
Comparing ML-Based Predictions and Static
Analyzer Tools for Vulnerability Detection?

Norbert Vándor, Balázs Mosolygó, and Péter Hegedűs

Department of Software Engineering, University of Szeged, Hungary
{vandor|mbalazs|hpeter}@inf.u-szeged.hu

Abstract. Finding and eliminating security issues early in the develop-
ment process is critical as software systems are shaping many aspects of
our daily lives. There are numerous approaches for automatically detect-
ing security vulnerabilities in the source code from which static analysis
and machine learning based methods are the most popular. However,
we lack comprehensive benchmarking of vulnerability detection methods
across these two popular categories. In one of our earlier works, we pro-
posed an ML-based line-level vulnerability prediction method with the
goal of finding vulnerabilities in JavaScript systems. In this paper, we
report results on a systematic comparison of this ML-based vulnerability
detection technique with three widely used static checker tools (Node-
JSScan1, ESLint2, and CodeQL3) using the OSSF CVE Benchmark4.
We found that our method was more than capable of finding vulnerable
lines, managing to find 60% of all vulnerabilities present in the examined
dataset, which corresponds to the best recall of all tools. Nonetheless,
our method had higher false-positive rate and running time than that of
the static checkers.

Keywords: Vulnerability detection, ML models, Static analyzers, OSSF
benchmark

1 Introduction

Software security is becoming more and more crucial as software systems are
shaping many aspects of our daily lives. A seemingly minor programming error

? This research was supported by the Ministry of Innovation and Technology of Hun-
gary from the National Research, Development and Innovation Fund, financed un-
der the TKP2021-NVA funding scheme and the framework of the Artificial Intel-
ligence National Laboratory Program (MILAB). Furthermore, Péter Hegedűs was
supported by the Bolyai János Scholarship of the Hungarian Academy of Sciences
and the ÚNKP-21-5-SZTE-570 New National Excellence Program of the Ministry
for Innovation and Technology.

1 https://github.com/ajinabraham/nodejsscan
2 https://eslint.org
3 https://codeql.github.com
4 https://github.com/ossf-cve-benchmark/ossf-cve-benchmark

https://github.com/ajinabraham/nodejsscan
https://eslint.org
https://codeql.github.com
https://github.com/ossf-cve-benchmark/ossf-cve-benchmark

2 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

might turn out to be a serious vulnerability that causes major losses in money
or reputation, threatens human lives, or allows attackers to stop vital services
or block infrastructure. Therefore, finding and eliminating security issues early
in the development process is very important.

Since security testing is very hard and requires lots of expertise and has high
costs, automated solutions are highly desirable. There are numerous approaches
for detecting security vulnerabilities in the source code from which static anal-
ysis [20] and machine learning based methods [11] are the most popular. Even
though tools are compared to each other within their categories (static analy-
sis tools with other static analysis tools or ML models with other ML models),
we lack comprehensive benchmarking of vulnerability detection methods across
categories.

Empirical comparison of ML based vulnerability detection and static anal-
ysis tools might bring in useful insights that could help determining if one of
the technologies are more beneficial than others, are there categories of secu-
rity issues that can be detected more effectively with certain technique, or is
combining these techniques bring anything performance-wise.

In one of our earlier works [18], we proposed an ML-based line-level vulner-
ability prediction method with the goal of finding vulnerabilities in JavaScript
systems, while being both granular and explainable. Since our method provided
favorable results, it was the next natural step to see how it fares against other
static analyzers. Therefore, in this paper we report results on a systematic com-
parison of this ML-based vulnerability detection technique with three widely
used static checker tools (NodeJSScan, ESLint, and CodeQL) for identifying
vulnerabilities.

As a benchmark, we selected the OpenSSF (OSSF) CVE Benchmark5 that
consists of code and metadata for over 200 real life CVEs6 It also contains
tooling to analyze the vulnerable codebases using a variety of static analysis
security testing (SAST) tools and generate reports to evaluate those tools. We
extended the benchmark with the integration of our own ML-based prediction
tool and evaluated the results on the data contained in the benchmark.

