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d Department of Mineralogy, Geochemistry and Petrology, University of Szeged, Egyetem Street 2, 6722, Szeged, Hungary 
e Lightigo s.r.o., Renneská ťrída 329/13, 639 00, Brno, Štýřice, Czech Republic   

A R T I C L E  I N F O   

Keywords: 
Laser-induced breakdown spectroscopy 
Raman spectroscopy 
Polymers 
Data fusion 
Data analysis 
Chemometric techniques 
Classification 

A B S T R A C T   

The plastic production and usage in the world is steadily increasing. This leads to increased amounts of plastic 
waste. Most of the waste could be potentially recycled, but only 14 % of plastic waste is recycled. In order to 
increase the share of recycling in plastic waste management, the recycling process should be completely auto
mated. The problematic part of sorting is being solved by either manual (labor-intensive) or spectroscopy-based 
(still in development) methods. In this work, we propose the data fusion of Laser-Induced Breakdown Spec
troscopy (LIBS) and Raman spectroscopy as a fast, robust, and reliable way to sort/classify any potential polymer 
material. The sample set of this work consists of several types of polymers in clear, colored, and even mixture 
versions. So far, no LIBS/Raman classification works involved all these categories in one experiment. Addi
tionally, the low and medium level of data fusion is discussed, and the performance is compared. By using LIBS 
and Raman data fusion method and both linear and nonlinear chemometric techniques, increased accuracy 
reaching more than 98 % in the classification of investigated plastic samples was achieved, which was a sig
nificant improvement when compared with singular methods classification accuracy.   

1. Introduction 

There has been a steady rise in the production and use of objects 
made from plastics in the world for several decades. This results in an 
increasing volume of plastic waste which needs to be dealt with. Around 
75 % of all produced plastic objects end up as waste. Out of these 75 % 
only 14 % is being recycled. The rest of the plastic waste is either 
incinerated (14 %), put in a landfill (40 %), or released into the envi
ronment without any control (32 %) [1]. However, the majority of the 
plastic waste could be recycled and thus, there is a big attention to in
crease the share of recycling of plastic waste. The need for an increased 
share of recycling can also be seen in the pollution of the most remote 
ecosystems [2] or the human bodies [3]. 

If the post-consumer plastic object enters the recycling process, there 
is a need to correctly specify the type of the polymer. Firstly, the plastic 
debris is cleared of any material of other nature such as glass or metal. 
Afterward, plastic waste is put on a conveyor belt and either manually or 
automatically sorted by the polymer type. The automatic sorting can be 

done by a spectroscopic method in which case a version of infrared 
spectroscopy (near, or short-wave infrared spectroscopy – NIR, SWIR) is 
used. For more challenging samples like high-density and low-density 
polyethylene (HDPE/LDPE) or heavily colored samples some other 
method for sorting is needed as the NIR/SWIR method is not able to sort 
these samples [4]. The full automatization of the process could bring 
additional capacity to recycling plants while also decreasing the cost of 
recycling. We believe that a combination of Laser-Induced Breakdown 
Spectroscopy (LIBS) and Raman spectroscopy is a method versatile and 
quick enough to be the perfect candidate for reliable plastic sorting. 

Laser-Induced Breakdown Spectroscopy (LIBS) is an analytical 
technique which utilizes a high power pulsed laser. The laser pulse 
which usually lasts several ns is focused in a typically 10–100 μm wide 
spot on the surface of a sample, where it evaporates the material. The 
ablated material is further atomized by the laser beam and a micro
plasma is formed. The analytical information is gained by recording the 
plasma emission which carries information mainly about the elemental 
composition of the sample including light elements like H, Li, etc. In 
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some cases even molecular information can be observed, especially 
when organic material is investigated [5,6]. The result is usually qual
itative, but it can also give quantitative results [7]. After the boom of the 
LIBS method at the turn of this century, the method has been accepted as 
a modern spectroscopic method across various fields. Its versatility en
ables the use of LIBS even in the most remote of places [8,9]. The needed 
instruments are reasonably simple and fairly robust, easy to operate with 
low installation and maintenance costs, which makes these instruments 
desirable for industrial applications. The method also started to be used 
in industrial applications for sorting [10,11] or detection of trace ele
ments [12,13]. The ability of LIBS to be used in the polymer industry has 
been shown in several works already [14–21]. 

