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We performed an experimental and numerical investigation of a convective

buoyancy-driven instability that arises during the injection of a denser miscible

fluid into a less dense one in a rectilinear geometry. We visualized the instabil-

ity using a shadowgraph technique and we obtained quantitative information us-

ing micro-Particle Image Velocimetry. Numerical simulations provided further in-

sights into the three-dimensional (3D) velocity field. We have shown that the insta-

bility only occurs above a certain Péclet number, Pe depending on the Rayleigh, Ra

and Schmidt, Sc numbers. We suggest scalings of the critical time, TC and dimen-

sionless wavelength, λ/h of the instability, both of which increase with increasing

Pe and Ra. Finally, we investigated the interactions of the instability vortices with

each other and the geometry boundaries.

Keywords: instability, vortices, buoyancy, CFD, convection
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I. INTRODUCTION

Hydrodynamic instabilities are a classic, yet constantly active and fascinating area of

research in fluid dynamics. They appear in a wide variety of applications such as: porous

media mass transfer1, geochemical flows2, CO2 sequestration3, H2 storage,4 or Li-ion bat-

tery design5. Hydrodynamic instabilities can also be part of a chaotic mixing mechanism

in microfluidics; i.e., in the form of viscous fingering or alternating injection of fluids6,7,

and play a critical role in certain micro-separation processes8,9. Recently, a trend of in-

vestigating buoyancy-driven phenomena on Earth and their absence in space is also dy-

namically developing, in view of the future possibilities of transferring relevant processes

in orbit or in outer space (i.e., during long term space travel)10,11. In this context, new

techniques for material synthesis in the microscale emerge, in the absence of buoyancy

phenomena12.

It has been observed that when a fluid 1 of density ρ1 and viscosity µ1 is injected into a

miscible fluid 2 of density ρ2 and viscosity µ2, a tongue-like profile is created in the contact

zone of the two fluids, where an abundance of instabilities may occur13–15; whether they

are convective16–18, viscous19,20, wetting-front21, or even Marangoni-driven22,23. When

this displacement takes place in a gravity field and µ1 ≥ µ2, then a buoyancy-driven con-

vective instability dominates the dynamics of the system16,24. Generally, when a denser

fluid is superimposed on top of a lighter fluid, the horizontal interface is gravitationally

unstable, resulting in the well-known Rayleigh-Taylor instability25,26. In the presence of a

displacement flow perpendicular to the gravity vector, advection and buoyancy synergize

towards the generation of a more complex instability27 as depicted in Figure 1.

Garik et al.28 first attempted to interpret this phenomenon as a Marangoni induced in-

stability i.e. driven by interfacial tension gradients, while studying cellular mixing. Lister

& Kerr29 and Didden & Maxworthy30 in their initial experiments attributed the instabil-

ity forming at the tip of the gravity current to dust contamination. A splitting instability
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FIG. 1: Schematic representation of the miscible displacement and the subsequent

emerging instability mechanism: lateral view (a) and transversal view (b)

caused by buoyancy effects was observed in capillary tubes31, but due to spatial confine-

ment the phenomenon did not produce more than one set of instability rolls in the flow cell.

Obernauer32 first conducted experiments in radial and linear larger-scale geometries and

suggested that the instability depends on the density difference between the two miscible

solutions, the flow rate and the tilting angle of the flow cell with respect to the perpendic-

ular, confirming the gravitational nature of the instability. A similar effect was observed

during the formation of precipitate particles33 in the contact zone of two reactant solutions

during radial displacement. Patterns in confined flow-driven microemulsion generation34

have been likewise attributed to such convective instabilities. Later on, Haudin et al.16 in

their work concluded that the phenomenon is indeed buoyancy-driven and that the viscos-

ity difference between the two fluids that participate does not affect the emergence of the

instability (for the viscously stable displacement case, that is when the more viscous fluid

is injected into the less visous one). This conclusion was further tested and confirmed

in microgravity experiments35. In continuation of this work16, Pótári et al.36 described

the phenomenon analytically and coupled it to experimental observations present in pre-

cipitation patterns. The same system has been revisited by Balog et al37. Subsequently,

scaling laws for high Pe number cases have been proposed36. More recent research work

investigated the stabilizing effect of the walls in such geometries without any displacing
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flow. It has been pointed out that there is a possibility to stabilize an otherwise unstable

stratification by sufficiently decreasing the vertical lengthscale of the system38. Numerical

simulations by Talon et al.39 and by John et al.40 showed the existence of a buoyancy-

driven instability in single viscous fingers. However, the effect of viscosity gradients on

the generation of the instability was not completely separated from that of the buoyancy

contribution in this system.

