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Data-Driven Interval Type-2 Fuzzy Inference System
Based on the Interval Type-2 Distending Function

József Dombi and Abrar Hussain

Abstract—Fuzzy type-2 modeling techniques are increasingly
being used to model uncertain dynamical systems. However, some
challenges arise when applying the existing techniques. These are
the following: 1) a large number of rules are required to complete
cover the whole input space; 2) a large number of parameters as-
sociated with type-2 membership functions have to be determined;
3) the identified fuzzy model is usually difficult to interpret due
to the large number of rules; and 4) designing a fuzzy type-2 con-
troller using these models is a computationally expensive task. To
overcome these limitations, a procedure is proposed here to identify
the fuzzy type-2 model directly from the data. This model is called
the distending-function-based fuzzy inference system (DFIS). This
model consists of rules and interval type-2 distending functions.
First, a few key rules are identified from the data, and later, more
rules are added until the error is less than the threshold. The
proposed procedure is used to model the altitude controller of a
quadcopter. The performance of the DFIS model is compared with
that of various fuzzy models. Furthermore, a simplified procedure
based on the rules is presented to design a computationally low-cost
type-2 controller. The effectiveness of the controller is shown by reg-
ulating the height of a quadcopter in the presence of noisy sensory
data. The performance of this controller is compared with that of
various other controllers. Finally, the proposed type-2 controller
was implemented on a Parrot Mambo quadcopter to demonstrate
its real-time performance.

Index Terms—Arithmetic-based control, fuzzy type-2 modeling,
Parrot mini-drone Mambo, type-2 distending function (T2DF).

I. INTRODUCTION

FUZZY theory has found numerous practical applications in
the fields of engineering, operational research, and statis-

tics [1], [2], [3]. The fuzzy inference engine consists of a fuzzi-
fier, a rule base system, fuzzy operators, and defuzzification.
These rules describe the dependencies between the input and
output variables in the form of IF–THEN statements. In this
article, we considered a special case where the expert knowledge
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in the form of linguistic rules is not available or it is poorly
described. For example:

1) if the system under consideration is so complex that it
cannot be described using linguistic fuzzy rules;

2) experts who can describe the system using the linguistic
fuzzy rules are not available.

In this case, data-driven fuzzy modeling and control is the
only feasible option [4], [5], [6]. There are two main types
of fuzzy inference systems: Mamdani systems [7] and Sugeno
systems [8]. Fuzzy modeling involves the identification of fuzzy
rules and parameter values from the data for either of these two
types of inference systems. The data-driven identification of a
fuzzy model can be divided into two parts, namely, qualitative
and quantitative identification. Qualitative identification focuses
on the number and description of fuzzy rules, while quantitative
identification is concerned with the identification of parameter
values. These parameters belong to membership functions and
fuzzy operators. In one of the latest papers, Duţu et al. [9] inves-
tigated the qualitative identification in detail for Mamdani-like
fuzzy systems. A parameterized rule learning technique called
selection reduction was introduced. The number of rules was
optimized by dropping some rules based on the rule redundancy
index. This technique is called precise and fast fuzzy modeling
approach. Ying and Lin [10] presented the first ever self-learning
fuzzy model for discrete event systems. Stochastic gradient
descent optimization was used to learn the event transition
matrix and the parameters of multidimensional Gaussian fuzzy
sets. The theoretical developments were supported by MATLAB
simulations for learning the automaton’s parameter values. Quite
recently, Mendel et al. [11] determined the relationship between
explainable artificial intelligence (AI) and fuzzy rule-based sys-
tems. It was established that the shape of antecedent membership
function, linguistic approximations, and similarity are essential
for the explainable AI.

In Sugeno-type systems, soft computing methodologies like
evolutionary algorithms, genetic algorithms (GAs), and particle
swarm optimization are used for qualitative identification [12],
[13], [14], [15]. Neural networks are mostly used in quantitative
identification. These lead to the development of adaptive neuro-
fuzzy inference systems (ANFISs) [16]. ANFIS is the most
popular and widely used technique for fuzzy modeling. Different
variants of the ANFIS model have been developed using various
types of optimization techniques [17], [18], [19]. Harifi et al. [20]
proposed a new type of ANFIS model by using a novel emperor
penguin colony (EPC) optimization method. EPC is a recently
introduced, nature-inspired, and population-based metaheuristic
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algorithm. It was shown that the ANFIS model based on EPC
can solve various prediction and classification problems with
high accuracy compared with the existing ANFIS-type mod-
els. However, all these abovementioned methods have some
limitations related to the qualitative identification, quantitative
identification, and rule interpretability.

Type-2 fuzzy systems (T2FSs) were developed to handle the
uncertainty in type-1 fuzzy sets [21], [22]. There are always
uncertainties associated with the real-world physical systems.
The source of these uncertainties can be the variations in the
parameters with time or external noise/disturbances acting on
the system. As the membership value of the type-1 system
is crisp, these uncertainties cannot be modeled by the type-1
fuzzy models. Therefore, the T2FSs are employed in practice
to accurately model uncertainties. However, the computational
complexity associated with the quantitative and qualitative iden-
tification steps of the data-driven type-2 fuzzy modeling tech-
niques is very high. T2FSs are based on type-2 membership
functions (T2MF). The T2MF contains the footprint of uncer-
tainty (FOU) between the upper membership function (UMF)
and the lower membership function (LMF). Interval type-2
fuzzy systems (IT2FSs) have been developed to reduce the com-
putational complexity [23]. The T2FS has superior properties
such as: 1) better handling of uncertainties [24]; 2) smooth
controller response [25]; 3) adaptivity [25]; and 4) reduction
in the number of fuzzy rules [26]. Abiyev and Kaynak [27]
proposed a novel type-2 Takagi–Sugeno–Kang fuzzy neural
system to control the time-varying processes. The parameters of
the rules were updated using the fuzzy clustering and gradient-
based algorithm. T2FSs have been successfully used in various
control system applications [28], [29], data mining [30], and
time-series predictions [31]. Naderipour et al. [32] used the
T2FS for community detection in large social networks. The
methodology was based on possibilistic c-means clustering with
two-layer graphs. Cuevas et al. [33] developed a type-2 control
system for controlling an omnidirectional autonomous robot in
unstructured environment with unknown obstacles. The recent
trends in theoretical and practical implementation of T2FS are
summarized in [34]. The design of the IT2FS consists of the
following:

1) fuzzification of the inputs using the T2MF;
2) calculation of the rule firing strengths;
3) implication and aggregation to produce rule outputs.