In the work by J. Anzano et al. [14] a simple LIBS system was used to 
classify different polymers by extracting ratios of different spectral lines 
or molecular bands. The most important ratios for the classification were 
H/C1 and C2/C1. Other older polymer related LIBS papers deal with 
classification [15,16] or double-pulse LIBS optimization [17]. 

Some of the more thorough polymer classification papers are by 
Unnikrishnan et al. [18] and Boueri et al. [19]. The work by Unnik
rishnan and his team applied Principal Component Analysis (PCA) to a 
CN band area of four different polymer samples and reached more than 
80 % classification accuracy. The work by Boueri includes 8 different 
polymer species and their classification is done via artificial neural 
networks (ANN). The classification accuracy of unknown PVC samples 
reaches above 95 %. Both works highlight especially the speed of the 
LIBS approach to the polymer sorting, but they encounter problems 
either in the similarity of polymer spectral responses or with variance in 
the spectral signal of the same polymer species when an additive is 
present. 

The work by Chamradová et al. [20] explores the performance of 
LIBS in the discrimination of five polymer samples under various 
experiment parameters. The most noteworthy are the changes in the 
experiment surrounding gas conditions and the discussion from the 
perspective of the monomer composition. It has been found out, that 
helium atmosphere is not suitable for LIBS analysis of polymer samples, 
while argon and air atmospheres lead to satisfactory results. This work 
does not deal with polymers with additives and no classification algo
rithm was trained. Similar work with an increased number of polymers 
showed better results in Argon atmosphere [21]. These results are 
contradictory and this work aims to use conditions relevant to polymer 
recycling plants, so air atmosphere is chosen. 

Raman spectroscopy is an already established spectroscopy method 
used in various fields. It is widely used because of the simplicity of the 
instrumentation and minimal sample preparation requirements [22]. It 
can be used for a wide range of applications and the limits of the method 
are being sought [23–26]. The Raman spectroscopy method is very 
powerful in polymer discrimination because of their different Raman 
responses [27]. The drawback of Raman spectroscopy is the danger of 
fluorescence of the sample. The fluorescence is usually much more 
intense than the Raman signal, thus the Raman signal is lost and cannot 
be analyzed. To tackle this problem the employment of different laser 
wavelengths is needed, or more elaborate data evaluation has to be used 
[28,29]. 

In the main part of this work, we are using the fusion of LIBS and 
Raman spectroscopy data. This fusion is beneficial due to the comple
mentary nature of these two techniques. LIBS yields elemental infor
mation about the sample in the form of spectral lines corresponding to 
elemental and molecular species in the sample. Raman spectroscopy on 
the other hand provides information about molecular vibrational and 
rotational responses to the inducing laser signal. This atomic and mo
lecular information together has already been proven to offer comple
mentary information confirming statements or leading to new results 
[30,31]. Some of these works also use plastic samples, but as the in
formation is only discussed side-by-side, the presented results do not 
improve noticeably [32–34]. 

One of the work employing both LIBS and Raman spectroscopy on 

plastic samples is a work by M. Shameem et al. [33]. By using a custom 
system able to gather both LIBS and Raman spectra, the work then uses 
PCA with different metrics to classify 4 polymer types and additionally 
several unknown PVC samples. Both data sets in all phases of the work 
are analyzed separately. On the other hand, the results do correspond to 
each other, and the side-by-side comparison serves as a good validation 
of obtained results by one technique or the other. However, no fusion of 
the data sets is done and thus does not use the full potential of the 
combined system. 

A work which connects more than two spectroscopic techniques to 
detect and analyze plastic samples is the work by P. Pořízka et al. [34] In 
this work, laser-based spectroscopic methods (LIBS, Raman spectros
copy and Laser ablation inductively coupled plasma mass spectrometry – 
LA-ICP-MS) is used to detect and analyze microplastics aged in various 
aquatic environments. The work shows that all three methods are able to 
detect the polymer signal on the sample no matter the aging setting. 
Additionally, Raman spectroscopy and LA-ICP-MS are also able to 
classify the polymer type of the aged microplastic. On the other hand, 
the three methods are analyzed and discussed separately, so no data 
fusion is applied. 

The fusion of the data sets can further enhance the complementary 
information as the information from both data sets is taken into account 
simultaneously. The methodology of this data fusion on LIBS and Raman 
spectroscopy was first introduced by M. Hoehse [35] and used for the 
classification of inks and pigments. The benefits of the LIBS and Raman 
fusion were also confirmed by group based in Brno, Czech Republic in a 
work about the classification of different bacteria [36]. 

