of degree at most m satisfying

Pm(0) = 1, |Pm(x)| ≤ Ce−c
√

m|x|, x ∈ [−2, 2]. (6)

Lemma 8 (Lemma 2.1 in [6]). The following conditions for a measure µ are
equivalent:

(i) µ has the doubling property on [a, b]: there is an L = L ([a, b]) such that
µ(2I) ≤ Lµ(I) for all intervals 2I ⊂ [a, b].

(ii) There is an s and a K such that µ(I) ≤ K
(
|I|
|J|

)s

µ(J) for all intervals
J ⊂ I ⊂ [a, b].

(iii) There is an r > 0 and a K such that µ(J) ≤ K
(
|J|
|I|

)r

µ(I) for all intervals
J ⊂ I ⊂ [a, b].

(iv) There is an s > 0 and a K such that

µ(I) ≤ K

(
|I|+ |J |+ dist{I, J}

|J |

)s

µ(J)

for arbitrary intervals I and J ⊂ [a, b].

Now we are ready to verify Lemma 6. First we deal with the right-hand side.
The idea is to find a suitable polynomial with which λm can be estimated from
above. This polynomial will be fast decreasing on the support of the measure,
so its integral is small outside of the doubling interval (‘outside integral’), while
inside of that interval we can estimate its integral by applying the doubling
property (‘inside integral’).

As for the left-hand side we show it comes from the case when a measure
has the doubling property on all its support.
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Proof of Lemma 6. We may assume that the support of µ is a subset of [−1, 1].
According to Lemma 7, there is a Pm polynomial of degree m with the properties
in (6).

Using this we get for λm and for ξ ∈ [a + δ, b− δ]:

λm(ξ) = min
p(ξ)=1

deg p≤m

∫
p2(x) dµ(x) ≤

∫
P 2

m(x− ξ) dµ(x) ≤
∫

C2e−2c
√

m(x−ξ) dµ(x)

=
∫ ξ+ 1

m

ξ− 1
m

C2e−2c
√

m|x−ξ| dµ(x)

+
∫ ξ− 1

m

a+ δ
2

C2e−2c
√

m|x−ξ| dµ(x) +
∫ b− δ

2

ξ+ 1
m

C2e−2c
√

m|x−ξ| dµ(x)

+
∫ a+ δ

2

−1

C2e−2c
√

m|x−ξ| dµ(x) +
∫ 1

b− δ
2

C2e−2c
√

m|x−ξ| dµ(x),

(7)

provided m ≥ 2
δ

First we estimate the fourth and the fifth integrals (‘outside integrals’) of
the right-hand side:

∫ 1

b− δ
2

C2e−2c
√

m|x−ξ| dµ(x) ≤
∫ 1

b− δ
2

C2e−2c
√

m|(b− δ
2 )−ξ| dµ(x)

= C2e−2c
√

m|(b− δ
2 )−ξ|

∫ 1

b− δ
2

dµ(x) ≤ C2e−2c
√

m|(b− δ
2 )−(b−δ)| µ([−1, 1])

= C2e−2c
√

m δ
2 µ([−1, 1]).

(8)

Using the doubling property (Lemma 8 (ii))

µ
([

ξ − 1
m , ξ + 1

m

])
≥ K

(∣∣[ξ − 1
m , ξ + 1

m

]∣∣
|[a, b]|

)s

µ ([a, b])

= K

(
2

b− a

)s

µ ([a, b])
1

ms

(9)

follows. Since for sufficiently large m

C2e−2c
√

m δ
2 µ([−1, 1]) ≤ K

(
2

b− a

)s

µ ([a, b])
1

ms

holds, by (8) and (9) the inequality∫ 1

b− δ
2

C2e−2c
√

m|x−ξ| dµ(x) ≤ µ
([

ξ − 1
m , ξ + 1

m

])
(10)
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is also true for large m. The estimate of the fourth integral is similar.
Now we consider the second and the third integrals (‘inside integrals’) of the

right-hand side of (7). Denote by T the integer, for which ξ + T
m < b − δ

2 ≤
ξ + T+1

m . Then∫ b− δ
2

ξ+ 1
m

C2e−2c
√

m|x−ξ| dµ(x) ≤
∫ ξ+ T+1

m

ξ+ 1
m

C2e−2c
√

m|x−ξ| dµ(x)

≤
T∑

i=1

∫ ξ+ i+1
m

ξ+ i
m

C2e−2c
√

m(ξ+ i
m−ξ) dµ =

T∑
i=1

∫ ξ+ i+1
m

ξ+ i
m

C2e−2c
√

i dµ.

Again using the doubling property with some K and s (Lemma 8 (iv)) we have

µ
([

ξ + i
m , ξ + i+1

m

])
≤ K

(
1
m + 1

m + i−1
m

1
m

)s

µ
([

ξ, ξ + 1
m

])
≤ K(i + 1)sµ

([
ξ, ξ + 1

m

])
.