These operations produce a type-2 fuzzy set;
4) type reduction to convert type-2 fuzzy sets into type-1

fuzzy sets;
5) defuzzification to get a final crisp output value.
The type-reduction step is performed using the so-called

Karnik–Mendel (KM) iterative algorithm [35]. This algorithm
defines two switching points for the lower and upper firing
strengths. Using these points, the algorithm generates two type-1
fuzzy sets. These sets are then defuzzified to get a crisp output.
This approach has some drawbacks, such as: 1) the choice of
T2MFs; 2) the computational complexity of the type-reduction
step; 3) difficulties in the optimization process; and 4) controller
design complexity. Quite recently, several techniques have been
proposed to tackle these problem [36], [37], [38]. Mendel and

Bonissone [11] proposed an efficient methodology for optimal
type reduction under stability considerations for fuzzy-model-
based control techniques. The methodology was membership
function dependent and was based on deep reinforcement learn-
ing. Le [39] presented a self-evolving functional-link type-2
fuzzy neural network (SEFIT2FNN). It uses the particle swarm
optimization method to adjust the learning rate of the adap-
tive law. The adaptive law tunes the parameters of the type-2
fuzzy neural network. The SEFIT2FNN has been shown to
successfully control the antilock braking system under various
road conditions. Mohammadzadeh et al. [40] moved a step
further by proposing an interval type-3 fuzzy system (IT3FS).
The membership values in the IT3FS are not crisp values, but
those in IT2FS are crisp. An online fractional-order learning
system has been presented to tune the consequent parameters.
It was shown using the simulation studies that the accuracy
of the proposed IT3FS is much higher than the IT2FS and
the type-1 systems. The results were compared with those of
other recently published techniques, including SEFIT2FNN.
However, the computational complexity of this technique is
high, and the antecedent parameters are not tunable. In another
recent paper, Wei et al. [41] developed a self-organizing interval
type-2 fuzzy controller to regulate the bispectral index during
general anesthesia. The input–output data scaling factor and the
FOU were optimized using a joint surrogate model and genetic
programming. The performance of the model is generally better
than that of the GA-based type-1 and type-2 fuzzy models. The
model also perfectly handled noise and interpatient variability.
Pratama et al. [42] proposed an evolving type-2 classifier, where
fuzzy rules can be pruned, merged, and grow automatically. The
antecedent part comprised of a Gaussian function and the conse-
quent part consisted of a Chebyshev polynomial. Quite recently,
Le et al. [43] have developed a multilayer interval type-2 fuzzy
controller (MIT2FC), where the network parameters are learnt
using gradient techniques. The learning rates are optimized
using the Jaya algorithm. The proposed methodology was shown
to greatly reduce the number of rules. Numerical experiments
were conducted to control the trajectory of a quadcopter in
the presence of external white noise. However, these existing
approaches have some limitations. These limitations are briefly
described as follows.

A. Limitations in the Existing Fuzzy Type-2 Modeling
Techniques

1) Qualitative identification: Qualitative identification suf-
fers from the so-called flat structure (curse of dimension-
ality) problem of the rule base [30], i.e., if the number
of input variables increases, then an exponentially large
number of rules are required to accurately model the
system. This is due to the fact that the support area of
the most frequently used membership function (triangular,
trapezoidal) covers a limited area of the input space. To
cover the input space completely, a huge number of rules
are required. If we have two input variables, each with six
categories, then the number of rules required to cover the
whole input space will be 36. Each rule is applicable only
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within a specific area, and its strength is zero outside. If the
training data of the system do not fully span the input and
output spaces, then this will cause serious problems when
modeling the system. If the input falls in these uncovered
areas, then the identified rule base does not generate any
action. Even if some sort of interpolation technique is
applied, the computational complexity will increase [44].
Therefore, a global fuzzy model requires a large number
of rules and the number of rules depends exponentially on
the number of input variables, and this will lead to a huge
complexity in data-driven fuzzy models.

2) Quantitative identification: The computational complex-
ity of the quantitative part of the identified fuzzy model
also increases with the number of rules. As the number
of rules increases, the number of parameters of the T2MF
and operators also grows exponentially. Computing these
parameters will then increase the computational cost of
the quantitative model.

3) Choice of the T2MF: The choice of the T2MF and its
systematic connection with the type of uncertainty are
not clear. Different type-1 membership functions can be
combined to generate T2MFs. However, it is not clear
which type of membership functions should be used for a
particular type of uncertainty.

4) Interpretability: In most cases, the interpretability of the
identified fuzzy rule base is not clear. It is easier to interpret
a few rules and get an insight into the working model.
However, if the number of rules grows exponentially, then
for a given set of input values, it is not possible to predict
the response of the model and analyze its performance.
The model tends to behave more like a black box in these
situations.

5) Optimization process: Although type-2 fuzzy logic sys-
tems require fewer rules compared with type-1 fuzzy
systems, the number of parameters is comparatively large.
Therefore, optimizing a large number of parameter values
is not an easy task.

B. Limitations in the Existing Fuzzy Type-2 Control
Techniques

These limitations are related to the computational complexity
of the fuzzy type-2 controllers. Using the rule base, an interval
type-2 fuzzy controller can be designed using well-established
techniques [45]. Most of these techniques use the type-reduction
step. The type-reduction step is based on the KM algorithm,
which is computationally expensive. Owing to its iterative na-
ture, it is ill-suited for online applications. There are some
alternative solutions that reduce the computational burden, but
these are approximations [46]. These techniques also include
the implication and aggregation steps. These steps further add
to the computational complexity of the type-2 fuzzy controller.

C. Unique Features of the Proposed Approach

Here, we propose solutions to remove some of these limita-
tions. We present a novel technique for fuzzy type-2 modeling

and control. The proposed fuzzy model (distending-function-
based fuzzy inference system—DFIS) consists of rules and
T2MFs. The rules are based on the Dombi conjunctive operator.
A procedure for designing a fuzzy type-2 controller using the
rules is also presented. The controller can handle various types
of uncertainties (e.g., sensor noise). The proposed methodology
has the following unique contributions.

1) The complexity associated with the qualitative identifi-
cation of the data-driven techniques is reduced. This is
achieved by using a unique interval T2MF called the
interval type-2 distending function (T2DF) [47]. It has
symmetric and asymmetric forms. It can completely cover
the whole input space with a few rules, and this helps
overcome the flat structure issue.

2) The computational burden of the quantitative identifica-
tion is greatly reduced. The interval T2DF has only a few
parameters. Most of these parameters are kept fixed and a
few are varied during the training process.

3) The proposed methodology could be used to model the
real-world physical systems. Different types of uncertain-
ties can be modeled using the parameters of the interval
T2DF. Therefore, most forms of the uncertainties in fuzzy
systems can be represented using the interval T2DF.

4) The methodology identifies a model with high inter-
pretability. Our approach identifies a few important fuzzy
rules. We have also developed a rule reduction algorithm,
which can further reduce the number of rules, and it results
in an interpretable model.

5) Because only a few parameters are varied during the design
process, the optimization is simple and fast.

6) We presented an arithmetic-based interval type-2 fuzzy
controller. The type-reduction, implication, and aggre-
gation steps are not involved in the design procedure.
Therefore, the controller is computationally efficient.

The rest of this article is organized as follows. In Section II,
we briefly introduce the interval T2DF and its properties. In
Section III, we explain the proposed controller design approach
and rule reduction algorithm. In Section IV, we describe the
benchmark system, simulation results, and hardware implemen-
tation and discuss the results. Finally, Section V concludes this
article.

II. INTERVAL T2DF

Zadeh [48] proposed various membership functions, and one
of them has the following form:

μ(x) =
1

1 +
(
x−a
b

)2 . (1)

Based on μ(x), we defined a more general parametric function,
which models a soft equality, and it is called the distending
function (DF). This type of membership function is closely
related to the operator systems, and in our case (i.e., the DF), it
is associated with the Dombi operators. The DF can be derived
from the Kappa function of the Dombi operator [49]. The DF
has four parameters, namely, ν, ε, λ, and c.
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Fig. 1. Various shapes of symmetric DFs (here c = 0).