On this basis, to gain further knowledge on how this instability evolves in a narrow

rectilinear cell, we studied the viscously stable displacement of a denser fluid into a less

dense and fully miscible one in rectilinear geometries. We conducted experiments in a hor-

izontally oriented flow cell with varying gapwidths, flow rates and differences in density

between the two fluids. Detailed measurements with a shadowgraph optics (section III A)

allow us to eliminate any possible side effect of dyes, as used in previous studies16,32 for

flow visualization. We characterize in detail the special type of patterns that emerge in

the said unstable displacements (section III A and section IV C) and we introduce the cor-

responding spatiotemporal scalings (section IV B). Additional numerical simulations on

selected points in the experimental parameter space, based on the experimental observa-

tions, support our findings. The velocity fields from micro-Particle Image Velocimetry

and numerical simulations provide a detailed understanding of the flow structure and the

temporal evolution of the instability (section IV D).

II. PHYSICAL FORMULATION AND GOVERNING EQUATIONS

As depicted in Figure 1, we consider a small flow geometry of height, h and width, w.

The geometry is initially filled with fluid 1 with density ρ1. For t = 0, the injection of

fluid 2, with density ρ2 > ρ1, starts with a constant flow rate, q. In absence of buoyancy

effects, the injection flow results in the creation of a Poiseuille-like velocity profile, with

average flow velocity, U = q/hw. The subsequent stretching of the border between the
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two miscible fluids gives rise to a gravitationally unstable stratification in the horizontally

placed flow cell, as shown in Figure 1b.

As previously described16, the unstable stratification in combination with the advection

on the y-direction causes the appearance of multiple streamwise counter-rotating pairs of

convective rolls. The general mechanism of the creation of the longitudinal streamwise-

oriented rolls is well described in literature16,39,41. The counter rotating rolls can be di-

rectly compared to similar convective vortices created for the sheared Rayleigh-Benard

convection case42.

To formulate the problem mathematically, we consider the case were a more dense fluid

displaces a less dense fluid in a rectilinear geometry, as shown in Figure 1. The two fluids

are miscible in any proportion and their viscosities are considered equal. Based on the

approach of various similar studies of the instability43,44, the phenomena are governed by

the three-dimensional, incompressible Navier-Stokes equations:

∇ ·u= 0, (1)

ρ(
∂u

∂ t
+u∇u) = µ∇

2
u−∇p+ρ g⃗, (2)

where ρ , the density, µ , the viscosity and g⃗, the gravitational acceleration.

In combination with the convection-diffusion equation for the species that controls den-

sity, we obtain:

∂c

∂ t
+u ·∇c = D∇

2c, (3)

with

ρ = ρ1 + c∆ρ, (4)

where c = 0...1, and

∆ρ = ρ2 −ρ1 (5)
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where D is the diffusion coefficient of the density controlling species, while ρ1 and ρ2 are

the density values of the pure species 1 and 2, respectively.

Considering the hydrostatic and dynamic pressure contribution, we get,

p = p′+ρ g⃗z, (6)

where g⃗ =−gêz.

Let us then define the characteristic scales as: L∗ = h, T ∗ = h2/D, U∗ = L∗/T ∗ and

P∗ = Dµ/h2, and the dimensionless quantities ζ , t̃, ũ, p̃.

We then get,

∇ · ũ= 0. (7)

By taking advantage of the Boussinesq approximation, we get from Equation 2,

1
Sc

(
∂ ũ

∂ t̃
+ ũ∇ũ) = ∇

2
ũ−∇ p̃−Raζ

∂c

∂ζ
, (8)

and from Equation 3,

∂c

∂ t̃
+ ũ ·∇c = ∇

2c, (9)

obtaining the dimensionless parameters in the form of the Schmidt number, Sc = µ/ρD

and the Rayleigh number, Ra = ∆ρgh3/µD. Furthermore, the nondimensional velocity

takes the form of the Péclet number, Pe = hu/D. For the experiments, the density and

viscosity values of the denser solution in each case were used to determine Sc and Ra.

