
A Comparison of Different Source Code
Representation Methods for Vulnerability

Prediction in Python

Amirreza Bagheri1 and Péter Hegedűs2,3

1 University of Szeged, Software Engineering Department
bagheri@inf.u-szeged.hu

2 MTA-SZTE Reserach Group on Artificial Intelligence, ELKH
3 FrontEndART Ltd., Szeged, Hungary

hpeter@inf.u-szeged.hu

Abstract. In the age of big data and machine learning, at a time when
the techniques and methods of software development are evolving rapidly,
a problem has arisen: programmers can no longer detect all the security
flaws and vulnerabilities in their code manually. To overcome this prob-
lem, developers can now rely on automatic techniques, like machine learn-
ing based prediction models, to detect such issues. An inherent property
of such approaches is that they work with numeric vectors (i.e., feature
vectors) as inputs. Therefore, one needs to transform the source code
into such feature vectors, often referred to as code embedding. A popu-
lar approach for code embedding is to adapt natural language processing
techniques, like text representation, to automatically derive the necessary
features from the source code. However, the suitability and comparison
of different text representation techniques for solving Software Engineer-
ing (SE) problems is rarely studied systematically. In this paper, we
present a comparative study on three popular text representation meth-
ods, word2vec, fastText, and BERT applied to the SE task of detecting
vulnerabilities in Python code. Using a data mining approach, we col-
lected a large volume of Python source code in both vulnerable and fixed
forms that we embedded with word2vec, fastText, and BERT to vectors
and used a Long Short-Term Memory network to train on them. Us-
ing the same LSTM architecture, we could compare the efficiency of the
different embeddings in deriving meaningful feature vectors. Our find-
ings show that all the text representation methods are suitable for code
representation in this particular task, but the BERT model is the most
promising as it is the least time consuming and the LSTM model based
on it achieved the best overall accuracy(93.8%) in predicting Python
source code vulnerabilities.

Keywords: vulnerability prediction · code embedding · comparative
study · machine learning

1 Introduction

Security bugs (i.e., vulnerabilities) in software are becoming more and more dif-
ficult to identify in today’s applications, allowing hackers and attackers to profit



2 Bagheri and Hegedűs

from their exploit. Every year, tens of thousands of such vulnerabilities are dis-
covered and fixed. Manually auditing source code and finding vulnerabilities is
costly at best, if not impossible at all. Therefore, researchers and practitioners
have proposed various tools that can help in discovering vulnerabilities auto-
matically. Classical vulnerability detection tools rely on static [10, 3, 17] or dy-
namic [22, 20, 24] code analysis, symbolic execution or taint analysis. However,
with the advent of efficient machine learning techniques, new approaches appear
that try to solve Software Engineering (SE) problems by training AI prediction
models on large amount of annotated code samples. Vulnerability detection is one
typical such SE task that has been addressed with these new ML approaches. As
of today, using prediction models to decide if a source code fragment is vulnera-
ble or has became a very common and effective approach. An inherent property
of such approaches is that they can work with numeric vectors (i.e., feature
vectors) as inputs.Therefore, one needs to transform the source code into such
feature vectors, often referred to as code embedding. This process can be either
manual (i.e., defining and extracting features from source code manually, like
lines of code, number of branches, code complexity) or automatic (i.e., applying
ML based techniques to automatically learn the vector representation of code).
A popular approach for automatic code embedding is to adapt natural language
processing techniques, like text representation [26], to automatically derive the
necessary features from the source code.Despite their popularity, the suitability
and comparison of different text representation techniques for solving SE prob-
lems has been rarely studied systematically.Given the fact that the accuracy of
prediction models relies heavily on the appropriate representation of input data,
we need empirical data about the effect of such representations on the underlying
SE task to be solved.