Fig. 2. Asymmetric DF (νL = 0.5, εL = 0.5, λL = 5, νR = 0.8, εR = 0.7,
λR = 5, λ = 5, c = 0).

It has two forms: 1) symmetric and 2) asymmetric. The
symmetric DF (shown in Fig. 1) is symmetric around x− c,
and it is defined as [50]

δ(λ)ε,ν(x− c) =
1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ (2)

where ν ∈ (0, 1), ε > 0, λ ∈ (1,+∞), and c ∈ R. δ(λ)ε,ν(x− c)
is denoted by δs(x).

The asymmetric type of the DF (shown in Fig. 2) is given by

δA(x− c)

=
1

1 + 1−νR

νR

∣∣∣x−c
εR

∣∣∣λR
1

1+e−λ∗(x−c) +
1−νL

νL

∣∣∣x−c
εL

∣∣∣λL
1

1+eλ∗(x−c)

(3)

where νR, νL ∈ (0, 1), εR, εL > 0, λL, λR ∈ (1,+∞), c ∈ R,
λ∗ ∈ (1,+∞), and λ∗ >> λL, λR. Here, c is the centre point,
i.e., δA(c) = 1.

A. Construction of the Interval T2DF

The values of the DF parameters (ν, ε, λ, and c) may be un-
certain. As a result, these parameters can take various values
around their nominal values, within the uncertainty bound (Δ).
By varying the parameter values within Δ, various DFs are
obtained. The DF with the highest grade values is called the
UMF and that with the lowest values is called the LMF. The

Fig. 3. Uncertain peak value interval T2DF with the FOU.

Fig. 4. Combining two interval T2DFs (δ21 and δ22 ) to get a single interval
T2DF (δ2result).

UMF, LMF, and various DFs in between can be combined to
form an interval T2DF [47]. If the peak value of the DF becomes
uncertain, then it can be represented using the interval T2DF with
an uncertain “c” value, as shown in Fig. 3.

Various interval T2DFs belonging to the same fuzzy variable
can be combined to form a single interval T2DF. The support
of the resultant interval T2DF will be approximately the same
as the combined support of the individual interval T2DFs. The
UMF of the interval T2DF consists of the left-hand side (LHS)
and right-hand side (RHS) (the same is true for the LMF). The
LHS and RHS are given by Dombi and Hussain [47]:

δ̄2L(x− c) =
1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ 1
1+e(λ∗(x−c))

(4)

δ̄2R(x− c) =
1

1 + 1−ν
ν

∣∣x−c
ε

∣∣λ 1
1+e(−λ∗(x−c))

. (5)

The LHS and RHS of the UMF and LMF can be combined
using the Dombi conjunctive operator to get a single interval
T2DF. Consider two interval T2DFs δ21 and δ22 . The LHS of δ21
and RHS of δ22 can be combined using the Dombi conjunctive
operator [51]. This produces a resultant interval T2DF δ2result,
as shown in Fig. 4. Combining various interval T2DFs helps to
reduce the number of fuzzy rules. This leads to a decrease in the
computational complexity of the identified fuzzy model.

B. Interval T2DF in a Higher Dimension

Consider n different interval T2DFs in n different
dimensions given by δ

2(λ1)
1(ε1,ν1)

(x1 − c1), δ
2(λ2)
2(ε2,ν2)

(x2 −
c2) . . . , δ

2(λn)
n(εn,νn)

(xn − cn). If we apply the Dombi conjunctive
operator on these n interval T2DFs, then the result will also be
an interval T2DF δ2(x1, x2, . . . , xn) in n dimensions (shown
in Fig. 5). And

δ̄2(x1, x2, . . . , xn) =
1

1 +
∑n

i=1
1−νi

νi

∣∣∣xi−ci
εi

∣∣∣λi
(6)
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Fig. 5. Interval T2DF in the x3 dimension.

δ2(x1, x2, . . . , xn)

=
1

1 +
∑n

i=1
1−νi

νi

(∣∣∣xi−(ci−Δ)
εi

∣∣∣λi

σLi +
∣∣∣xi−(ci+Δ)

εi

∣∣∣λi

σRi

)
(7)

where σLi =
1

1 + e−λi(xi−(ci−Δ))
(8)

and σRi =
1

1 + eλi(xi−(ci+Δ))
. (9)

Here, Δ is the upper bound on the uncertainty in the c value,
δ̄2(x1, x2, . . . , xn) is the UMF, and δ2(x1, x2, . . . , xn) is the
LMF of δ2(x1, x2, . . . , xn). (See the supplemental material for
the proof.) The proposed design approach is explained in the
next section.

III. DATA-DRIVEN FUZZY MODELING

Here, we assume that expert knowledge in the form of lin-
guistic rules is not available. However, the batch offline (input
and output) data of a healthy process are available. Using these
data, we will drive a DFIS model composed of rules and interval
T2DFs. A rule base for a multi-input multi-output (MIMO)
system can be written as

ifx1 isU i
1 and . . .. . . andxn isU i

n

then y1 isV i
1 ; . . .. . . ; ym isV i

m, (10)

where x1, x2, . . ., xn are the input variables and y1, y2, . . ., ym
are them output variables, and the corresponding fuzzy subsets
areU1, U2, . . ., Un and V1, V2, . . ., Vm, respectively. The index i
represents the rule number, and there are l fuzzy rules. A MIMO
system given by (10) withm independent outputs can always be
replaced by m multi-input single-output systems of the form

ifx1 isU i
1 and. . .. . . andxn isU i

n then ys isV i
s (11)

where s = 1, . . .,m are the m outputs. For simplicity, we will
consider the case where s = 1, and we propose a methodology
for generating a crisp control signal using the input and output
training data. The methodology can be generalized to m inde-
pendent outputs.

Let us now assume that the input and output databases have
the following form:

U =

⎡
⎢⎢⎢⎢⎣
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

al1 al2 . . . aln

⎤
⎥⎥⎥⎥⎦ , V =

⎡
⎢⎢⎢⎢⎣
b1

b2

...

bl

⎤
⎥⎥⎥⎥⎦ (12)

whereU andV contains the l data points of each input and output
variable. Here, a1, a2, . . . , an are the data points belonging to
the input fuzzy subsets U1, U2, . . . , Un, respectively, and b1 is
included in the output fuzzy subset V . Each column of the
U matrix corresponds to a unique feature (input variables) of
the process. Therefore, the U matrix forms an n-dimensional
input feature space. Each column of the training matrix U is
normalized by transforming it to the [0, 1] interval. As a result,
the feature values are comparable on the same scale.

The fuzzy rule consists of an antecedent and a consequent
part. Here, the antecedent part contains a row of U , and the
consequent part is an element of V . The antecedent part of the
ith fuzzy rule is given by the following relation:

L (δ21(x1)i, δ22(x2)i, . . . , δ2n(xn)i) (13)

where L is the fuzzy logical expression, and it is evaluated using
a very general class of the fuzzy operators [51]

Dγ(x) =
1

1 +
(

1
γ

(∏n
i=1

(
1 + γ

(
1−δ2(xi)
δ2(xi)

)α)
− 1
)) 1

α

.