We found that our method was more than capable of finding vulnerable lines,
managing to find 60% of all vulnerabilities present in the examined dataset. We
also showed that it is capable of finding vulnerabilities that other tools would
likely miss, as it has a higher likelihood of finding issues belonging to CWEs7,
which the others find significantly less of. Nonetheless, our method had higher
false-positive rate and running time than that of the static checkers.

The rest of the paper is organized as follows. Section 2 describes our ML-
based methods, the static analyzer tools and the benchmark we used for compar-
ison. We provided detailed results on the 200 CVEs contained in the benchmark
in Section 3. We present related literature in Section 4 and enumerate the possi-
ble threats to our work in Section 5. Finally, we conclude the paper in Section 6.

5 https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
6 Common Vulnerabilities and Exposures, https://www.cve.org
7 Common Weakness Enumeration, https://cwe.mitre.org

https://github.com/ossf-cve-benchmark/ossf-cve-benchmark
https://www.cve.org
https://cwe.mitre.org

Comparing ML and Static Analyzers for Vulnerability Detection 3

2 Approach

Our main goal in this paper is to compare how well a JavaScript line-level ML-
based vulnerability prediction method works when compared to classical static
analyzer tools for vulnerability detection. Therefore, in this section, we describe
the essence of an ML-based vulnerability detection method [18] we developed
for identifying vulnerable JavaScript code lines and the benchmark we used for
comparing it to other static analysis vulnerability checkers.

2.1 The VulnJS4Line Method

The method we have created aims to detect vulnerable lines in code bases by
comparing each one to a preexisting database of known vulnerabilities. The
process can be broken up into 2 major parts:

The first part is the creation of the knowledge base, and word2vec8 model,
that will be used to create vectors from the lines in question. This step needs to
be executed only once, since the knowledge base can easily be extended after its
creation, and the model does not need to be retrained.

The second part is the actual prediction process, during which each line of
the system under investigation is tested against each line of the vulnerability
database, in order to find the ”most similar” vulnerable line. The probability
of a line being vulnerable is calculated based on its distance from its closest
pair in the database, and some static rules, such as the lines’ complexity. If this
probability exceeds a certain threshold, we mark it as vulnerable.

During the creation of the results presented in this paper, we used the pa-
rameters we found to be most successful during our initial testing.

2.2 OSSF CVE Benchmark

To evaluate our tool, we used the OSSF CVE Benchmark. This project consists
of code and metadata for over 200 real life CVEs (belonging to 42 CWEs) from
over 200 GitHub projects, while also providing the required tooling to test the
performance of static analyzers. Each project contains one CVE and the patch
for it; and each CVE affects one file. In total, there are 223 affected files, which
translates to 222752 lines of code. For proper testing, it is invaluable to use
examples from real life, rather than synthetic test code.

How it works. The benchmark uses drivers to run the different tools on all
CVEs, both pre- and post-patch, then determines two things: 1) was the tool
able to detect the vulnerability, or did it produce a false negative? 2) when ran
against the patched codebase, did it recognize the patch, or did it produce a false
positive? After the run, all drivers generate reports, which then the benchmark
parses and presents as an HTML or text file. In the report made by the bench-
mark, one can see certain statistics, such as the number of correctly identified

8 https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html

4 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

vulnerabilities and the number of correctly recognized patches. Besides these,
there is also the file containing the vulnerabilities, with icons denoting which
tool flagged which line and for what reason.

Fig. 1: A vizualization of the benchmarking process

VulnJS4Line driver. For our own tool, we had to write a driver file in Type-
Script, whose main function is to run the tool, collect the output, and produce
a report compatible with the benchmark. First, the driver runs our tool on the
project folder the benchmark has provided for a specific CVE. To be able to do
this, we had to upgrade our tool to accept folders as input, and search for and
check all JavaScript files inside them. For easier handling of outputs, we also
added the option to get the results as a JSON file. To get the best results, we
set the parameters to those that we outlined during our previous work. In other
words, we used the SpecialValues model with 92% using the prefer complex rule.