In this paper, we present a comparative study of three popular text repre-
sentation methods, word2vec [9], fastText [15], and BERT [11] applied to the
SE task of detecting vulnerabilities in Python code. We applied a data mining
approach to collect a suitable training data for training vulnerability prediction
models.Using a heuristic approach (i.e., searching for simple terms indicating
security fixes in commit logs) we collected a large volume of Python source
code from GitHub in both vulnerable and fixed forms.We generated the vector
representation of these code fragments using automatic code embedding based
on the word2vec, fastText, and BERT text representation methods and used
a Long Short-Term Memory [23] network to create a vulnerability prediction
model based on them. Training the LSTM model with the same architecture
on each of the different code representations, we could compare the efficiency of
the various embeddings in deriving meaningful feature vectors for vulnerability
prediction. We investigated the following two research questions using the above
described methodology:

RQ1: Is there a significant difference in the performance of the vulnerability
prediction models based on the different code embedding methods?

RQ2: Are some of the code embedding methods more suitable for predicting
certain types of vulnerabilities than others?



Comparison of Source Code Representations 3

Our findings show that all the text representation methods are suitable for
code representation in this particular task, but the BERT model is the most
promising, as it is the least time consuming, and the LSTM model based on
it achieved the best overall accuracy(93.8%) in predicting Python source code
vulnerabilities. Regarding the various vulnerability types, we observed slight
variances in model performances based on the applied source code embeddings.
Nonetheless, the prediction model based on the word2vec representation of code
clearly outperformed models based on fastText and BERT for detecting SQL in-
jection, while in case of Command Injection, Cross-Site Request Forgery (XSRF),
Remote Code Execution (RCE), and Path Disclosure the BERT based models
achieved better results than models based on the other two embeddings.

The rest of the paper is organized as follows. In Section 2 we introduce works
that are similar to ours. Section 3 gives details about our dataset collection
methodology, while in Section 4 we describe our overall approach for the sys-
tematic comparison of the different source code embedding methods. Section 5
contains the comparison results. We summarize the set of threats to the validity
of our work in Section 6 and conclude our findings in Section 7.

2 Related Work

Solving a SE task with machine learning requires the input source code to be
represented as a numeric vector. Therefore many approaches have been proposed
for deriving meaningful code representations to feed into ML models.

Alon et al. [2] introduce code2vec, a neural model for representing snippets of
code as continuous distributed vectors. The method first breaks down the code
to a collection of paths in its abstract syntax tree. Then, the network learns
the atomic representation of each path while simultaneously learning how to
aggregate a set of them.

Lozoya et al. [16] introduce a new code embedding technique called com-
mit2vec based on code2vec. This representation focuses on embedding code
changes rather than code snapshots, which they used to successfully train models
to detect vulnerability fixing commits.

Ben-Nun et al. [4] propose a code embedding technique called inst2vec that
is based on an Intermediate Representation (IR) of the code that is independent
of the source programming language. They provide a novel definition of con-
textual flow for this IR, leveraging both the underlying data- and control-flow
of the program. The athors of the paper demonstrate the effectiveness of the
approach on compute device mapping, optimal thread coarsening and algorithm
classification .

Mou et al. [18] propose the “coding criterion” to build program vector rep-
resentations, which are the premise of deep learning for program analysis. They
evaluate the learned vector representations both qualitatively and quantitatively.

In our work, we do not propose new code embedding techniques, rather evalu-
ate the impact of different text representation methods (i.e., word embeddings)
used as code representations for vulnerability prediction. As these techniques
are usually used under the hood of the more complex code representations, this



4 Bagheri and Hegedűs

is a natural first step towards better understanding the application of natural
language processing techniques for solving SE tasks.

There are also many related works that focus on vulnerability prediction or
similar SE tasks based on word embeddings in particular. Harer et al. [13] use
word2vec to create word embeddings for C/C++ tokens. Based on this code
representation they successfully train machine learning models to predict the
results of static analyzers.

White et al. [27] apply word2vec in the scope of automatic program repair.
In their approach, DeepRepair, they create Java token embeddings that they use
to start a recursive encoder for abstract syntax trees. Chen and Monperrus [7]
use word2vec to create Java token embeddings for automated program repair as
well, in order to find the correct ingredients.