Other works employing LIBS + Raman data fusion are the works by 
K. Rammelkamp et al. [37] on Mars-relevant salts, E. Gibbons et al. [38] 
on soils or Lihui Ren et al. [39] on fish samples. All these works contain 
some discussion on the LIBS + Raman data fusion methodology, but in 
some cases, the LIBS and Raman data fusion benefits are not clear (the 
sample set is not challenging enough), or a discussion of the data fusion 
requirements and influence is missing. Data fusion can be applied to 
other spectroscopic techniques as well. In one of the more thorough 
works LIBS data is fused with FTIR-ATR (attenuated total reflectance 
Fourier-transform mid-infrared spectroscopy) to increase the accuracy 
of soil organic matter (SOM) prediction. The work provides a thorough 
discussion of the effects of data fusion on its results and clearly states the 
benefits of data fusion [40]. 

Up to our knowledge, no previous work on LIBS and Raman spec
troscopy data fusion was presented on plastic samples. Moreover, none 
of the LIBS + Raman data fusion works discuss the influence of the 
preprocessing options on the results. While the number of polymer types 
is not high, the number of different colors and the presence of polymer 
mixtures in the data set cover the vast majority of plastic debris that can 
be encountered in plastic sorting lines. With a nonstandard approach to 
data fusion of LIBS and Raman spectroscopy, this work highlights the 
benefits of such methodology and presents its performance on a highly 
challenging data set. 

2. Experimental 

2.1. Samples 

Samples used in this project are selected to contain the most common 
polymer types that can be encountered in post-consumer plastic waste – 
it included polymers with minimal modifications, mixtures of polymers, 
and colored polymers. To have variability in the sample set, samples 
consisted of four basic polymer types – polystyrene (PS - General pur
pose PS Synthos 154, Synthos, POL), polycarbonate (PC – Polycarbonate 
standard, Polymer Institute Brno, CZE), polypropylene (PP - Mosten GB 
218, Unipetrol Orlen, CZE) and polyethylene (PE - General purpose 
LDPE Bralen FA 03–01, Slovnaft, SVK). Out of these types, PS, PP, and 
PE could also be colored by extrusion with PE-based color additives (99 
% bulk polymer, 1 % PE-based color additive, VIBATAN pigments, VIBA 
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group, ITA) to five different colors – white, yellow, orange, red, and dark 
blue. The sample set also contains two sets of polymer mixture samples. 
Each set consists of four samples with the following ratios of a pair of 
polymer types – 20/80, 40/60, 60/40, and 80/20. These two polymer- 
type pairs are PC/PS and PP/PE. Also counting the color additives 
which are separately available for analysis, there are 32 available 
samples altogether (see Table 1). 

2.2. Laser induced breakdown spectroscopy 

LIBS experiments were performed on a J-200 Tandem LA/LIBS in
strument (Applied Spectra, USA) equipped with a 266 nm, 6 ns Nd:YAG 
laser source and a six-channel CCD spectrometer with a resolution of 
0.07 nm. For every laser shot, the full LIBS spectrum over the wave
length range of 190–1040 nm was recorded in the Axiom data acquisi
tion software (Applied Spectra, USA), using a 0.5 μs gate delay and 1 ms 
gate width. No specific atmosphere was used, the experiment was car
ried out in air at atmospheric pressure. 

The LIBS experiment settings were as follows. The energy of 14 mJ 
was used with a spot size setting of 60 μm. On each sample, 50 (25 for 
color additives) spots were ablated with two laser shots at each location 
resulting in 100 (50) spectra per sample. A number of two shots at the 
same location were chosen because of no visible contamination on the 
surface of the sample. An increased number of laser shots per spot could 
be employed to tackle visible surface contamination. Acquired spectra 
were background corrected by moving minimum method, and further 
used by custom script in Python programming language. 

2.3. Raman spectroscopy 

Raman experiments were performed on a DXR3 Raman microscope 
(Thermofisher scientific, USA) using a laser of 780 nm wavelength with 
a power output of 14 mW. The investigated spectral range was 
100–2000 cm− 1. The experiments were done with an objective of 50 ×
magnification (Leica, GER). 

Each spectrum consisted of 10 × 1 s spectral acquisition accumulated 
together. On every sample, 10 different spots were measured. Acquired 
spectra were background corrected to tackle any possible fluorescence 
by the OMNIC software (Thermofisher scientific, USA) via iterative 
polynomial fitting. The resulting data set was uploaded to the custom 
Python script for further data treatment. 