(14)
The consequent part of the ith rule (i.e., y is V i) depends on
the value in the ith row of V . As the ith row of V has a single
value (i.e., bi), bi is directly taken as the consequent value of
the ith rule. The bi value is not optimized during the training
procedure. This is only picked from the V matrix. It is worth
mentioning that the row indices of U and V are same for the ith
rule. In our approach, the fuzzy rules will be based on sample
values in the U and V matrices. Therefore, a few rows from the
database matrixU are selected. These can be selected randomly,
but from a practical point of view, it is beneficial to choose those
rows that contain the extremum (around 0 and 1) and average
(around 0.5) values of the input variables. These rows and the
corresponding elements in the V matrix are used to construct
the rule base. It is called the boundary value rule base (Rb)
because it mostly contains those values of the inputs that lie on
the boundary of the input space. Each variable in our approach is
normalized in [0, 1] interval. To cover the boundary and middle
values for each variable, there should be rules covering 0, 0.5,
and 1 values. Hence, for a single variable, the maximum initial
number of rules in Rb is 3. In the same way, in the case of
two variables, nine rules are required to cover the boundary and
middle values of the surface (formed with two input variables).
Therefore, in a general case, if there are n input variables, then
the maximum initial number of rule in Rb is 3n. Usually, in the
real-world databases, rows with boundary and middle values of
all the variables are not available. Therefore, the initial number
of rules in Rb is usually less than 3n.
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In our procedure, two different surfaces are constructed. These
are called the estimated and the fuzzy surfaces. The estimated
surface is constructed directly from the database [see (12)]. For
missing data values, linear interpolation is used. The estimated
surface is denoted by G. The fuzzy surface is generated from
Rb, and it is denoted byG∗. These two surfaces are then used to
create a third surface called the error surface E. Next, we will
describe the procedure used to construct the surfaces G∗ and E
using Rb.

A. Construction of Fuzzy Surface G∗ and Error Surface E

Each selected row from the database matrix U corresponds
to a single rule. It is a row vector, and it consists of unique
values of all the input variables (features). A unique interval
T2DF is constructed for each input variable in the row. The
interval T2DF has four parameters (ν, ε, λ, and c). Apart from
these four parameters, an additional parameter Δ is required for
the construction of interval T2DF [see (7)].Δ is the upper bound
on the uncertainty in the peak value coordinate c of the interval
T2DF. The optimum value of each of these parameters can be
determined.

The parameter c (peak value coordinate) of the interval T2DF
is given, and it is equal to the value of the corresponding input
variable. The value of λ can be chosen between 1 and ∞. Based
on the experimental observations, the value of λ = 2 is good for
most of the practical applications. The value of ε depends upon
the number of rules in Rb

ε =
1

number of rules inRb
. (15)

This ensures that the whole input space is covered. The input
variables are usually measured using the feedback sensors. The
Δ value of each sensor depends on the tolerance intervals of
the corresponding sensor. All the Δ values are transformed into
the [0, 1] interval to make these compatible with the values of the
input variables. Interval T2DFs have a long tail. Consequently,
each interval T2DF influences the other existing interval T2DFs.
The ν value of each interval T2DFs will be calculated based
on the principle of minimum influence on all the other interval
T2DFs. This influence can never be zero, but it can be decreased
by a factor k. For less influence, a large value of k should be
chosen. However, from a practical point of view, a value of 10 is
sufficient. It means that the influence will decrease tenfold. The
influence of the ith interval T2DF at the peak value of the jth
interval T2DF is given by

1

1 + 1−ν
ν

(∣∣∣xi1−xj1

ε

∣∣∣λ + · · ·+
∣∣∣xin−xjn

ε

∣∣∣λ) =
1

k
(16)

where xi1, . . . , xin are the n coordinates of the peak value of
the ith interval T2DF and xj1, . . . , xjn are the coordinates of the
peak value of the jth interval T2DF. This formula can be used
for one-dimensional interval T2DFs as well as n-dimensional
interval T2DFs. Then, the required value of ν can be calculated

using

ν =
1

1 + k−1
d

(17)

where d =

(∣∣∣∣xi1 − xj1
ε

∣∣∣∣
λ

+ · · ·+
∣∣∣∣xin − xjn

ε

∣∣∣∣
λ
)
. (18)

If ε = 1 and λ = 2, then d is a distance measure
In the antecedent part of the ith rule, there are n interval

T2DFs corresponding ton input variables. Each rule is evaluated
using the Dombi conjunctive/disjunctive operator. By applying
the Dombi conjunctive/disjunctive operator over the n input
interval T2DFs, we get a single interval T2DF. This is called
the output interval T2DF. The UMF and LMF of this output
interval T2DF are given by (6) and (7), respectively. Here, l
output interval T2DFs will be generated from the l rules. All
these output interval T2DFs are superimposed in the input space
to generate a fuzzy surface G∗.

An error surface E is defined as the difference between the
estimated surface G and the fuzzy surface G∗. That is

E(x1, . . . , xn) = G(x1, . . . , xn)−G∗(x1, . . . , xn). (19)

B. Extending the Rule Base

We shall decrease the magnitude of E, and this is achieved
by an iterative procedure of adding new rules to Rb. To add a
new fuzzy rule, the coordinates of the maximum value on E are
located. The corresponding row in the database containing these
coordinates is selected. This row is then added to Rb as a new
rule. This rule is evaluated to generate an output interval T2DF.
The ν value of this output interval T2DF is then calculated using
(17). This interval T2DF is superimposed inG∗. This will modify
the surfaceG∗ in such a way that the magnitude of the maximum
error on the surface E at these coordinates will decrease. This
process is repeated in an iterative manner until the error surface
E is within an error threshold τE . It is the upper bound on the
error surface E. For a very small value of τE , a large number
of rules have to be extracted from the training data and vice
versa. Therefore, a compromise has to be made between the
value of the error threshold τE and the number of rules in Rb.
The optimum value of the error threshold is called τEop , and it is
application dependent. Based on our experimental observations,
the τEop value can be calculated using the heuristic

τEop =
Peak value of the output

15
. (20)

It should be added that extracting the type-2 fuzzy model from
the data is based on the DF. Therefore, we call this type-2 model
the DFIS. The whole procedure for extracting the DFIS from
the data is summarized in Algorithm 1.

If the number of rules in Rb is large, then some of the rules
can be merged to reduce the computational complexity. This is
achieved using a reduction procedure.

C. Reducing the Rule Base

Here, we describe a heuristic approach used to decrease the
number of rules in Rb. Rule reduction will lead to a lower
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computational cost and better interpretability. Various output
interval T2DFs that are close to each other in the input space can
be combined to get a single interval T2DF (as shown in Fig. 4).
The procedure is explained as follows: One of the input variables
is selected and we call it a principal feature. In a control system,
the error measure of the control variable is usually chosen as the
principle feature. To ensure that the rule reduction procedure
does not change the fuzzy surface significantly, the input space
is divided into two half-spaces. The space where the principle
feature value is less than 0.5 lies in the first half, and the rest of the
space lies in the second half. Within each half, the output interval
T2DFs are segregated into different groups. If the Euclidean
distance between the peak value coordinates of various output
interval T2DFs is less than a predefined distance D, then these
interval T2DFs are placed in the same group, where for each
half

D =
Sum of Euclidean distances b/w peak value T2DFs

Total number of T2DFs in the same half
.