Unlike the works mentioned above, we are not focusing on creating a state-
of-the-art prediction model for a particular SE task. Rather, we investigate the
capabilities of various text vectorization techniques as source code representa-
tions in the context of identifying vulnerabilities in Python code with ML.

The work of Russel et al. [19] is the closest one to ours. They developed a fast
and scalable vulnerability detection tool based on deep feature representation
learning that directly interprets lexed source code. They compared the bag-of-
words (BOW) based simple source code embedding with code representations
learned by CNN and RNN models automatically (i.e., with an embedding layer).
Although our approach is similar, we do not compare different ML models and
automatic code representation learning, but explicitly compare the effect of ap-
plying word embeddings as features for an LSTM prediction model. To the best
of our knowledge, ours is the first attempt to systematically evaluate the im-
pact of word2vec, fastText, and BERT-based code embeddings on vulnerability
prediction.

3 Dataset Extraction
In order to compare the various word embedding based code representations,
we need a training dataset for the vulnerability prediction model relying on
them. We applied a data mining approach to gather actual vulnerability fixes
from various repositories and use them to train our model to recognize differ-
ent patterns of security vulnerabilities in source code. We chose GitHub as our
data source as it contains a wide range of open source applications, including
Python source code, which we focus on in this work. We searched for commits
in Python projects with some vulnerability related keywords included in their
commit messages. There are numerous types of security vulnerabilities in pro-
gramming languages, but most of them are spread across languages. We focus
on some of the most popular vulnerability types, namely SQL and command
injection, cross-site scripting, cross-site request forgery, remote code execution,
and path disclosure. Our overall data mining process is displayed in Figure 1.

3.1 Mining GitHub

We followed the guidance provided by Chaturvedi et al. [6], who demonstrated
how to use tools and datasets to mine database repositories and assist us in



Comparison of Source Code Representations 5

Fig. 1. GitHub data mining process to find vulnerability fixes

gathering data in this time-consuming task. The first step is to collect a large
number of commits that are candidate vulnerability fixes. We searched for vul-
nerability fixing commits by querying GitHub data through its public REST
API. Because of GitHub constraints, we first had to extract a dataset containing
commits coming from different language projects and then filter out data related
to Python projects. We ended up collecting approximately 70k commits yielding
to 140k Python code snippets (vulnerable and fixed together) from 14k different
Python projects. To facilitate reproducibility, we published all the collected data
and processing scripts in the form of an online appendix.4

3.2 Filtering the Data

After collecting the candidate commits, we filtered them based on some security
relevant keywords. Some sample keywords we use in the heuristic data collection
scripts are shown in Figure 2. For the complete list of search terms, see the script
source in the online appendix package.

Fig. 2. Security related search terms used by our heuristic data collection script

We used the PyDriller tool [21] to download repositories and look for rele-
vant commits and extract information from them. We also filtered out commits
that did not contain changes in files with ’.py’ extension. Once we identified
the commits that are related to vulnerability fixes, we downloaded the changed
source code before and after the fixes. It turned out that downloading the source
code in a reasonable amount of time was possible if all of the scanning was done
ahead of time in a clever way to keep the number of downloaded repositories to a
bare minimum. The diffs files we downloaded are essentially large text files that
represent the changes in the source code introduced by a commit; however, they
contained some unnecessary details (file name, line number) that we eliminated
before assembling the final dataset using the previous and subsequent versions of
the code snippet. Both snippets contained the changed lines so we could extract
and label the functions in the previous version as vulnerable while after the fix,
they become not vulnerable.