2.4. Labelling options and settings for classification algorithms 

To provide accurate and comparable results, different labeling op
tions will be used throughout the document. The main reason for this is 
to use all possible points of view of the data set. The labeling options are 
as follows.  

• Matrix labeling – All data is used, but only the matrix information is 
considered. For example, the yellow PE sample will be labeled as 
“PE” and the clear PP sample as “PP”. 

• Matrix labeling without additives – Same labeling as “Matrix la
beling”, but all color additive data are omitted from the data set. 

• Matrix þ color labeling – All data is used, and complete informa
tion is included in the label meaning yellow PE is labeled as “PE 
yellow” and clear PP as “PP clear”.  

• Matrix þ color labeling without additives – Same labeling as 
“Matrix + color labeling”, but all color additive data are omitted 
from the data set. 

By making these four labeling options it is possible to evaluate all 
aspects of the classification capabilities of the chosen spectroscopic 
methods as well as the performance of selected classification methods. 
The color additives are omitted from half of the labeling options because 
their addition does not provide additional polymer type but only makes 
the data set more challenging for the classification algorithms. 

In this work, two classification algorithms will be used, namely 
Linear Discriminant Analysis (LDA) and Random Forest (RF). LDA is a 
projection-based method that reduces the dimensionality of the dataset 
by projecting it into a new space created by the linear combination of the 
variables in the original dataset, where the variables are not correlated. 
The aim of the projection is to find the planes along which the separation 
of the groups is the best. It is generally similar to the Principal 
Component Analysis (PCA), but it needs a supervised input to define the 
groups to separate [41]. 

RF on the other hand is based on the classification and regression tree 
method, which utilizes binary conditions (yes or no questions) in a tree 
structure. It is an easy method to visualize and help identify the 
important variables, that differentiate between the groups, but due to its 
hierarchical nature, this method can be very sensitive to the input. To 
make this method more robust Breiman created the Random Forest 
version of the method [42], which is based on growing multiple decision 
trees, all of them using a little bit different input (different portions of 
the dataset are excluded from the model). The categorization of the 

Table 1 
Summary of all available samples. The number of dots determines the number of available samples. Four dots at 
PC/PS and PP/PE groups mean the availability of four different percentages of the polymer mixtures. The red dot at 
orange color additive means that the sample was omitted from the sample set as is explained in the discussion. 
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unknown samples is decided by the majority vote of members of the 
forest. This version of the algorithm is also used in this work. 

To use the classification methods properly, the data has to be divided 
into training and testing data sets. A 30/70 split was chosen for this work 
as we try to simulate real-life scenarios, where the availability of 
training data or samples will be problematic. The expectation is that 
some model samples of different kinds will be chosen to serve as a 
training sample set and the testing data set will be formed by a much 
larger sample size. 

Additionally, both methods are separated by the 30/70 split sepa
rately and fused data sets are formed separately for training and testing 
data. This way, no data leak is possible, and the algorithm cannot be 
trained on spectra, which would be present in the testing data set. 

Both used classification algorithms are part of a scikit package for the 
Python programming language [43]. The Linear Discriminant Analysis 
(LDA) algorithm can be controlled only by a maximum number of used 
Linear Discriminants (LD), but in our study, all LDs were used for all data 
sets as the LD number reduction did not have a considerable influence on 
the computation time or classification accuracy of the method. RF can be 
controlled in more variables and the final settings were: number of es
timators = 100, max features = square root of the number of features, 
max depth = 10 (there is a maximum depth of 10 splits for the nodes), 
other settings were not restricted or changed from default. Both algo
rithms are evaluated for each data set option by three metrics: time, 
training accuracy, and classification accuracy.  

• Time [s]: time needed for the classification model to perform.  
• Training accuracy [%]: cross-validation score of the training model 

for five folds and three repeats of the scoring calculations.  
• Classification accuracy [%]: percentage of the correctly classified 

spectra of the data set. Calculated from the confusion matrix as TP
Tot =

CA, where TP are true positive spectra – spectra which were 
correctly classified, Tot is the total number of the testing spectra and 
CA is the classification accuracy. 