From this we obtain that
T∑

i=1

∫ ξ+ i+1
m

ξ+ i
m

C2e−2c
√

i dµ ≤ K2s

( ∞∑
i=1

isC2e−2c
√

i

)
︸ ︷︷ ︸

cons.<∞

µ
([

ξ, ξ + 1
m

])
,

(11)

because 2i ≥ i + 1.
Since the estimate of the second integral follows the same way, we do not

detail it.
Collecting (8), (10) and (11) we get the required inequality of the right-hand

side in Lemma 6.

In order to prove the lower estimate we recall that if µ is a doubling measure
on [−1, 1], then for the Christoffel function there is a constant C independent
of m and x such that

1
C

µ
([

x−
(√

1−x2

m + 1
m2

)
, x +

(√
1−x2

m + 1
m2

)])
≤ λm(x)

holds (see [6, (7.14)]). It is clear in the light of the doubling property that when
we are of positive distance from ±1 and η, ρ > 0, then the last inequality is
equivalent to the following one (maybe with a different C that may depend on
η and ρ):

1
C

µ
([

x− η
m , x + η

m

])
≤ λm(x), x ∈ [−1 + ρ, 1− ρ].

Simple linear transformation gives a similar inequality when µ is supported on
an interval [a, b] and is doubling there. Finally, if [a, b] is a proper subset of
the support of µ and µ is doubling there, then the lemma follows from the
inequality λm(x, µ) ≥ λm(x, µ|[a,b]), if we apply the just mentioned inequality
to the restricted measure µ|[a,b].
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3 Proofs

After these preparations the proof of Theorem 1, Theorem 4 and Theorem 5 is
similar to those found in [5].

Proof of Theorem 1. First we deal with the upper estimate in (1). It can be
assumed that supp(µ) ⊂ [−1, 1]. Fix m ≥ 2

δ and let xj = xm,j , xj+1 = xm,j+1 ∈
[a + δ, b− δ]. We apply the Markoff inequality [2, I.5. (5.4)], that claims∑

xj<x

λm,j ≤ µ((−∞, x)) ≤ µ((−∞, x]) ≤
∑
xj≤x

λm,j . (12)

From this and Lemma 6 we get

µ([xj , xj+1]) ≤ λm,j + λm,j+1

≤ D
(
µ
([

xj − 1
m , xj + 1

m

])
+ µ

([
xj+1 − 1

m , xj+1 + 1
m

]))
.

(13)

If xj+1−xj ≤ 2
m then there is nothing to prove, so we may assume xj+1−xj >

2
m . In this case

xj + 1
m < xj+1 − 1

m .

Setting

I =
[
xj − 1

m , xj+1 + 1
m

]
,

E1 =
[
xj − 1

m , xj + 1
m

]
and

E2 =
[
xj+1 − 1

m , xj+1 + 1
m

]
,

by the doubling property (Lemma 8 (i)), we have

µ(I) ≤ Lµ([xj , xj+1]) ≤ DL (µ(E1) + µ(E2)) ,

where the last inequality follows from (13).
Again using the doubling property (Lemma 8 (iii))

µ(E1) ≤ K

(
|E1|
|I|

)r

µ(I),

µ(E2) ≤ K

(
|E2|
|I|

)r

µ(I)

follows. Consequently, by simplifying with µ(I), the preceding inequalities imply

1 ≤ DL
K

|I|r
(|E1|r + |E2|r) ≤ 2DL

K

|I|r
(|E1|+ |E2|)r

.

After a rearranging

xj+1 − xj < |I| ≤ (2DLK)
1
r (|E1|+ |E2|) ≤

4(2DLK)
1
r

m
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is obtained, which was to be demonstrated.

Now, let us consider the inequality on the left-hand side of (1). The basis
of the proof is the Remez inequality [6, (7.16)]: If µ is a doubling measure
on [−1, 1], then for every Λ > 0 there is a constant C = CΛ such that for
| arccos(E)| ≤ Λ

m ∫ 1

−1

p2
m dµ ≤ C

∫
[−1,1]\E

p2
m dµ, (14)

where E consists of finitely many intervals. This implies by simple linear trans-
formation that if µ is doubling on [a, b], δ > 0, I ⊂ [a + δ, b− δ] is an interval of
length ≤ 2

m and qm is a polynomial of degree at most m, then∫
[a,b]

q2
m dµ ≤ C

∫
[a,b]\I

q2
m dµ,

where C depends only on δ and the doubling constant of µ on [a, b].
From here the proof is a literal repeat of the proof of Theorem 1 in [5]. In

fact, we may assume that xj+1 − xj = δ
m , where 0 < δ < 1/2, otherwise we are

done. Let qm−2 = pm

(x−xj+1)(x−xj)
. Since deg(qm−2) ≤ m− 2 we have

0 =
∫

R
pmqm−2 dµ =

∫ 1

−1

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

=
∫ xj+1

xj

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

+
∫

[−1,1]\[xj ,xj+1]

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

≥
∫ xj+1

xj

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

+
∫

[a,b]\[xj ,xj+1]

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

(15)

considering that (x− xj+1)(x− xj) ≥ 0 is positive outside [xj , xj+1].
Let us deal with the last two integrals separately. As xj+1−xj ≤ δ

m , we get
for the first one:∫ xj+1

xj

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

= −
∫ xj+1

xj

q2
m−2(x)|x− xj+1||x− xj |dµ(x) ≥ − δ2

m2

∫ xj+1

xj

q2
m−2 dµ.