4 https://doi.org/10.5281/zenodo.4703996



6 Bagheri and Hegedűs

3.3 Labels

After filtering the commits based on their messages and downloaded the relevant
code changes in form of diffs, we created the final labeled dataset as follows. We
removed the comments from the affected code blocks because they are unlikely to
impact a file’s vulnerability. After that, we extracted the fragments of code (i.e.,
code blocks) from the diff files that were affected by the fix in the commit and
assigned the vulnerable label to its pre-fixed version while not vulnerable label
was assigned to its fixed form. However, it is not trivial to identify the exact
code blocks within the whole source file that were affected by a vulnerability
fixing change. For this, we analyzed the downloaded diff files and implemented
the algorithm presented by Hovsepyan et al. [14] and Wartschinski et al. [25] to
find the appropriate code block.

4 Approach

The primary goal of this work is to compare various embedding layers based
on text representations in order to determine their capabilities in detecting vul-
nerabilities in Python programs. To achieve an objective comparison, we need
to apply the different source code embedding methods selected with the same
ML algorithm trained on the same dataset. We evaluate the embedding methods
by training a Long Short-Term Memory (LSTM) model with the same hyper-
parameters on the dataset described in Section 3.

4.1 The Evaluated Embedding Layers

To encode the code tokens we need to transfer the code tokens into vectors
using one of our selected embedding methods (word2vec, fastText and BERT).
For word2vec and fastText we need to train a model that learns the embeddings
based on a large corpus of Python source code. To collect this, we also mined
GitHub for popular Python projects.

Word2vec: Word2vec is one of the most widely adopted word embedding meth-
ods to represent source code in vector form. To derive word2vec based source code
embeddings, we needed to train a suitable word2vec model on Python source
code to encode the code tokens into word2vec vectors. Training the word2vec
model requires a large corpus of Python source code (for further reference, see
the works of Bhoopchand et al. [5] and Allamanis et al. [1]).

To collect such a corpus, we searched for popular projects on GitHub. GitHub
uses two metrics to measure a repository’s popularity: stars (user-created high-
lights) and forks (number of copies of a repository). The list of selected reposi-
tories with a high number of stars and forks used as a code corpus is available
in our online appendix. We used PyDriller [21] for querying the most popular
projects and downloading their source files. The resulting source code, 11 mil-
lion lines in total from 38 of the most popular projects, is simply concatenated
to create a single massive Python code file. Another script is then used to fix
any issues with the text, such as indentation errors. We transform the Python
programs into Python tokens using the built-in Python tokenizer. We delete the



Comparison of Source Code Representations 7

comments from files and add new lines at the end of the file. Tabs and indenta-
tions have been normalized. The word2vec model is then trained on the corpus
using the Gensim 5 Python package (see Figure 3). All the word2vec training
scripts are also part of our online appendix.

Fig. 3. Transforming code into vectors

FastText: We use the exact same process for calculating fastText [15] embed-
dings as for word2vec. This means, we apply the same data analysis and tokenizer
scripts and train the embedding model with the same Python code corpus. We
chose fastText as a study subject because word2vec only learns vectors for words
that are complete in the training corpus. FastText, on the other hand, learns
vectors for both the n-grams and the full words contained inside each word. Fast-
Text uses the mean of the target word vector and its component n-gram vectors
for training at each step. The change derived from the error is then applied uni-
formly to all of the vectors that were combined to form the target. This adds a
significant amount of extra computation to the training step. A word must sum
and average its n-gram component parts at each point.

BERT: Bidirectional Encoder Representations from Transformers (BERT) is a
Google-developed Transformer-based machine learning technique for natural lan-
guage processing (NLP) pre-training [11]. Jacob Devlin and his Google colleagues
developed and released BERT in 2018. We selected this embedding method for
comparison due to its recent successes within the NLP field. As the BERT model
is pre-trained on natural language texts, to adopt it to source code, we used its
Microsoft’s variant, called CodeBERT [12]. CodeBERT is a pre-trained BERT
model for programming languages. In the context of this paper, we used BERT
only as an embedding method and we feed all output tokens to an LSTM model.
The biggest difference between BERT and the other two embedding methods
is that the training part of the embedding model is done in advance using a
huge corpus in case of BERT, while for word2vec and fastText, we need to do
the training locally. This means that CodeBERT can be used out of the box,
without having to train a model for token embeddings.