After this, the driver collects the results and creates an output JSON file.
The files read by the benchmark must contain pairs of data: the first element
is the rule the CVE violates, and the second element is a location consisting of
the path to the file and the line the vulnerability is in. The rules are, in other
words, the reason why a tool flags a certain line. For us, it’s the lexed version of
the line the CVE is the most similar to. And finally, the output file is passed to
the benchmark, which stores it.

Comparing ML and Static Analyzers for Vulnerability Detection 5

2.3 Other Tools in the Benchmark

We used three different static analyzers to which we compared our method. All
of them, including the necessary drivers, were provided by the benchmark.

NodeJSScan is an open source static code scanner used to find security flaws
specifically in Node.js applications. It is a user interface built upon njsscan9, a
command-line interface that uses regex-based pattern matching to find bugs and
enforce code standards.

ESLint 10 is a static code analysis tool for identifying problematic patterns found
in JavaScript code. It can be used for both code quality and coding style issues.
It supports the current standards for ECMAScript, and is also able to analyze
TypeScript code. ESLint is the most commonly used JavaScript linter.

CodeQL 11 is a semantic code analysis engine, which lets users query code as it
was data. First, CodeQL has to create a relational database from each source file
in the codebase by monitoring compiler activity and extracting relevant informa-
tion in the case of compiled languages, or simply running the extractor directly
on the soruce code to resolve dependencies in the case of interpreted languages.
The database contains a full hierarchical representation of the code, including
the abstract syntax tree, the data flow graph, and the control flow graph. Then
it uses queries to find specific issues in the code. It achieves that by performing
variant analysis, which is the process of identifying ”seed vulnerabilities” - in
other words, an already known security vulnerability - and using them to find
similar problems in the code.

2.4 Statistics for the Comparison

As presented in Section 3, the three main statistics we were interested in were
prediction quality, the time required to analyze a project and the most detected
vulnerability types. To get the necessary data for these statistics, we had to
extract some extra information that is not normally used in the reports the
benchmark generates. While the reports contain a list of lines the tools flagged
as vulnerable, to create the statistics regarding the average number of flagged
lines, we also had to get the total number of lines in a file. Fortunately, this is in-
cluded in the source of the benchmarking tool, along with important information
regarding the CVEs.

After getting the average statistics, the next step was to create the time
statistics. Unfortunately, the benchmark does not provide a conventional way
to measure the time required for each tool. To remedy this, we analyzed the
console logs produced by the benchmark. Before running a tool, the benchmark
prints a crucial piece of information for us: the timestamp for when it will shut a

9 https://github.com/ajinabraham/njsscan
10 https://eslint.org
11 https://codeql.github.com

https://github.com/ajinabraham/njsscan
https://eslint.org
https://codeql.github.com

6 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

running tool down. In other words, since we know that a tool will timeout after
exactly 30 minutes, we could measure how long it ran based on the previously
mentioned timestamps.

For the third statistic, as mentioned, we did have all information regarding
CVEs, including their CWEs, which we were interested in. However, to determine
whether a tool properly found a certain CWE, we also needed to check if it
flagged a relevant line - this information is provided in the reports. So to create
this statistic, we simply counted how many relevant flags were produced for each
CVE, and from that we could check which CWE it belongs to.

3 Results

In this section, we will discuss the performance of our approach compared to
three well-established and widely used static analysis tools, when it comes to
detecting vulnerabilities. We have selected 3 metrics to showcase here in order
to properly demonstrate the potential of our approach. These metrics are what
we believe to be the most important when it comes to usability.

(a) NodeJSScan (b) VulnJS4Line

(c) CodeQL (d) ESLint

Fig. 2: Visualization of the tools’ performances

3.1 Prediction Quality

When it comes to usability, the most important property of a vulnerability de-
tection tool is its ability to produce accurate results.