3. Results and discussion 

3.1. Classification based on LIBS data 

To fully understand the benefits of LIBS + Raman data fusion, it is 
mandatory to first consider both of these methods individually. As has 
been described in the Introduction section, the data processing in the 
individual sections is minimal. This enables consideration of the indi
vidual method’s limitations and benefits. For the first outlook of the data 
set, Principal Component Analysis (PCA) is used for both Matrix and 
Matrix + color labeling options. The PCA is a valuable tool for the 
detection of variables, which provides the separation between data. The 
variables that contribute to the separation of samples the most in the PC 
space can then be selected as important features in further analysis. This 
feature selection and sequential dimensionality reduction will be dis
cussed in detail later in the manuscript (a typical LIBS spectrum is 
available in the supplementary material – Fig. S1). 

From the PCA score plot for the first two principal components 
(Fig. S2), it is obvious, that not many distinct groups of data can be 
separated from each other. One outlying sample group is the data from 
the white color additive, which has a very rich LIBS spectrum as the 
colorant contains titanium dioxide. The other samples form a more or 
less uniform group. The PC space separation does not get better even if 
we consider the data set without the color additives, but without the 
color additives, the loading plots show more than only titanium lines 
and can be considered for the spectral feature selection. Regions from 
the first three PCs, which explained over 80 % of the total data set 
variance, were considered. Together with polymer-related spectral 
areas, which were added in agreement with the previous work [20], the 
selected spectral features consisted of C I 247.86 nm, CN violet transition 

area around 388 nm, Ca II 393.37 nm, C2 transition ν = − 1 and ν =
0 areas (473.70 nm and 516.50 nm), Na I doublet around 589 nm area, H 
I 656.28 nm and K I doublet around 766.49 nm area. This spectral area 
selection will be introduced to the data fusion in the section LIBS +
Raman data fusion. 

The background corrected LIBS data was then introduced to the 
classification algorithms. The results confirmed the outcome suspected 
from the PCA. With a calculation time of over a minute (76 s on 
average), the LIBS data were challenging to classify. The classification 
accuracy for the Matrix labeling did not exceed 75 % on average. It 
improved by 5 % for the Matrix without additives data set (see Fig. 1), 
however, if the Matrix + color labeling was used, the classification ac
curacy was really poor at around 55 %. 

The main problem observed with the LIBS data is the very similar 
spectral response of different plastics in the investigated UV–Vis range. 
All polymer matrices used in this study contain only carbon, hydrogen, 
and oxygen. Consequently, the color additives may overshadow the 
differences between the plastic samples by their own spectral responses 
and also different matrix effects because of the different light-matter 
interactions between clear, light, and dark samples. 

3.2. Classification based on Raman spectroscopy data 

The Raman and Near Infrared (NIR) spectroscopy are both structure 
sensitive methods, and they are well known for their ability to 
discriminate between different polymers, the latter is already used in 
several recycling plants and polymer production companies to deter
mine the polymer type. The discrimination accuracy of both methods 
suffers when the plastic sample contains a lot of additives, especially 
dark colorants. NIR cannot acquire spectra from dark samples at all, and 
Raman spectroscopy usually fails because of the fluorescence caused by 
the presence of these additives. 

Out of all the samples, only the orange color additive showed severe 
fluorescence. The fluorescence could not be overcome in any way and 
the Raman spectrum was not obtained. The orange color additive sample 
was omitted from all the data sets because of this. Nonetheless, the 
plastics colored with the orange additive had a sufficient Raman spectral 
response and were included in the data set (A typical Raman spectrum is 
available in the supplementary material – Fig. S3). 

The PCA analysis showed better discrimination with some groups 
being separated nicely from the rest of the data groups (Fig. S4). How
ever, the majority of data groups formed a big cluster of data, which was 
not possible to separate via PCA. This big cluster of data was formed 
mainly from the colored plastic samples, but some clear samples were 
also present. The PC loadings cannot be used in the same sense as in the 
LIBS analysis, because the occurrence of the Raman spectral bands is not 
uniform across different samples. On the other hand, the fingerprint part 
of the Raman spectrum (between 150 and 2000 cm− 1) which is used in 
this study is narrow enough and can be used as a whole with a simple 
dimensionality reduction method. The dimensionality reduction method 
exchanges every two data points by the mean value of these two data 
points. This method of dimensionality reduction is not very sensitive, as 
it can erase some very thin spectral lines. On the other hand, Raman 
spectra usually consist of wide spectral bands, which are almost immune 
to this kind of dimensionality reduction as they lose no information 
content by it. This dimensionality reduction is introduced to unify the 
dimensions of Raman and LIBS parts in the fused pseudo-spectra as will 
be discussed later in the manuscript. 