5 https://radimrehurek.com/gensim/



8 Bagheri and Hegedűs

4.2 Preparing the Data for Classification

The collected vulnerability dataset (see Section 3) contains data in the form of
vulnerable and not vulnerable code snippets. We need to transform these into
a list of tokens (such as ’+’, ’for’, ’init’) and convert each token into its vector
representation according to the different embedding methods. Each list of such
vectors (representing the list of tokens of the underlying code snippet) will be
labeled, where label ’1’ means that the code is vulnerable and ’0’ means it is
not vulnerable. Since ML models require a fix-sized input, we took the overall
length of the concatenated vectors for the longest code snippet in our dataset
and padded all the shorter ones with zeros to make them have the same length.

We split the training dataset into three sets, train, validation and test. 80%
of the data selected randomly is used for training, 10% for validating and 10%
for testing. Note that the validation data is only used to evaluate the model
performance but all the results are presented on the test data, which the model
has never seen before, applying a 10-fold cross-validation.

4.3 Training the LSTM

After transforming each of our learning samples into a fix-sized numeric vector,
we are ready for training the LSTM model on them. For the implementation
of the model, we used the Keras library [8]. The first component of the model
is the LSTM layer, which learns the features associated with the label of the
code snippet (i.e., whether it is vulnerable or not). We can use a variety of
hyper-parameters for the model, like dropout.

Then, there is an activation layer that creates a dense output layer with
one neuron. We used the Sigmoid activation function as our aim is to predict
between two classes: vulnerable and not vulnerable. We applied different hyper-
parameters and tried out several different combinations of them as a set. Tech-
nically, the evaluation metric and loss functions are also hyper-parameters. We
chose to compare the model performances based on the F1-score metric.

Fig. 4. The steps of creating and evaluating the vulnerability prediction models based
on different code representations

Our model’s base hyper-parameter is the number of neurons, which has a
direct impact on its learning capacity; the more neurons we use, the more com-
plex structures our model can recognize, but the training can also take longer.



Comparison of Source Code Representations 9

Finally, we have the number of epochs, or the number of times the learning al-
gorithm can iterate over the entire training data set, which we set to 100 and
200. The high-level overview of our code representation evaluation/comparison
process is shown in Figure 4.

5 Results

With data mining, we created a large dataset of Python code snippets from
GitHub and labeled them as being vulnerable or not vulnerable based on de-
tected vulnerability fixing commits. The dataset covers six common types of
vulnerabilities (SQL and command injection, cross-site scripting, cross-site re-
quest forgery, remote code execution, and path disclosure). We trained an LSTM
classifier using different embedding layers (i.e., word2vec, fastText, and BERT)
with different hyper-parameters to compare the impact of the three different
source code embeddings on vulnerability detection predicting performance.

Fig. 5. LSTM model results using word2vec, fastText and BERT with various epochs
and dropout ratio

The results of the LSTM models based on the three different code embedding
layers are displayed in Figures 5 and 6. Figure 5 shows the changes in F1 scores
based on the number of epochs and ratio of dropout applied for the training.
As can be seen, the results are very close for the three embedding approaches.
Word2vec based results are slightly outperforming the others for small number
of epochs and high droput rate. However, for more than 75 epochs and a droput
rate lower than 20%, BERT based models perform the best.

Figure 6 depicts F1 score changes based on the hyper-parameters of neuron
counts and batch sizes. Again, the results achieved with the different embedding
methods are very close. For smaller number of neurons, word2vec based models
work better, while for large number of neurons, BERT becomes superior to
others. BERT is also the best performing model when it comes to various batch
sizes. It works best with batch sizes between 400 and 600. It is also true, that
word2vec slightly outperforms fastText when applying larger batch sizes.