As mentioned in 2 the OSSF CVE Benchmark checks whether a method flags
a vulnerable lines before and after it has been patched or not. In an optimal
scenario, a method would only mark actually vulnerable lines as vulnerable,
however that is unfortunately not the case in most situations. In many cases the
tools detect potentially faulty lines based on characteristics that do not change
after the actual issue has been fixed, and as such continue to flag the lines as
vulnerable, even after it has been dealt with.

Comparing ML and Static Analyzers for Vulnerability Detection 7

The results shown in Figure 2 demonstrate the above point. Percentage of
perfect cases, where the line is only marked before a fix has been issued is repre-
sented in green, while orange represents cases where a line has been marked both
before and after the related issue has been dealt with. Naturally, red represents
the lines that were never marked as vulnerable.

We can see, that our method finds the most lines overall, while perfectly
handling the second most lines, outperforming both NodeJSScan and ESLint by
a significant margin when it comes to both metrics. CodeQL finds less vulnerable
lines overall, however stops flagging most of them after they have been fixed.

We consider our results to be the second best, when it comes to this measure
of predictive quality, since our method correctly handles more than twice as many
vulnerabilities as ESLint does. However, the amount of ”orange” or partially
handled vulnerabilities is a cause for concern, since it is a sign of a higher false
positive rate. Technically, in this metric, our method is outdone by NodeJSScan,
since that tool fully handles half of the lines it finds, meaning that only half
of the vulnerabilities will be marked after they have been fixed. We still would
not consider this to be the second best result in this area, because the low
probability of NodeJSScan actually finding a vulnerability would still lead to a
user that solely depends on the tool missing a large majority of issues.

A similar metric, unfortunately omitted by the benchmarking tool, is the
amount of lines flagged by each tool overall. The tool only measures the false
positive rate of the methods in question in relation to finding vulnerabilities, but
not their overarching performance, when it comes to marking lines. This means,
that a method, that flags every line, would achieve a 100% ”orange” rating.

As we can see in Figure 3 on average, our method flags the most lines, followed
by ESLint. The average examined file is approximately 1000 lines long, getting
a bit longer post patch, meaning that while our method performs the worst,
it still only flags about 10% of all lines. While this is a major issue when it
comes to usability, since a large false positive rate can render a tool completely
useless in a commercial setting where development time is a key asset, with
manageable improvements, our tool could compete with a widespread solution
such as ESLint.

3.2 Time Requirement

The effectiveness of a vulnerability detection tool can be greatly improved, if it
is runnable in real time, during the process of writing code, or even in a just
in time fashion, after a commit is created. The sooner a developer is notified
about a potential issue, the easier it is to double check the results, and discard
false positives. Even if a method is capable of producing high quality results, a
massive time requirement can still hinder its large scale adoption. This metric
is unfortunately omitted from the OSSF CVE Benchmark.

As we can see in Figure 4 our method takes 6 minutes on average to create a
set of results, while the overall best performing tool CodeQL takes a little over
a minute. This is a major blow to the possibility of practical use, when it comes
to our method. Improvements could still be made, since the tested version was

8 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

Fig. 3: Average number of lines marked per file

written in Python, a language generally known for its poor performance, when
it comes to computation speed. Since the theoretical complexity of our method
is low, it is possible, that with major technical improvements, it could become
competitive, with its widely used counterparts.

3.3 Most Detected Vulnerability Type

Related literature [2,10,13,14] agrees that static analyzers are performing better
when it comes to finding SQL Injection and XSS related vulnerabilities. We
investigated, whether our method showed similar preferences, when it came to
finding different vulnerability types, or not.