(21)
Each output interval T2DF is obtained by applying a unique rule
in Rb. The output interval T2DFs in the same group are com-
bined together to produce a single interval T2DF. Consequently,
the rules associated with all these output interval T2DFs are
eliminated and replaced by a single new rule. Therefore, the
number of rules inRb decreases. Now, it is called a reduced rule
base Rr. Using Rr, a new fuzzy surface is constructed, and it is
denoted by G∗

r. Then, a reduced error surface (Er) is obtained
using

Er(x1, . . . , xn) = G(x1, . . . , xn)−G∗
r(x1, . . . , xn). (22)

This procedure is performed in an iterative way as long as
Er(x1, . . . , xn) is within a reduction threshold τR. It is the
upper bound on the reduced error surface Er. Its value is also
application dependent. If the reduction threshold value τR is
high, then a large number of rules can be eliminated to get a
much simpler and interpretable model. However, the accuracy
of such an identified fuzzy model decreases. Therefore, the τR
value should be chosen based on a compromise between model
accuracy and interpretability. A high τR value leads to better
interpretability but less accuracy and vice versa.

For an accurate DFIS model, the magnitude of the error
surface should be minimum. However, an error surface with
magnitude very close to zero is not desirable as this will lead to
poor generalization (overfitting) of the DFIS model. The value
of the reduction threshold τR is application dependent, and its
optimum value may be different for different applications. How-
ever, based on our experimental observations, the optimum value
of the threshold (τRop ) can be determined using the heuristic

τRop =
Peak value of the output

10
. (23)

High value of τR results in less number of rules, more in-
terpretable, but least accurate DFIS model. Low value of τR
produces a large number of rules, and the resulting DFIS model
is less interpretable and also has worst generalization capability.

The whole procedure for reducing the number of rules in the
DFIS model is summarized in Algorithm 2.

D. Arithmetic-Based Fuzzy Type-2 Controller Design Using
the DFIS Model

The extracted DFIS model (Rr plus interval T2DFs) can
be used to design an arithmetic-based interval type-2 fuzzy
controller. We briefly present the procedure here [50].

Each rule in Rr has two parts called the antecedent and the
consequent. We evaluate these two parts separately to generate
a crisp control signal. For a specific values of input variables,
the antecedent part is evaluated [see (13)], and it results in an
interval [v̂i(x

∗) v̂i(x∗)]

L (δ̄21(x∗1)i, δ̄22(x∗2)i, . . . , δ̄2n(x∗n)i) = v̂i(x
∗) (24)

L (δ21(x∗1)i, δ22(x∗2)i, . . . , δ2n(x∗n)i) = v̂i(x
∗). (25)

Here, v̂i(x
∗) is the lower strength and v̂i is the upper strength of

the ith rule. δ2n(xn)
i is the LMF and δ

2
n(xn)

i is the UMF of the
nth interval T2DF. The rule strengths are normalized to get the
lower and upper firing strengths (vi(x

∗), vi(x∗)):

vi(x
∗) =

v̂i(x
∗)∑k

i=1 v̂i(x
∗)
, vi(x

∗) =
v̂i(x

∗)∑k
i=1 v̂i(x

∗)
(26)

where
k∑

i=1

vi(x
∗) = 1,

k∑
i=1

vi(x
∗) = 1 (27)

and k is the total number of rules in Rr.
The consequent part of each rule in Rr is a single numeric

value in the data matrix V . Let b1, . . . , bk be the consequent
values, v∗1, . . . , v

∗
k be the upper firing strengths, and v∗1, . . . , v

∗
k

be the lower firing strengths of the k fuzzy rules in Rr. And
b1, . . . , bk values are picked from the V matrix [see (12)]. Then,
the crisp output control Ucrisp is generated by

Ucrisp =
ca + ca

2
(28)

where ca =

k∑
i=1

vi(x
∗)bi, and ca =

k∑
i=1

vi(x
∗)bi. (29)

The whole procedure is summarized in Algorithm 3.

IV. BENCHMARK SYSTEM, SIMULATIONS RESULTS,
HARDWARE IMPLEMENTATION, AND DISCUSSION

The effectiveness of the proposed technique is demonstrated
by modeling the altitude control system of a quadcopter (Parrot
mini-drone). In our simulations, the batch offline data are first
generated by regulating the altitude of the quadcopter using
a proportional–derivative (PD) controller. Using these training
data, the proposed DFIS model is identified. This model consists
of fuzzy rules and interval T2DFs. In addition, various other
fuzzy (type-1 and type-2) models are also identified from the
same data. The performance of the DFIS model is compared
with other fuzzy models. Afterward, three fuzzy controllers are
designed using these three fuzzy models. The performance of
these controllers is compared in a situation where the altitude
of the quadcopter is regulated in the presence of noisy sensor
measurements. Later on, the designed type-2 controller is also
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Algorithm 1: Algorithm for Extracting Type-2 Fuzzy Model
(DFIS) From the Data.

1: Step 1: Obtain the input and output databases of the
process [see (12)].

2: Step 2: Transform each column of U into the [0, 1]
interval.

3: Step 3: Construct the estimated surface G.
4: Step 4: Generate a boundary value rule base Rb from the

input and output databases.
5: Step 5: Assign an interval T2DF to each input point in

the antecedent part of the rule base Rb. Choose k = 10
and calculate ν using (16) and (17).

6: Step 6: Calculate the output interval T2DF for each rule
using (6) and (7).

7: Step 7: Generate fuzzy surfaces G∗ from all the output
interval T2DFs.

8: Step 8: Construct the error surface E using (19). If E is
within the error threshold τE , then stop.

9: Step 9: Find the maximum value coordinates on E. Add
a new rule in Rb corresponding to these coordinates in
the databases.

10: Step 9: If the total number of rules in Rb are less than
7n, then go to Step 6; else stop.

Algorithm 2: Algorithm for Reducing the Number of Rules
in DFIS.

1: Step 1: Divide the input space into two parts based on
the values of the principle feature.

2: Step 2: Segregate the output interval T2DFs in various
groups based on the Euclidean distance D [see (21)].

3: Step 3: Combine the interval T2DFs in each group to
generate a single interval T2DF.

4: Step 4: Replace the rules associated with the combined
interval T2DFs with a single rule.

5: Step 5: Construct the reduced error surface Er using
(22).

6: Step 6: If Er is within the reduction threshold τR, then
go to step 1 else stop.

Algorithm 3: Algorithm for Designing the Arithmetic-
Based Controller Using the DFIS Model.

1: Step 1: Calculate the upper and lower firing strengths of
each rule using (26).

2: Step 2: Calculate ca and ca using the firing strengths
and consequent values.

3: Step 3: Generate the crisp control signal using (28).

deployed on the mini-drone hardware to check the real-time
performance.

A. Quadcopter Model

A Parrot mini-drone Mambo was used in this study (shown in
Fig. 6). The MATLAB Simulink Aerospace block set provides
the simulation model of this quadcopter [52]. The simulation

Fig. 6. Parrot mini-drone Mambo [53].