10 Bagheri and Hegedűs

Fig. 6. LSTM model results using word2vec, fastText and BERT with various number
of neurons and batch sizes

LSTM models using the BERT-based code representation achieve, on aver-
age, an accuracy of 93.8%, a recall of 83.2%, a precision of 91.4%, and an an F1
score of 87.1%. The models based on the word2vec code representation achieve,
on average, an accuracy of 91%, a recall of 86.1%, a precision of 88.2%, and an
F1 score of 85.6%. While fastText code representation based models achieve, on
average, an accuracy of 91.8%, a recall of 86.4%, a precision of 85.1%, and an F1
score of 84%, on average, an accuracy of 91%, a recall of 81%, a precision of 90%
and an F1 score of 82%. Based on the results, we can answer RQ1 as follows.

RQ1. We did not observe significant differences in the vulnerability pre-
diction performances of the LSTM models trained on different code embed-
dings. All of them are suitable the represent code for this task (all the models
achieve an accuracy above 90%). However, for BERT based models seems
to perform slightly better, especially using larger batch sizes and smaller
dropout rate.

To answer RQ2, we calculated the same performance measures grouped by
the different vulnerability types. We categorized each code snippet according to
the keywords found in the vulnerability fixing commit. As it can be seen from
Figures 7, 8, and 9, there is not much variance in model performance values
within the categories.

Fig. 7. LSTM+word2vec results for each vulnerability categories

The word2vec based models (see Figure 7) show the least variance in model
performances within vulnerability categories. The only minor exception is the



Comparison of Source Code Representations 11

recall for XSS, which is clearly lower than that of the others or the average,
mostly because finding good vulnerable dataset of it is difficult and we think
that we didn’t train it with enough data. On the other hand, word2vec based
models perform the best among all in detecting SQL injection vulnerabilities.

Fig. 8. LSTM+fastText results for each vulnerability categories

The fastText based models (see Figure 8) show a higher variance within
vulnerability categories. They have similar average performance values to the
word2vec based models, but are less effective in finding XSS, XSRF, and Path
disclosure types of vulnerabilities.

Fig. 9. LSTM+BERT results for each vulnerability categories

The BERT based models (see Figure 9) have the highest average performance
measures and the variance in the values is small within the categories. The only
exception is SQL injection, where BERT based models are less efficient than the
other models (recall of 78%, F1 score of 80.1%). However, in case of Command
Injection, Cross-Site Request Forgery (XSRF), Remote Code Execution (RCE),
and Path Disclosure the BERT based models achieved better results than models
based on other embeddings. We can sum up the above observations to answer
RQ2 as follows.

RQ2. The prediction models based on the different code representations
show balanced performance measures within vulnerability categories. How-
ever, we found that vulnerability fix detection on top of word2vec-based em-
bedded code outperform others in detecting SQL injection, while all the re-
maining vulnerability types are detected most effectively when BERT based
models were used for code embedding .

6 Threats to Validity

The heuristic data collection is a major threat to the validity of the results.
With a keyword based commit search we might include irrelevant commits (that



12 Bagheri and Hegedűs

do not fix vulnerabilities) and we might miss out those that fix vulnerabilities
but do not contain the searched keywords. To mitigate this threat, we manually
investigated a small sample of the collected data, which we found to be accurate
in the majority of cases. Since we collected a very large amount of such training
data, the impact of several mis-classified commits should be negligible.

Many scenarios exist where a weakness arises from the interaction of lines
of code that are distributed over a large file (or multiple files). However, since
the examples for vulnerabilities used to train the model only concentrate on
the immediate vicinity of fixed lines, the model might be unable to learn the
consequences of far-reaching dependencies. Even though our results might not
generalize to all of the different types of vulnerabilities, we believe these prelim-
inary empirical results are already valuable.

Limitations in the chosen approach may also be a threat to the internal
validity. We selected one specific prediction model to compare three different
code embedding algorithms. Different ML models might yield to different results.
In the future, we plan to extend our scope and add multiple ML models and code
embeddings to the comparison.