As mentioned in Section 2.4 the Benchmark we used contains the CWE12

categories of the vulnerabilities in question.
In Table 1 we showcase the CWEs that showed significant performance gaps

between the tools, while having over 10 occurrences. Our main goal with pre-
senting these results is not to show differences in the tools’ capabilities, rather
to point out potential areas, where one may be preferable. For this reason, we

12 Common Weakness Enumeration

Comparing ML and Static Analyzers for Vulnerability Detection 9

Fig. 4: Average runtime of methods in seconds

omit information about vulnerability types that rarely appear, or those where
the tools’ performance is similar.

We do not showcase the results produced by NodeJSScan, since it marks
too few lines, for its performance to be comparable, when it comes to finding
different vulnerability types.

SQL Injection and Cross Site Scripting. Despite our notion of only show-
casing CWEs with a relevant presence, we include CWE-94 even though it ap-
pears only 4 times in the dataset. CWE-89 is the id given to SQL Injection
related vulnerabilities, and as such its inclusion is warranted.13 We can see, that
none of the tools manage to find a significant number of lines containing issues
of this category.

Cross-site scripting or XSS related vulnerabilities, with the CWE id of 79,
also do not present outstanding numbers, in this context.14 We can see, that
out of the portrayed tools, even the highest performing one, does not reach 50%
detection rate.

13 https://cwe.mitre.org/data/definitions/89.html
14 https://cwe.mitre.org/data/definitions/79.html

10 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

CWE-78 CWE-79 CWE-88 CWE-89 CWE-94 CWE-116 CWE-400 CWE-730 CWE-915

VulnJS4Line 70% 37% 72% 25% 58% 22% 56% 55% 65%

CodeQL 40% 44% 44% 25% 35% 52% 32% 27% 35%

ESLint 55% 40% 16% 0% 78% 17% 62% 27% 95%

Table 1: The amount of CWEs found by three of the tested tools

In view of the above mentioned results, we conclude, that in this context, the
tools do not perform as previous research would indicate. As seen in Section 4.2
these 2 vulnerability types are the ones that are generally found with the highest
success rate.

3.4 Key Differences Between the Observed Performance of the
Methods

Our method performs outstandingly well, when it comes to CWE-78 (OS Com-
mand Injection), CWE-88 (Argument Injection) and CWE-730 (vulnerability
related to A9 Denial of Service). It is important to point out, that while in all of
these cases, our method manages to find over half of all vulnerabilities present,
while the other tools struggle to get above the half way mark, except for ESLint,
in the case of CWE-78. In the case of CWE-730, our method manages to find
over twice as many vulnerable lines as the other two, while in the other 2 cases,
it manages to gather over 70% of the lines related to the issue at hand.

When it is not the highest performing approach, it still does not fall too far
behind, providing similar results, to at least one of the tools.

We can also see, that in multiple cases one tool clearly outperforms the
rest, especially in the cases of CWE-915 and CWE-116. This is effect has been
previously observed in different environments, and leads to th suggestion of using
multiple solutions, that have clear, differing strength in tandem, to achieve an
overall boosted performance.

Since out method performs distinctly better in areas, the other examined
tools falter, it might have place as a specialist tool, when it comes to finding
certain kinds of issues.

4 Related Work

Numerous works have been created to either compare vulnerability scanners,
check the effectiveness of static analyzers, and to check the validity of bench-
marks.

4.1 Effectiveness of the Static Analyzers

V. Benjamin Livshits and Monica S. Lam [15] formulated a general class of secu-
rity errors in Java programs. Using these they were able to create a precise and

Comparing ML and Static Analyzers for Vulnerability Detection 11

scalable static analysis tool that was capable of finding security vulnerabilities
such as XSS, SQLI, HTTP split attacks and more.

Nathaniel Ayewah et al. [6] created and evaluated FindBugs. A static soft-
ware analysis tool capable of not only finding generic bugs, but security vulner-
abilities such as SQL injections.

Katerina Goseva-Popstojanova and Andrei Perhinschi[12] evaluated 3 static
analysis tools in the context of C/C++ and Java. They found that a significant
portion of vulnerabilities was missed by all three tools, and less then half of the
vulnerabilities were found by all three, in both environments.