Fig. 7. Airframe model of the quadcopter structure [54].

consists of the airframe model, sensor model, environment
model, and flight controller. The airframe model is schemati-
cally shown in Fig. 7. It consists of axis parameters (rotational
(φ, θ, ψ) and translational (x, y, z)), mass, torques, and rotors.
The environment model describes the effects of external factors
on the quadcopter. It consists of atmosphere and gravity models.
The sensor model includes three sensors: 1) sonar for altitude
measurement; 2) a camera for optical flow estimation; and
3) inertial measurement units to measure the linear and rotational
motions. The flight control system (FCS) contains the roll φ,
pitch θ, yaw ψ, and altitude z controllers. The mathematical
model of the system is given by

Ẋ = F (x, u) +N

where

X = [x y z φ θ ψ]T

u = [u1 u2 u3 u4]
T

N = [n1 n2 n3 n4 n5 n6]
T . (30)

Here, X is the state vector consisting of translational and
rotational components, N contains the external disturbances
affecting the system states, and u represents the model inputs.
Let Ω1, Ω2, Ω3, and Ω4 be the angular speeds of the four rotors
of the quadcopter. Then⎡

⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

u4

Ωr

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

b
(
Ω2

1 +Ω2
2 +Ω2

3 +Ω2
4

)
b
(−Ω2

2 +Ω2
4

)
b
(
Ω2

1 − Ω2
3

)
d
(−Ω2

1 +Ω2
2 − Ω2

3 +Ω2
4

)
−Ω1 +Ω2 − Ω3 +Ω4

⎤
⎥⎥⎥⎥⎥⎥⎦
. (31)
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TABLE I
VARIOUS PARAMETERS OF THE PARROT MAMBO QUADCOPTER MODEL

Here, u2, u3, and u4 control the roll, pitch, and yaw angles. u1
is the total thrust input, and it controls the altitude z of the
quadcopter. b is the thrust coefficient, d is the drag coefficient,
and Ωr is the residual angular speed.

The state equations of the system are

Ẋ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ̇

φ̈

θ̇

θ̈

ψ̇

ψ̈

ẋ

ẍ

ẏ

ÿ

ż

z̈

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ

θ̇ψ̇
Iyy−Izz

Ixx
+ θ̇ Jr

Ixx
Ωr +

La

Ixx
u2

θ̇

φ̇ψ̇ Izz−Ixx

Iyy
− φ̇ Jr

Iyy
Ωr +

La

Iyy
u3

ψ̇

θ̇φ̇
Ixx−Iyy

Izz
+ 1

Izz
u4

ẋ

(cosφ sin θ cosψ + sinφ sinψ)u1

m

ẏ

(cosφ sin θ sinψ + sinφ cosψ)u1

m

ż

g − (cosφ cos θ)u1

m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

n1

0

n2

0

n3

0

n4

0

n5

0

n6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

where Ixx, Iyy, and Izz are the moments of inertia along the
three axes. Various parameters of the quadcopter model are given
in Table I. It should be noted that this quadcopter model is used
only to generate the data. These data are then used to extract the
DFIS model, as explained in the next section.

B. Extracting the Data-Driven Type-2 Fuzzy Model

Here, in these simulations, we seek to model the altitude
controller of the quadcopter. A training dataset that contains
the samples of input and output of the altitude controller is a
requirement for Algorithm 1. The requirement was satisfied by
controlling the altitude of quadcopter using the PD controller
in MATLAB. The dataset containing the inputs and output of
the PD controller was created. Later, Algorithm 1 was used to
generate the DFIS model of the altitude controller using this
input and output dataset. The optimum error threshold τEop was
calculated to be 0.1. Algorithm 1 extracted 26 rules from dataset,
and these formed the rule base Rb.

The number of rules in Rb was reduced using Algorithm 2.
The optimum reduction threshold τRop was calculated to be 0.15.
Algorithm 2 reduced the number of rules to 17 by merging a few
rules. This is called the reduced rule base Rr. A few interval

Fig. 8. Three interval T2DFs of each normalized input (DFIS model).

Fig. 9. Reduced error surface (Er) plot for the DFIS model.

T2DFs (3 out of 17) of each input are shown in Fig. 8.Rr and all
the interval T2DFs in it collectively form a reduced (simplified)
DFIS model. The reduced error surface plot for the DFIS model
is shown in Fig. 9. It can be seen that the reduced error surface
(Er) is less than τRop (i.e., 0.15). The surface of the DFIS model
is shown in Fig. 10.

For comparison purpose, various fuzzy models were tested.
The ANFIS type-1 model was extracted from the same input
and output dataset using the MATLAB fuzzy logic toolbox. The
dataset was divided into train and test sets (2:1). The model
was trained for 100 epochs and 36 rules were generated. It is a
Sugeno-based fuzzy model. Fig. 11 shows the surface plot of the
ANFIS type-1 Sugeno model. The fuzzy logic toolbox can be
used to convert the type-1 fuzzy model to a type-2 fuzzy model.
Therefore, an ANFIS type-2 model was also generated. This
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Fig. 10. Surface plot of the DFIS model. The upper surface is in blue and the
lower surface is in red.

Fig. 11. Surface plot of the ANFIS type-1 model.

Fig. 12. Surface plot of the ANFIS type-2 model.

type-2 model uses the type-2 bell-shaped membership functions
(see Fig. 12). Table II summarizes the key differences among
the DFIS and various other fuzzy models.

C. Designing the Arithmetic-Based Type-2 Altitude Controller

The objective is to control the altitude z by generating an
appropriate total thrust u1. The thrust u1 depends on the height
(sonar) measurements and the rate of change of the height of
the quadcopter. Using Algorithm 3, an arithmetic-based con-
troller was designed using Rr. The structure of the designed
closed-loop control system is presented as a block diagram in
Fig. 13. Fig. 14 shows the surface plot of the arithmetic-based
controller. The ANFIS fuzzy models (type-1 and type-2) were
converted to a fuzzy controller using the Simulink fuzzy logic
toolbox. These controllers were based on Sugeno inference
logic. Then, four controllers (arithmetic-based, ANFIS type-1,

TABLE II
PERFORMANCE COMPARISON OF THE PROPOSED DFIS MODEL WITH OTHER

MODELS

Fig. 13. Structure of the designed control system.

Fig. 14. Control surface of the arithmetic-based controller.

ANFIS type-2, and PD controllers) were used to regulate the
altitude of the quadcopter in MATLAB Simulink. Average white
Gaussian noise (AWGN) with a signal-to-noise ratio (SNR) of
10 dB was added to the sensor measurements. Altitude response
was simulated with noisy feedback signals. The quadcopter
was programmed to take off and reach an altitude of 0.7 m,
then rise to an altitude of 1 m, and finally descend to 0.7 m.
Fig. 15 shows the altitude response of the controlled quadcopter
during this simulation study. It is evident from Fig. 15 that the
proposed controller produced oscillations with less amplitude
compared with other three controllers. It should be noted that
oscillations are magnified for the purpose of comparison in
Fig. 15. To supplement the comparison results with quantitative
analysis, three separate variation measuring metrics [variance,
range, and root-mean-square error (RMSE)] were computed
from the responses of all the four controllers. These metrics



DOMBI AND HUSSAIN: DATA-DRIVEN INTERVAL TYPE-2 FUZZY INFERENCE SYSTEM BASED ON THE INTERVAL T2DF 2355

Fig. 15. Comparison of altitude response of various controllers (in MATLAB
Simulink). The measurements got from the altitude sensor (sonar) were cor-
rupted with AWGN.