The methodology for the evaluation of classification was the same as 
for the LIBS data. Background corrected Raman data was used with LDA 
and RF algorithms and the results confirm the prior assumptions. The 
computation time is much shorter, but the data set is also 10 times 
smaller as well as the number of points of each spectrum is lower (12288 
for LIBS and 3715 for Raman). The Raman classification accuracy for 
Matrix labeled data reaches 84.3 % for the testing data set with 82.7 ±
5.7 % accuracy for the cross-validation of the training data set for the 
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LDA algorithm and 89.4 % testing accuracy with 86.4 ± 2.7 % training 
accuracy for the RF algorithm (see Fig. 2). The removal of the color 
additive data from the data set improves the classification accuracy by 
10 % (94.7 %) and 7 % (96.2 %) for LDA and RF respectively. The 
classification accuracy of more than 95 % is already very good and the 
confusion mainly occurs between PP, PE, and the mixed PP/PE classes. 
However, the addition of color information influences the classification 
accuracy significantly. The training accuracy drops by 5–10 % for both 
classifiers and LDA test accuracy stays above 90 % (92.1 % for the 
Matrix + color data set, 92.5 % for the Matrix + color without additives 
data set). On the other hand, the test accuracy of the RF classification 
drops drastically and does not reach more than 66 % for either of the two 
Matrix + color data sets. This indicates that the algorithm may need a 
bigger data set. Training the data by only three spectra does not provide 
the desired results for non-linear methods such as RF. The simplicity and 
linearity of the LDA algorithm help in this rare case, where the training 
data set is small and the class number is big. 

3.3. LIBS and Raman data fusion 

The data fusion was done by adding together the LIBS and Raman 
spectrum of a sample to form a new pseudo-spectrum (low level data 
fusion) that contains information from both methods. The two con
nected spectra do not have matching parameters like dimension and 
intensity range. To suppress the effect of these dissimilarities, both the 
dimension and the intensity range should be unified between the two 
data parts (middle level data fusion). If the dimension is not unified, the 
spectra of one method have a bigger influence on the resulting behavior 
than the dimensionally smaller spectrum. To tackle this issue, several 
areas of the LIBS spectrum were selected based on prior knowledge and 

the PC loading vectors, as discussed in the LIBS section. The Raman 
spectra dimension was reduced to half by exchanging every two points 
of the spectrum by their mean value, as was discussed in the Raman 
section of the manuscript. This was necessary to unify the dimensions of 
the two methods as the Raman spectrum contained around 3700 di
mensions and feature selected LIBS parts only around 1900 dimensions. 

If the intensity range of the two methods is not controlled, the scale 
of the methods and the difference between the setups will have an effect 
on the outcome of the data analysis. Additionally, the matrix effect can 
be reduced by scaling the data sets as well. Every spectrum for both 
methods was min-max scaled (0–1) to unify the intensity ranges. After 
preprocessing the spectra from both measurement methods, the data 
could be added together and thus fused. The separation for training and 
testing sets was preserved by fusing only training LIBS and training 
Raman data to form training fused data set. To show the influence of the 
data preprocessing on the outcome of the classification calculations, 
three data sets were prepared.  

• Raw data fused data set – the LIBS and Raman spectra were only 
background corrected and fused. No additional data treatment was 
done (low level data fusion).  

• Peak selected fused data set – the data with dimensionality 
reduction were fused together. The LIBS part consists of the selected 
spectral areas specified in the LIBS section and the Raman part 
consists of the spectra with the reduced dimension specified in the 
Raman section. Both spectra sets were left with original intensity 
values.  

• Processed fused data set – in addition to the dimensionality 
reduction, these spectra were also min-max scaled before the data 
fusion. The dimension and the intensity range of the LIBS and Raman 
spectra in this data set are synchronized (middle level data fusion). 

The data fusion time changes with the reduction of the dimension 
and intensity ranges from 35 to 10 s, but the data preprocessing takes 
considerably longer time (around 5 min), so the benefit of dealing with 
preprocessed data is not significant in this case. 