III. METHODS

A. Experimental Setup

We have conducted experiments in a horizontally placed rectilinear geometry shown

in Figure 2. In contrast to previous experimental or numerical studies24,32,36, where the
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geometry was considered as nearly 2D, in our case we have used Hele-Shaw cells with

smaller h/w ratios. This fact allows for the development of a parabola-like velocity profile

in the y-direction. Therefore, we also consider this aspect, which is present to some extent

in previous experiments26,32 but assumed to be negligible. The flow cell comprised two

optical glass plates separated by a thin polytetrafluoroethylene (PTFE) sheet of variable

thickness, h = 0.12, 0.25, 0.5, 0.8, 0.9, 1.0 mm (more information on the dimensions of

the flow cells are included in the SM). This setup allows for vertical optical access. The

cell is first completely filled with one fluid, afterwards, the second fluid is injected. The

detailed values of the experimental and numerical trials are included in the SM. The cell is

equipped with inlet and outlet ports for fluid handling (not shown in Figure 2 for simplic-

ity). The fluid is injected through an injection valve that is connected to a syringe pump

(PHD ULTRAT M, Harvard Apparatus, Holliston, MA, USA) with the use of PTFE tubing

material. A wide range of flow rates (q) was offered by the syringe pump. To guarantee

full miscibility and to control the density of the injected solution, we used aqueous solu-

tions with variable concentration of glycerol as solute. The used solutions along with their

corresponding physical properties at 25 oC are included in Table I.

TABLE I: Physical properties of fluids used.

Fluid Glycerol, % v/v Density, g/cm3 Viscosity, cP

1 0 0.9972 0.92

2 6.8 1.0182 1.2209

3 13.6 1.0363 1.5445

The density and viscosity values were obtained using an Anton Paar SVM 3001

pycnometer-viscosimeter (Anton Paar GmbH, Graz, Austria). To avoid any influence

of a potential viscous-fingering instability, the flow cell was always pre-filled with the less
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viscous liquid (i.e., distilled water) and the more viscous fluid (glycerol solution) was in-

jected. As the difference in the viscosity values amongst the used solutions is moderately

small, the viscosity and density values of the denser solution were used to calculate all

non-dimensional quantities (i.e., Sc, Ra) for each displacement combination.

To visualize the instability, we employed a shadowgraphy method which is sensitive to

the second derivative of the refractive index field (and thereby sensitive to the second

derivative of the h-averaged concentration field)45. We made use of a custom-made shad-

owgraph device (TSI Optics, Pulsnitz, Germany) in combination with a JAI GO-5100M,

2464 x 2056 px CMOS camera (JAI A/S, Copenhagen, Denmark).

FIG. 2: Sketch of the experimental setup used in this study: shadowgraph setup (a) and

detail of the experimental Hele-Shaw cell (b)

In addition, we performed preliminary velocity field measurements employing a micro-

Particle Image Velocimetry (µ-PIV) setup. The study was conducted using the same setup

and parameters as for the shadowgraph experiments. The integrated µ-PIV system (LaV-

ision GmbH, Göttingen, DE), illuminates the flow geometry with the use of an ND:YAG

laser (Photonics Industries International Inc., Ronkonkoma, NY, USA). Fluorescent par-

ticles, with a mean diameter of dp = 5.03 µm (Microparticles GmbH, Berlin, DE) dis-
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persed in water and in glycerol solutions were excited by the laser’s pulse (532 nm), and

re-emitted red light with a wavelength of 607 nm. The light emitted by the particles passes

through a filter where all scattered background signal is removed. After magnification by a

confocal microscope with a 3.2x objective lens (Zeiss Stereo Discovery V8, Carl Zeiss Mi-

croscopy GmbH, Jena, DE) the image is captured by the CMOS camera with a resolution

of 1280 px × 800 px (Phantom VEO 410L, Vision Research, Inc., New Jersey, USA). The

image capturing and acquisition was synchronized and controlled by the DaVis software

(LaVision GmbH, Göttingen, DE). The applied optics setup resulted in a depth-of-field of

≈ 0.18 mm. Hence, the velocity gradients in the vertical (z) direction are expected to influ-

ence the PIV results so that the measurement data mainly provides the approximate order

of magnitude of the velocity field. The image acquisition rate was adjusted depending on

the flow rate q and ranged between 0.2 kHz and 1 kHz.