TABLE III
PERFORMANCE COMPARISON OF THE PROPOSED TYPE-2 CONTROLLER WITH

OTHER CONTROLLERS

Fig. 16. Simulated altitude response of the quadcopter with various noise
levels.

were computed in the time interval (14 ≤ simulation time ≤ 25
in Fig. 15). The results obtained are shown in Table III. These
results clearly indicate that the performance of the proposed
type-2 controller was least affected by the noise in the feedback
altitude signal compared with other controllers.

To further investigate the robustness property of the proposed
controller, several simulations were performed to regulate the
altitude of the quadcopter with various noise levels. AWGN was
added to the data of the altitude sensor. This noisy altitude signal
is the feedback signal and is the input to the proposed controller.
Fig. 16 shows the altitude response of the quadcopter receiving
noisy altitude sensor data with various SNRs. A higher value of
SNR indicates that the signal quality is better and vice versa.

It is evident from Fig. 16 that when the noise level was
negligible (SNR 100 dB), the proposed controller regulated the
altitude without any oscillations (magenta line) and perfectly
followed the reference signal (black line). However, when the

Fig. 17. Actual trajectory followed by the Mambo quadcopter. (Flight data.1)

SNR was increased, the oscillations became more visible in the
response. For an SNR of 5 dB, the controller was still able to
regulate the altitude but with high oscillations. The borderline
case was reached when the signal and noise had equal power
(SNR 0 dB). In this case, the proposed controller could not
differentiate between the signal and noise. In this case, it was
not able to regulate the altitude (cyan line) and the quadcopter
crashed.

D. Hardware Implementation

MATLAB provides a support package for parrot quadcopter
drones (Mambo FPV and Bebop2). It connects with the quad-
copter hardware via Bluetooth/Wi-Fi, and it can send control
commands. MATLAB Simulink includes the simulation model
of the quadcopter. The model contains the algorithm for the
FCS. This algorithm implements roll, pitch, yaw, and altitude
controllers. The support package generates the C code of the FCS
and deploys it in the quadcopter. This algorithm can access the
onboard sensors such as the accelerometer, gyroscopes, camera,
and sonar. The flight data values (altitude, images, etc.) are
saved in onboard storage, and they can be retrieved from the
quadcopter at the end of the flight. The altitude controller in the
FCS was replaced with the proposed arithmetic-based type-2
controller. The C code of the FCS was generated and deployed
in the quadcopter via Bluetooth. A fixed flight trajectory corre-
sponding to the simulation scenario was also hard coded. The
uncertainty in the controller input (altitude) data was created by
adding white noise to the sonar measurements. The noisy data
were the input to the controller in the FCS. The drone flight was
tested in a protected (indoor) environment. The data recorded
during the flight were retrieved at the end. Fig. 17 shows the
altitude measurements recorded during this test flight. This tells
us that the proposed controller successfully followed the desired
trajectory, even in the presence of noisy sensor data.

E. Results and Discussion

From the results obtained, it is evident that the DFIS model
can be extracted directly from the process data. The DFIS model

1[Online]. Available: https://github.com/Abrarlaghari/Mambo-Quadcopter-
Simulink.git

https://github.com/Abrarlaghari/Mambo-Quadcopter-Simulink.git
https://github.com/Abrarlaghari/Mambo-Quadcopter-Simulink.git
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is composed of interval T2DFs and rules based on the Dombi
operator. As shown in Fig. 10, the proposed model has a smooth
surface, and it covers the whole input space. In these simulations,
the λ and ε parameters were kept fixed, the c parameter was
determined directly from the data, and ν was calculated using
(17). This reduces the number of parameter calculations per
interval T2DF. In Fig. 11, it can be seen that the ANFIS type-1
model also has a smooth surface except for the boundary areas.
On the boundaries, there are a few bumps. The ANFIS type-2
model (see Fig. 12) has a less smooth surface compared to those
for the DFIS and ANFIS type-1 models. Boundary bumps in
ANFIS models are due to the fact that only a few data points
are available to accurately model these areas. However, these
bumps are nonexistent in the DFIS model because of the long
tails of interval T2DFs. These tails tend to approximate a smooth
transition in the areas where there are only a few data points or
even no data points.

The performance of the DFIS model is evaluated by com-
paring it with the output of the ANFIS type-1 and ANFIS
type-2 fuzzy models. These are two well-established and widely
accepted fuzzy modeling approaches. As shown in Table II, the
DFIS model used a smaller number of rules and tunable pa-
rameters than the ANFIS type-1 and ANFIS type-2 models did.
Figs. 10, 11, and 12 show the surface generated by these three
models. It is evident that the DFIS model has much smoother
surface transitions. Furthermore, the qualitative aspects of these
three models are compared by designing the fuzzy controller.
The controllers are based on the rules and membership functions
in these models. These controllers are then used to control the
altitude of the quadcopter in the presence of noisy sensor data.
The altitude control responses of these three controllers are
shown in Fig. 15 for comparison purposes. The performance of
the ANFIS type-2 controller is worse than the ANFIS type-1 and
proposed arithmetic-based controllers. The proposed controller
is better than the ANFIS type-1 controller as it is more robust to
the variations in the noisy sensor measurements. In addition to
the simulations, the hardware implementations of the proposed
controller showed very promising results for the real-time con-
trol applications. The controller performed the altitude control
function in the presence of uncertain (noisy) measurement data
(see Fig. 17). This demonstrates the effectiveness of the proposed
arithmetic-based type-2 controller.

In ANFIS type-1 and type-2 controllers, the choice of mem-
bership functions and number of rules is hyperparameters. One
has to decide in advance on the type of membership functions
(triangular, Gaussian, trapezoidal, etc.) and the number of cate-
gories and rules. This hyperparameter selection is usually based
on experience or data insights. However, in our proposed DFIS
model, the number of rules and interval T2DF are determined
automatically by the algorithm based on the reduction threshold
τR.

The reduction threshold τR plays a key role in determining
the generalization performance of the proposed methodology.
A value of reduction threshold τR less than τRop [see (23)] will
lead to a large number of rules. This is similar to overfitting
in the learning paradigms. The DFIS model will accurately fit

the training data, but it will have poor generalization. This type
of DFIS model will be less interpretable, and it performs badly
on unseen data. A value of τR greater than τRop will produce
a DFIS model with a smaller number of rules. This type of
DFIS model will have a good generalization capability and
will be more interpretable with low computational complexity.
However, in this case, the accuracy of the DFIS model will be
poor. Thus, an optimum value of the threshold τRop will lead
to an optimum number of rules, and it will produce a DFIS
model with higher accuracy, better interpretability, and a good
generalization capability. The proposed DFIS methodology is
data driven. It means that the technique can be applied in cases
where the expert knowledge is not available, but the data of the
system is available. The methodology presented in this article is
very general, and the only assumption is the availability of the
data. We want to emphasize that the proposed methodology is
very general and can be used to model and control any real-world
physical system. The altitude control of quadcopter is studied
here only to validate the proposed methodology and to compare
it with various other fuzzy modeling and control techniques.