The raw data fused data set consists of all the information available 
in this study. Raw data fused pseudo-spectra for clear PC and blue PS are 
shown in Fig. 3A. The biggest disadvantage is that the fused data are 
very big and it takes a lot of time and memory to deal with them. In 
addition, the data contains a lot of redundant and unimportant pieces of 
spectra such as multiple spectral lines of the same element and noise. As 
the LIBS part of the fused pseudo-spectra is much bigger, the PC score 
plot (Fig. S5) resembles the individual LIBS PC score plot quite accu
rately. In addition to this, the size of the data set makes the computations 
of the classification methods very slow. The LDA calculation takes from 
8 to 10 min and the RF one takes 18–21 s. But as the pseudo-spectra 
contain all the information from the two spectroscopic methods and 
there is no restriction on the variance used for the calculation of LDA and 
RF algorithms, the classification accuracy result increases dramatically. 
The test classification accuracy for the Matrix labeling reaches 87.6 % 
and 98.5 % for LDA and RF respectively, Matrix labeling without 

Fig. 1. A classification accuracy visualization for the Matrix without additives labeling. Each point is one spectrum from the test data set. Color depicts the true class, 
location in a row shows how the spectrum was classified. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version 
of this article.) 

Fig. 2. Confusion matrix of RF results on categorical Raman data. Numbers on 
the main diagonal are the percentage of correctly classified spectra. Numbers in 
a row stand for spectra from one sample. 
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additives results in a perfect (100 %) classification by the RF method and 
96.2 % test classification accuracy for the LDA algorithm. The under 90 
% result for the LDA algorithm at the Matrix labeling with additives is 
influenced by the LIBS part of the spectrum and its importance in the 
linear decision method. The Matrix + color labeling does not have a 
bigger effect anymore, as the test classification accuracy reaches 97.7 % 
for the LDA algorithm and 96.1 % for the RF algorithm, and for the 
Matrix + color labeling without color additives, the results are almost 

identical (97.7 % for LDA and 96.2 % for RF). These results prove that 
the combination of LIBS and Raman spectroscopies can be used for a 
very wide range of plastic samples including clear polymers, mixtures of 
polymers, and colored plastics. However, the biggest advantage of the 
suggested methods – speed – is reduced considerably by operating with 
raw data. 

The peak selected fused data set should contain only important 
spectral information gained by LIBS and Raman spectroscopy. The fused 

Fig. 3. The three versions of the LIBS and Raman data fusion used in this work. A) Raw fused data set, B) Peak selected fused data set, C) Processed fused data set. In 
the A) section, spectral areas chosen for LIBS dimensionality reduction are highlighted. The Raman data would not benefit from such selection as is described in 
section 3.2. 
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pseudo-spectra with reduced dimensions for clear PC and blue PS are 
shown in Fig. 3B. By matching the dimensions of LIBS and Raman parts 
of the pseudo-spectra, the automatic algorithms should take advantage 
of the information of both methods simultaneously. In the PCA score 
plot the distribution of the data is still similar to the distribution of the 
data in the PCA score plot for LIBS data only, however, better discrim
ination between several groups of data can be observed. A big difference 
can be noticed in the computation time of the classification algorithms. 
The LDA algorithm calculation time dropped to under 2 min and the RF 
algorithm took 7 s to calculate. As all the important spectroscopic in
formation was preserved in the data set, the classification accuracy is 
comparable to the classification accuracy of the raw fused data set. LDA 
test classification accuracy for Matrix labeled data reached 90.3 % with 
99.7 ± 0.3 % training accuracy and RF test classification accuracy 
reached 98.9 % with 98.5 ± 1.0 % training accuracy. These results were 
replicated for all other labeling options with a maximum of 2 % differ
ence. The composure and the high level of these results exceeding 90 % 
on average for LDA and 97.5 % on average for RF are the results, which 
were sought by this study. The robustness and speed of this method show 
very good potential for further laboratory and in-situ tests of joint LIBS 
and Raman plastic classification systems with data fusion algorithms. 

The processed fused data set carries only the spectroscopic infor
mation as all the other aspects of the spectra are diminished. The ma
jority of the noise does not play a role because of the dimensionality 
reduction and the differences between systems and matrices are 
accounted for by the standardization of every spectrum. The resulting 
pseudo-spectrum has matching dimensions and intensity ranges of the 
LIBS and the Raman part as seen in Fig. 3C. The PCA score plot does not 
resemble any other PCA score plot anymore, but the PCA algorithm has 
problems dividing the data, as the data points overlap in the PC space of 
the first three PCs and it takes 9 PCs to reach 90 % of the explained 
variance of the data set. This suggests that the linear method is not 
suitable for a preprocessed data set. The computation time of the clas
sification algorithms is comparable to the peak selected data set as the 
number of dimensions stays the same. However, the results show a 
critical decrease in the classification accuracy for the LDA algorithm. As 
was already visible in the PCA space, a linear method is not enough to 
discriminate the data and even with training accuracy exceeding 97 %, 
the test classification accuracy does not reach more than 50 %. On the 
other hand, the non-linear method – RF – keeps the performance even on 
this preprocessed data set as the spectroscopic information is still pre
sent, but it is not accompanied by matrix effects and differences between 
systems. 