Elisa Burato et al. [7] were able to create Julia, a static analyzer tool capable
of finding 90% of security issues present in the OWASP benchmark, greatly
outperforming previous scanners.

4.2 Comparing Vulnerability Scanners

S. El Idrissi et al. [13] found, during their evaluation of multiple vulnerability
scanners, that the performance of each scanner differs for different vulnerability
types. They found, that the scanners were more effective at finding SQLI and
XSS related issues.

Jose Fonseca et al. [10] compared the performance of three commercially
used scanning tools, when it came to finding SQLI and XSS related issues. They
found that the tested methods produced high false positive rates and relatively
low coverage.

Chanchala Joshi and Umesh Kumar Singh [14] also found, that vulnerability
scanners are more successful at detecting SQLI and XSS related faults in code.

Mansour Alsaleh et al. [1] examined multiple open source web vulnerability
scanners using an approach that allowed evaluation from multiple angles. They
found that, while overall there were only minor differences between the perfor-
mance of each scanner, there was considerable variance when it came to both
the type and number of detected vulnerabilities in each tools’ results.

Nataša Šuteva et al. [22] tested 6 web vulnerability scanners on the Wack-
oPicko app. The scanners found similar amounts of vulnerabilities, all with a
high false positive and false negative rates.

Balume Mburano and Weisheng Si [17] compared not only the performance
of different scanners, but 2 different benchmarking tools as well. They found,
that using multiple benchmarks to evaluate scanners provides a more accurate
picture of their performance. They also found that no scanner can be considered
as an all-rounder, since each performs differently in for different vulnerability
types.

Andreq Austin and Lauries Williams [5] found that automated penetration
testing found more vulnerabilities per hour than static analysis tools, however
manual testing was still more effective.

Nuno Antunes and Marco Vieira [2] also investigated the differences between
penetration testing and static code analysis. They found, that when it came
to detecting SQL Injection related vulnerabilities static analyzers outperformed

12 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

their counterparts. They also note, that even tools implementing the same ap-
proach to finding issues, might present different results.

Malaka El et al. [9] benchmarked automatic vulnerability detection tools
for SCADA devices and scientific instruments. They found that not only did
the tools find different vulnerability types with differing efficiency, but their
scalability also varied. They propose the idea of using multiple analysis tools in
tandem, in order to achieve better results.

4.3 Benchmarks

Creating powerful bechmarking tools even in itself is a challenge.
Valentin Dallmeier and Thomas Zimmermann [8] proposed a technique that

allows the automatic collection of successes and failures from a projects history
in order to create a large set of benchmarking data.

Reza M. Parizi et al. [16] created a set of guidelines for benchmarking projects.
Nuno Antunes and Marco Vieira [3][4] created a benchmark for web services

focusing on SQL Injection related vulnerabilities.
Ivan Pashchenko et al.[19] created a benchmark that aims to reproduce real

world scenarios through the use of automatically generated test cases based on
prior vulnerability fixes in Open Source software repositories.

Hui-zhong Shi et al. [21] propose a generic framework of Web security eval-
uation.

5 Threats to Validity

Our evaluation depends on the quality of the data contained in the OSSF bench-
mark. However, it is manually collected and adopted by other researchers as well,
therefore, it poses minor threats to the validity of our conclusions.

We compare a single ML-based method with three different static analy-
sis tools. Therefore, our conclusions might not generalize to other ML-based
techniques. Nonetheless, it already gives a first insight into how these different
techniques compare to each other for vulnerability detection. However, further
studies in this area is needed.

The only evaluation metrics integrated into the OSSF Benchmark are whether
a tool marks the vulnerable code lines before the vulnerability is fixed and if they
stop reporting it after the fix. However, if a tool marks all lines of a program
as being vulnerable, it would get perfect score for the first metric. Therefore,
meaningful comparison needs additional evaluation metrics. To mitigate this,
we implemented and extended the benchmark measurements with the count of
the number of flagged lines as well as the time required for detecting a vulnera-
bility.