As mentioned in the introduction section, most of the devel-
oped methods extract the fuzzy rule and tune the parameters
using the metaheuristics. However, these algorithms can get
stuck in a local optimum, and there is no guarantee that these will
find the global optimum solution. In addition, the local optimum
solution provided by these algorithms depends on the initial
values of the tunable parameter. These tunable parameters are
usually randomly initialized, and then, a heuristic is applied to
get the optimum value. The process is repeated with several
random initial values, and the best values are chosen at the end
via a comparison of the results achieved with each random ini-
tialization. The algorithm proposed in this article uses a different
approach to tune the parameters of the DFIS model. Values of a
few parameters are fixed, and they are never changed during the
training phase. For the remaining tunable parameters, there are
closed-form expressions [see (16) and (17)], which can precisely
determine the values of these parameters. Rules are added itera-
tively, and the parameters in these rules are determined using the
expressions. The rule addition process continues until the error
is within the bounds of reduction threshold τR. As no heuristic is
employed here, the values determined for the tunable parameters
are near optimum.

F. Interpretability of the DFIS Model and Results

The proposed DFIS model is based on rules that have the
following form:

ifx1 is around c1 and . . .. . . andxn is around cn

then y is v1 (33)

where x1, . . . , xn are the input variables and c1, . . . , cn are the
peak coordinates of the corresponding interval T2DFs. y is the
output variable and v1 is the value of the output. The rule is
self-explanatory, and it is very easy to interpret a single rule.
The identified DFIS model consists of a number of these types
of rules. Therefore, the interpretability of the whole DFIS model
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depends on the number of these rules. The small number of
rules leads to a more interpretable DFIS model and vice versa.
As shown in Table II, the proposed DFIS model has the least
number of rules compared with various other models. Therefore,
the DFIS model is comparatively more interpretable.

In the simulations, 17 rules were identified by the proposed
approach. Three of these rules are as follows.

1) If the normalized altitude error is around 0 and the nor-
malized altitude rate is around 0, then the total thrust is
−0.469.

2) If the normalized altitude error is around 1 and the nor-
malized altitude rate is around 1, then the total thrust is
0.417.

3) If the normalized altitude error is around 0 and the nor-
malized altitude rate is around 1, then the total thrust is
−1.036.

For a given set of values of the input variables x1 and x2, then
the upper and lower firing strengths (vi(x∗) and v̂i(x

∗) of each
rule are calculated using (26). These firing strengths are then
multiplied with the corresponding thrust values (in matrix V )
to get the final crisp output value using (28). In this systematic
way, the DFIS model can easily be interpreted.

G. Comparison With Closely Related Work

Le et al. [43] designed an interval type-2 fuzzy controller
(MIT2FC) by proposing a multilayer structure. The network
parameters were tuned using gradient-based methods. The per-
formance of the proposed model was demonstrated using the
trajectory control of a quadcopter UAV. There are some key
differences between MIT2FC and our proposed methodology.

1) The MIT2FC model employed type-2 Gaussian member-
ship functions (T2GMFs). A separate T2GMF is required
to cover a specific region in the input space. Therefore, to
cover the whole input space completely, a large number
of rules are required. However, in the proposed design,
interval T2DFs are used. The interval T2DF has a long tail,
and the whole input space can be covered by identifying
a few important rules. This is evident from the results in
Table II. Therefore, our proposed strategy can reduce the
complexity of the fuzzy model.

2) A fixed number of rules are defined in the MIT2FC. The
parameters of these T2GMFs are learnt using the gradient-
based optimization method. The layer structure is fixed
and so is the number of rules. This results in a less flexible
model. However, in the DFIS design, the number of rules
is variable, and rules are learnt dynamically depending on
the error thresholds. Furthermore, the number of rules is
further decreased by combining the interval T2DFs, which
are acting in the close proximity.

3) The parameters of T2GMFs are learnt using the gradient-
based method in the MIT2FC. If the surface has sharp
boundaries (discontinuities), then it is difficult to optimize
the parameters using this method. However, in the DFIS
model, the parameters of the interval T2DF are calculated
using a closed-form equation [see (17)], and it is guaran-
teed to work well even in the presence of discontinuities.

4) The efficiency of the MIT2FC model was demonstrated
using numerical examples (simulation studies) only. How-
ever, the performance of the proposed DFIS model is
checked by real-time implementation on the quadcopter
hardware (Parrot mini-drone Mambo FPV). The flight data
are available.2 Owing to the reduced number of rules and
arithmetic-based inference, the DFIS-based controller was
able to produce the desired flight trajectory (see Fig. 17).

V. CONCLUSION

In this article, we presented the solutions to some of the
limitations associated with the existing fuzzy type-2 modeling
and control techniques. A procedure was proposed to identify the
type-2 model directly from the data, which we called the DFIS
model. This model consists of rules and interval T2DFs. The
whole input space is covered using a few rules. Interval T2DFs
can model various types of uncertainties using their parameters.
A rule reduction procedure is also proposed. It combines the
interval T2DFs in the close vicinity, and it significantly reduces
the number of rules. The DFIS model was compared with various
type-1 and type-2 fuzzy models. The DFIS model produced a
smooth surface with a comparatively small number of rules and
tunable parameters. Furthermore, a procedure is proposed to
design an arithmetic-based interval type-2 fuzzy controller using
the rules. As controller design does not include the implication
and type-reduction steps, this greatly reduces the computational
complexity and paves the way for the real-time implementation
of the proposed design. The effectiveness of the whole procedure
was demonstrated by designing an altitude controller for the Par-
rot Mambo quadcopter. Simulations were carried out in MAT-
LAB Simulink to compare the proposed controller with various
fuzzy controllers. The proposed controller performed better and
regulated the altitude of the quadcopter even in the presence of
noisy (uncertain) sensor measurements. This robustness to noisy
data is due to the use of interval T2DFs. The designed controller
was then deployed and tested in the FCS on the quadcopter
hardware. Real-time hardware implementations produced the
same results as those obtained in the simulations. Because of
its low computational complexity and design simplicity, the
controller is suitable for real-time control applications.

The proposed DFIS model has a few limitations. It can pro-
duce an interpretable and computationally less expensive model
only if the number of features (inputs) is small. For a large
number of features, a fuzzy surface has to be constructed in
higher dimension, and also, a large number of complex rules
are required to correctly capture the interfeature correlations.
In this case, the DFIS model will still be accurate, but it will
be less interpretable. Therefore, the proposed methodology is
only applicable to application domains where the number of
features is small, such as control system design and financial
modeling. For other domains, where the number of features is
large (computer vision and natural language processing), the
DFIS will produce a very complex model with low interpretabil-
ity. Future work includes the designing of an ensemble of the

2[Online]. Available: https://github.com/Abrarlaghari/Mambo-Quadcopter-
Simulink.git

https://github.com/Abrarlaghari/Mambo-Quadcopter-Simulink.git
https://github.com/Abrarlaghari/Mambo-Quadcopter-Simulink.git
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DFIS models to scale the proposed methodology for a complex
system with a large feature set. Another possible future direction
is to extend the proposed DFIS model to include the general
T2MFs. An arithmetic-based control design procedure could
also be extended to design the general type-2 controllers with
reduced computational complexity. This would help to model
the uncertainties associated with the real-world physical systems
with more accuracy and less complexity.
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