In the case of the second integral we use the assumption xj+1 − xj ≤ δ
m < 1

2m
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and the Remez inequality:∫
[a,b]\[xj ,xj+1]

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

≥
∫

[a,b]\[xj− 1
m ,xj+

1
m ]

q2
m−2(x)(x− xj+1)(x− xj) dµ(x)

≥ 1
(2m)2

∫
[a,b]\[xj− 1

m ,xj+
1
m ]

q2
m−2 dµ ≥ 1

4Cm2

∫ b

a

q2
m−2 dµ

≥ 1
4Cm2

∫ xj+1

xj

q2
m−2 dµ.

Using the last inequalities we continue (15):

0 ≥ − δ2

m2

∫ xj+1

xj

q2
m−2 dµ +

1
4Cm2

∫ xj+1

xj

q2
m−2 dµ

=
(

1
4C

− δ2

)(
1

m2

)∫ xj+1

xj

q2
m−2 dµ.

This is possible only if 1
4C − δ2 ≤ 0, that is if δ ≥ 1

2
√

C
. This means that,

necessarily, xj+1 − xj ≥ 1
2
√

C
1
m , so the lower estimate also holds.

Proof of Theorem 4. The theorem is a simple consequence of Theorem 1,
Lemma 6 and the doubling property (Lemma 8 (i)) on [a, b].

Theorem 1 shows that[
xk+1 − Â

m , xk+1 + Â
m

]
⊃
[
xk − 1

m , xk + 1
m

]
holds for Â := A + 1. Now by Lemma 6 and the doubling property we get the
upper estimate :

λm,k

λm,k+1
≤

Dµ
([

xk+1 − Â
m , xk+1 + Â

m

])
1
D µ
([

xk+1 − 1
m , xk+1 + 1

m

]) ≤ D2Ldlog2 Âe.

The proof of the lower estimate for the quotient λm,k

λm,k+1
is similar.

Poof of Theorem 5. As we mentioned above the proof follows the proof of
Theorem 3 in [5], however it is technically somewhat simpler since we work far
from the endpoints of [a, b].

Fix δ. Applying Remark 1 to
[
a + δ

2 , b− δ
2

]
it follows that there is an m1

such that whenever m ≥ m1 then there exists a zero of the m-th orthonormal
polynomial on

[
a + δ

2 , a + δ
]

and on
[
b− δ, b− δ

2

]
, respectively.

dxe denotes the least integer not less than x.
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We have to prove that there is a constant L such that for every interval I
for which 2I ⊂ [a + δ, b− δ]

µ(2I) ≤ Lµ(I)

holds. It can be easily seen that it is enough to prove this for intervals with
length at most 8A

m1
, where A is the constant in (1).

Let us choose m such that

4A

m
< |I| ≤ 8A

m
, (16)

so, if τ denotes the center of I, by (1) and the Remark 1, there is a k such that
xm,k < τ ≤ xm,k+1, moreover

[xm,k−1, xm,k+1] ⊂ I. (17)

On the other hand since 2I ⊂ [a + δ, b− δ], there is a largest (smallest) zero
to the left (right) of 2I by Remark 1, that is there are xm,k−r and xm,k+s ∈[
a + δ

2 , b− δ
2

]
for which

[xm,k−r+1, xm,k+s−1] ⊂ 2I ⊂ [xm,k−r, xm,k+s]. (18)

Note that (17) and (18) imply a lower and an upper estimate for the measure
of I and 2I respectively. So if the quotient µ([xm,k−r,xm,k+s])

µ([xm,k−1,xm,k+1])
can be estimated

above by a fix constant independent of I, we are done.
From (17) and the Markoff inequality (see (12)) we immediately obtain:

µ(I) ≥ µ([xm,k−1, xm,k+1]) ≥ λm,k. (19)

Let us try to estimate the measure of [xm,k−r, xm,k+s] by λm,k too. Again
using the Markoff inequality (see (12)), (1) and (5) we get

µ([xm,k−r, xm,k+s]) ≤
s∑

j=−r

λm,k+j ≤ λm,k

s∑
j=−r

B|j|, (20)

where B = B δ
2

is the constant in (5) for the interval
[
a + δ

2 , b− δ
2

]
. According

to (1), the left side of (16) and (18)

2|I| ≥ xm,k+s−1 − xm,k ≥ (s− 1) 1
Am ≥ (s− 1) |I|8A2

from which we gain an upper estimate for s and, in a similar way, for r, namely
max(s, r) ≤ 16A2 + 1. Putting this fact together with (20) we obtain

µ(2I) ≤ µ([xm,k−r, xm,k+s]) ≤ 2B16A2+2λm,k. (21)

Comparing (19) and (21) we can infer the doubling property with the doub-
ling constant L = 2B16A2+2, and this is already independent of I.
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