6 Conclusion

In this paper we presented the benchmarking results of a tool we created for
the purpose of creating line level, explainable vulnerability predictions. For this

Comparing ML and Static Analyzers for Vulnerability Detection 13

purpose we used the OSSF CVE Benchmark, that not only provided an oppor-
tunity to test our method in a realistic environment, but to directly compare its
capabilities to other, widely used, industry level tools.

We found that our method was more than capable of finding vulnerable lines,
managing to find 60% of all vulnerabilities present in the examined dataset. We
also showed that it is capable of finding vulnerabilities that other tools would
likely miss, as it has a higher likelihood of finding issues belonging to CWEs,
which the others find significantly less of.

However, it is limited by two factors. One is its high computation time, taking
significantly longer to run, than any of the other examined tools. The other, is
its high false positive rate. It flags over twice as many lines as its competitors.

In the future, we plan on reducing the time it takes for the method to run
its checks, by heuristically reducing the number of examined lines, and possibly
re-implementing it in a language more fit for fast calculations. Before these steps,
it is most important to reduce its false positive rate, since we see that as the
main limiting factor.

References

1. Alsaleh, M., Alomar, N., Alshreef, M., Alarifi, A., Al-Salman, A.: Performance-
based comparative assessment of open source web vulnerability scanners. Security
and Communication Networks 2017 (2017)

2. Antunes, N., Vieira, M.: Comparing the effectiveness of penetration testing and
static code analysis on the detection of sql injection vulnerabilities in web ser-
vices. In: 2009 15th IEEE Pacific Rim International Symposium on Dependable
Computing. pp. 301–306 (2009). https://doi.org/10.1109/PRDC.2009.54

3. Antunes, N., Vieira, M.: Benchmarking vulnerability detection tools for web ser-
vices. In: 2010 IEEE International Conference on Web Services. pp. 203–210 (2010).
https://doi.org/10.1109/ICWS.2010.76

4. Antunes, N., Vieira, M.: Assessing and comparing vulnerability detection tools for
web services: Benchmarking approach and examples. IEEE Transactions on Ser-
vices Computing 8(2), 269–283 (2015). https://doi.org/10.1109/TSC.2014.2310221

5. Austin, A., Williams, L.: One technique is not enough: A comparison
of vulnerability discovery techniques. In: 2011 International Symposium
on Empirical Software Engineering and Measurement. pp. 97–106 (2011).
https://doi.org/10.1109/ESEM.2011.18

6. Ayewah, N., Pugh, W., Hovemeyer, D., Morgenthaler, J.D., Penix, J.: Us-
ing static analysis to find bugs. IEEE Software 25(5), 22–29 (2008).
https://doi.org/10.1109/MS.2008.130

7. Burato, E., Ferrara, P., Spoto, F.: Security analysis of the owasp benchmark with
julia. Proceedings of ITASEC 17 (2017)

8. Dallmeier, V., Zimmermann, T.: Extraction of bug localization benchmarks
from history. In: Proceedings of the Twenty-Second IEEE/ACM Interna-
tional Conference on Automated Software Engineering. p. 433–436. ASE
’07, Association for Computing Machinery, New York, NY, USA (2007).
https://doi.org/10.1145/1321631.1321702, https://doi.org/10.1145/1321631.