7 Conclusion

In this paper, we presented an empirical study where we performed the compar-
ison of three word embedding based code representation methods in the context
of vulnerability prediction in Python code. These methods – word2vec, fastText,
and BERT – adopted from the field of natural language processing, are widely
used in practice to represent source code as numeric vectors and solve SE tasks
(e.g., code summarization, bug detection, or finding copy-pasted code parts)
with ML models trained on these representations. Despite their popularity, very
few works evaluate and compare their impact on the prediction performances of
the ML models relying on them.

With a data mining approach, we collected vulnerability fixing commits from
which we could extract vulnerable (before the fix) and not vulnerable (after the
fix) code snippets that formed our training dataset (140k Python code snippets
in total). We applied the three investigated code embeddings to these code snip-
pets and fed the resulting vectors into the same LSTM architecture to train a
prediction model. Our findings show that all the text representation methods are
suitable for code representation in this particular task, but the BERT model is
the most promising as it is the least time consuming and the LSTM model based
on it achieved the best overall accuracy(93.8%) in predicting source code vulner-
abilities. Regarding the various vulnerability types, we observed slight variances
in model performances based on the applied source code embeddings. Nonethe-
less, the prediction model based on the word2vec representation of code clearly
outperformed models based on fastText and BERT for detecting SQL injec-
tion, while in case of Command Injection, Cross-Site Request Forgery (XSRF),
Remote Code Execution (RCE), and Path Disclosure the BERT based models
achieved better results than models based on other embeddings.

Our future work will focus on using different classifiers and improving the
approach for labelling the data, collecting a dataset of higher quality, and lever-



Comparison of Source Code Representations 13

aging the commit context to create actionable fix recommendations. The work
could also be extended to other programming languages or types of vulnerabili-
ties.

Acknowledgment

The presented work was carried out within the SETIT Project (2018-1.2.1-NKP-
2018-00004)6 and supported by the Ministry of Innovation and Technology NRDI
Office within the framework of the Artificial Intelligence National Laboratory
Program (MILAB). The research was partly supported by the EU-funded project
AssureMOSS (Grant no. 952647).

Furthermore, Péter Hegedűs was supported by the Bolyai János Scholarship
of the Hungarian Academy of Sciences and the ÚNKP-20-5-SZTE-650 New Na-
tional Excellence Program of the Ministry for Innovation and Technology.

References

1. Allamanis, M., Sutton, C.: Mining source code repositories at massive scale using
language modeling. In: 2013 10th Working Conference on Mining Software Repos-
itories (MSR). pp. 207–216. IEEE (2013)

2. Alon, U., Zilberstein, M., Levy, O., Yahav, E.: code2vec: Learning distributed
representations of code. Proceedings of the ACM on Programming Languages
3(POPL), 1–29 (2019)

3. Arroyo, M., Chiotta, F., Bavera, F.: An user configurable clang static analyzer taint
checker. In: 2016 35th International Conference of the Chilean Computer Science
Society (SCCC). pp. 1–12. IEEE (2016)

4. Ben-Nun, T., Jakobovits, A.S., Hoefler, T.: Neural code comprehension: A learn-
able representation of code semantics. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems. p. 3589–3601. NIPS’18,
Curran Associates Inc., Red Hook, NY, USA (2018)

5. Bhoopchand, A., Rocktäschel, T., Barr, E., Riedel, S.: Learning python code sug-
gestion with a sparse pointer network. arXiv preprint arXiv:1611.08307 (2016)

6. Chaturvedi, K.K., Sing, V., Singh, P.: Tools in mining software repositories. In:
2013 13th International Conference on Computational Science and Its Applica-
tions. pp. 89–98. IEEE (2013)

7. Chen, Z., Monperrus, M.: The remarkable role of similarity in redundancy-based
program repair. arXiv preprint arXiv:1811.05703 (2018)

8. Chollet, F., et al.: Keras: The python deep learning library. Astrophysics Source
Code Library pp. ascl–1806 (2018)

9. Church, K.W.: Word2vec. Natural Language Engineering 23(1), 155–162 (2017)
10. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux, D., Rival,

X.: The astrée analyzer. In: European Symposium on Programming. pp. 21–30.
Springer (2005)

11. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. arXiv:1810.04805 (2018)

6 Project no. 2018-1.2.1-NKP-2018-00004 has been implemented with the support pro-
vided from the National Research, Development and Innovation Fund of Hungary,
financed under the 2018-1.2.1-NKP funding scheme.