The summary of the classification results for both LDA and RF 
(Table 2) confirms prior expectations of the manuscript. The classifica
tion accuracy increases by the data fusion of LIBS and Raman spec
troscopies and the joint dataset can be used to classify even challenging 
samples like colored plastics and mixtures of polymers. Surprisingly, 
preprocessing the data does not increase the classification accuracy, as 
the spectral signal stays similar, but due to matrix effects and different 
light-matter interactions between light and dark samples, the intensity 
of the signal can help with the classification. The non-linear classifying 
method – Random Forest – yields better results than the linear method 
LDA. The calculations of the RF are also faster, but need more data for 
the training, as it failed to train properly on the smallest data set (in
dividual Raman data set). Overall, reaching almost perfect classification 
accuracy with a diverse sample set of plastics confirms the robustness 
and universality of suggested LIBS and Raman data fusion. 

4. Conclusion 

The presented work focused on showing the capabilities of data 
fusion of LIBS and Raman spectroscopy data for plastic sample sorting. 
This work included a very wide range of plastic samples to contain as 
many real-life scenarios as possible – clear versions, colored versions, 
and even mixtures of polymer types. Some of the most colored samples 

from this set would be impossible to classify via NIR spectroscopy, which 
is sometimes used in plastic sorting companies. The complementarity of 
LIBS and Raman spectroscopy methods was exploited by the data fusion 
of these two techniques with several stages of data preprocessing. Af
terward, chemometric methods were used to determine the accuracy of 
the classification of all data sets – individual LIBS, Raman, and fused 
LIBS-Raman data sets with several stages of data preprocessing. The 
classification accuracy differed between the applied linear (LDA) and 
nonlinear (RF) classification methods. While the LDA took a long time to 
be calculated (up to 10 min), it needed fewer data to be trained to 
provide good results on small data sets (Raman only data set), but it was 
not robust enough to deal with the dimensionally reduced and scaled 
fused data set, where the classification accuracy dropped under 50 %. 
On the other hand, RF as the nonlinear classification method needed 
more data to be trained but was much faster (maximum 20 s for calcu
lation) and reached perfect or almost perfect classification accuracy for 
the raw data fusion and peak selected data fusion data sets. Additionally, 
it was also possible to obtain very good results from the processed data 
fusion data set by the RF algorithm. In conclusion, data fusion of LIBS 
and Raman spectroscopy clearly benefit from the strong suits of both 
methods simultaneously and reach better results than the aforemen
tioned methods individually. This was proven on a challenging data set 
of plastics, which contained pure, colored, and also mixture polymer 
samples. On this data set, test classification accuracy reached more than 
95 % using both linear and nonlinear classification methods, when LIBS 
and Raman data fusion was used. 
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Table 2 
Summary of test classification accuracy results for LDA and RF.  

Linear Discriminant Analysis (LDA) 

Labeling 
option →Data 
set ↓ 

Matrix (7 
classes) 

Matrix without 
additives (6 
classes) 

Matrix +
color (31 
classes) 

Matrix + color 
without 
additives (27 
classes) 

LIBS only 73.6 % 82.9 % 58.2 % 63.2 % 
Raman only 84.3 % 94.7 % 92.1 % 92.5 % 
Raw data 

fusion 
87.6 % 96.2 % 97.7 % 97.7 % 

Peak selected 
data fusion 

90.3 % 88.4 % 90.8 % 92.4 % 

Processed 
data fusion 

36.9 % 48.0 % 31.7 % 31.1 %  

Random Forest (RF) 

Labeling 
option →Data 
set ↓ 

Matrix (7 
classes) 

Matrix without 
additives (6 
classes) 

Matrix +
color (31 
classes) 

Matrix + color 
without 
additives (27 
classes) 

LIBS only 74.4 % 78.0 % 53.1 % 55.4 % 
Raman only 89.4 % 96.2 % 63.1 % 65.6 % 
Raw data 

fusion 
98.5 % 100 % 96.1 % 96.2 % 

Peak selected 
data fusion 

98.9 % 99.5 % 97.0 % 96.3 % 

Processed 
data fusion 

93.8 % 95.8 % 92.6 % 92.1 %  
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