1321702

https://doi.org/10.1109/PRDC.2009.54
https://doi.org/10.1109/ICWS.2010.76
https://doi.org/10.1109/TSC.2014.2310221
https://doi.org/10.1109/ESEM.2011.18
https://doi.org/10.1109/MS.2008.130
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1145/1321631.1321702
https://doi.org/10.1145/1321631.1321702

14 Norbert Vándor, Balázs Mosolygó, Péter Hegedűs

9. El, M., McMahon, E., Samtani, S., Patton, M., Chen, H.: Benchmarking vulnera-
bility scanners: An experiment on scada devices and scientific instruments. In: 2017
IEEE International Conference on Intelligence and Security Informatics (ISI). pp.
83–88 (2017). https://doi.org/10.1109/ISI.2017.8004879

10. Fonseca, J., Vieira, M., Madeira, H.: Testing and comparing web vulnerability
scanning tools for sql injection and xss attacks. In: 13th Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC 2007). pp. 365–372 (2007).
https://doi.org/10.1109/PRDC.2007.55

11. Ghaffarian, S.M., Shahriari, H.R.: Software vulnerability analysis and discovery
using machine-learning and data-mining techniques: A survey. ACM Computing
Surveys (CSUR) 50(4), 1–36 (2017)

12. Goseva-Popstojanova, K., Perhinschi, A.: On the capability of static code analysis
to detect security vulnerabilities. Information and Software Technology 68, 18–33
(2015)

13. Idrissi, S., Berbiche, N., Guerouate, F., Shibi, M.: Performance evaluation of web
application security scanners for prevention and protection against vulnerabilities.
International Journal of Applied Engineering Research 12(21), 11068–11076 (2017)

14. Joshi, C., Singh, U.K.: Performance evaluation of web application security scan-
ners for more effective defense. International Journal of Scientific and Research
Publications (IJSRP) 6(6), 660–667 (2016)

15. Livshits, V.B., Lam, M.S.: Finding security vulnerabilities in java applications with
static analysis. In: USENIX security symposium. vol. 14, pp. 18–18 (2005)

16. M. Parizi, R., Qian, K., Shahriar, H., Wu, F., Tao, L.: Benchmark requirements for
assessing software security vulnerability testing tools. In: 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC). vol. 01, pp. 825–
826 (2018). https://doi.org/10.1109/COMPSAC.2018.00139

17. Mburano, B., Si, W.: Evaluation of web vulnerability scanners based on owasp
benchmark. In: 2018 26th International Conference on Systems Engineering (IC-
SEng). pp. 1–6 (2018). https://doi.org/10.1109/ICSENG.2018.8638176

18. Mosolygó, B., Vándor, N., Antal, G., Hegedűs, P., Ferenc, R.: Towards a prototype
based explainable javascript vulnerability prediction model. In: 1st International
Conference on Code Quality, ICCQ 2021. pp. 15–25 (2021)

19. Pashchenko, I., Dashevskyi, S., Massacci, F.: Delta-bench: Differential benchmark
for static analysis security testing tools. In: 2017 ACM/IEEE International Sympo-
sium on Empirical Software Engineering and Measurement (ESEM). pp. 163–168
(2017). https://doi.org/10.1109/ESEM.2017.24

20. Pistoia, M., Chandra, S., Fink, S.J., Yahav, E.: A survey of static analysis methods
for identifying security vulnerabilities in software systems. IBM Systems Journal
46(2), 265–288 (2007). https://doi.org/10.1147/sj.462.0265

21. Shi, H.z., Chen, B., Yu, L.: Analysis of web security comprehensive evalu-
ation tools. In: 2010 Second International Conference on Networks Security,
Wireless Communications and Trusted Computing. vol. 1, pp. 285–289 (2010).
https://doi.org/10.1109/NSWCTC.2010.72

22. Suteva, N., Zlatkovski, D., Mileva, A.: Evaluation and testing of several free/open
source web vulnerability scanners (2013)

https://doi.org/10.1109/ISI.2017.8004879
https://doi.org/10.1109/PRDC.2007.55
https://doi.org/10.1109/COMPSAC.2018.00139
https://doi.org/10.1109/ICSENG.2018.8638176
https://doi.org/10.1109/ESEM.2017.24
https://doi.org/10.1147/sj.462.0265
https://doi.org/10.1109/NSWCTC.2010.72

	Comparing ML-Based Predictions and Static Analyzer Tools for Vulnerability Detection