14 Bagheri and Hegedűs

12. Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu,
T., Jiang, D., et al.: Codebert: A pre-trained model for programming and natural
languages. arXiv preprint arXiv:2002.08155 (2020)

13. Harer, J.A., Kim, L.Y., Russell, R.L., Ozdemir, O., Kosta, L.R., Rangamani, A.,
Hamilton, L.H., Centeno, G.I., Key, J.R., Ellingwood, P.M., Antelman, E., Mackay,
A., McConley, M.W., Opper, J.M., Chin, P., Lazovich, T.: Automated software
vulnerability detection with machine learning (2018)

14. Hovsepyan, A., Scandariato, R., Joosen, W., Walden, J.: Software vulnerability
prediction using text analysis techniques. In: Proceedings of the 4th international
workshop on Security measurements and metrics. pp. 7–10 (2012)

15. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fast-
text.zip: Compressing text classification models. arXiv:1612.03651 (2016)

16. Lozoya, R.C., Baumann, A., Sabetta, A., Bezzi, M.: Commit2vec: Learning dis-
tributed representations of code changes. SN Computer Science 2(3), 1–16 (2021)

17. Olesen, M.C., Hansen, R.R., Lawall, J.L., Palix, N.: Coccinelle: Tool support for
automated cert c secure coding standard certification. Science of Computer Pro-
gramming 91, 141–160 (2014)

18. Peng, H., Mou, L., Li, G., Liu, Y., Zhang, L., Jin, Z.: Building program vector
representations for deep learning. In: Zhang, S., Wirsing, M., Zhang, Z. (eds.)
Knowledge Science, Engineering and Management. pp. 547–553. Springer Interna-
tional Publishing, Cham (2015)

19. Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Elling-
wood, P., McConley, M.: Automated vulnerability detection in source code using
deep representation learning. In: 2018 17th IEEE international conference on ma-
chine learning and applications (ICMLA). pp. 757–762. IEEE (2018)

20. Skaletsky, A., Devor, T., Chachmon, N., Cohn, R., Hazelwood, K., Vladimirov, V.,
Bach, M.: Dynamic program analysis of microsoft windows applications. In: 2010
IEEE International Symposium on Performance Analysis of Systems & Software
(ISPASS). pp. 2–12. IEEE (2010)

21. Spadini, D., Aniche, M., Bacchelli, A.: Pydriller: Python framework for mining
software repositories. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. pp. 908–911 (2018)

22. Srivastava, A., Eustace, A.: Atom: A system for building customized program
analysis tools. ACM SIGPLAN Notices 39(4), 528–539 (2004)

23. Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language mod-
eling. In: 13th Annual Conference of the International Speech Communication
Association (2012)

24. Waddington, D.G., Roy, N., Schmidt, D.C.: Dynamic analysis and profiling of
multithreaded systems. In: Advanced Operating Systems and Kernel Applications:
Techniques and Technologies, pp. 156–199. IGI Global (2010)

25. Wartschinski, L.: Detecting Software Vulnerabilities with Deep Learning. Master’s
thesis, Humboldt University, Berlin (2014)

26. Wen, Y., Zhang, W., Luo, R., Wang, J.: Learning text representation us-
ing recurrent convolutional neural network with highway layers. arXiv preprint
arXiv:1606.06905 (2016)

27. White, M., Tufano, M., Martinez, M., Monperrus, M., Poshyvanyk, D.: Sorting
and transforming program repair ingredients via deep learning code similarities.
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering (SANER) (Feb 2019)