B. Numerical Simulations

Computational Fluid Dynamics simulations were performed for a rectangular domain

corresponding to the experimental setup (cf. Fig. S1 in SM), using the twoLiquidMix-

ingFOAM solver of the OpenFoam software package, a Volume-Of-Fluid solver. This

solver is designed for modeling two miscible incompressible fluids. The incompressible

Navier-Stokes equation (Equation 2) with the Boussinesq approximation is solved using

the PISO method coupled with the scalar transport equation (Equation 3). From the cal-

culated concentration field (c) the density (ρ) can be corrected by applying Equation 4

and Equation 5. The same method is used for the calculation of viscosity. Additionally,

for all computations the diffusion coefficient, D was set to 10−9 m2 s−1 for the species

that controls density, in our case, glycerol. For temporal integration, we used the Euler

method with a time step in the range of ∆t = 0.5...2 ms, depending on the initial velocity.

The time step was adapted to account for the CFL criterion, with the Courant number kept
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below 0.5. At the inlet and outlet a constant initial velocity was set, and on the walls a

no-slip boundary condition was enforced. With regards to the concentration field at t = 0,

a concentration of c = 0 was maintained for the outlet and internal space, c = 1 for inlet,

and no flux boundary condition for the walls. The rectangular geometry was divided to

hexahedral finite volume cells with a spatial discretisation of ∆x = 0.2 mm, ∆y= 0.05 mm,

∆z = 0.04 mm. A grid convergence study was performed with a refined mesh (50% higher

resolution for ∆x, ∆y, and ∆z, and a timestep, ∆t = 0.5 s), which showed matching compu-

tational results. In order to directly compare the experimental shadowgraph images with

the numerical simulation results, a "synthetic" shadowgraph image is reproduced from

the simulation results of the corresponding case, where the magnitude of the ∇
2cz field is

shown, with cz being the z-averaged concentration values.

IV. RESULTS AND DISCUSSION

A. Shadowgraph observations: characteristics of the instability

In Figure 3, shadowgraph experiments of a 6.8 % glycerol solution injected into dis-

tilled water in a flow cell (h = 0.8 mm) are presented for different Pe numbers (i.e., injec-

tion flow rates). Under the shadowgraph, zones with a steep change in the refractive index

second spatial derivative appear significantly darker or brighter than the background, al-

lowing us to visualize structures in the concentration field during the displacement. For

the lowest Pe experiment (Figure 3a), no visual structures are observed, as no instabil-

ity is present. As clearly seen in Figure 3b and Figure 3c, the instability sets in and the

counterrotating vortices can be visualized as stripes with brighter and darker areas than

the background, following the displacement from left to right. The visual structures and

the interaction of the vortices formed due to the instability will be further discussed in sec-

tion IV C and section IV D. A preceding parabolic-shaped optical disturbance because of
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the Poiseuille profile of the displacement is visible in Figure 3c (pointed with red arrows).

This feature appears clearly in that case because of the high density contrast between the

two solutions which is conserved for longer times due to the higher Pe. The parabolic pro-

file also affects the evolution of the instability vortices, i.e., the vortices toward the middle

of the cell are advancing quicker than the ones near the walls. For Figure 3a-b, the relative

progress of the displacement can be estimated by the brighter areas near the walls (red

arrows in Figure 3a). The no-slip condition causes a long lasting concentration gradient

near the walls, which is only smeared out later due to diffusive mass transfer.

FIG. 3: Shadowgraph images of three experiments with Ra = 82 220 and increasing Pe:

(a) Pe = 144, (b) Pe = 202, and (c) Pe = 865. The images are all taken at ≈ 10 mm

downstream the inlet. Red arrows indicate the gradient near the walls in (a) and the

Poiseuille profile preceding the instability in (c).

In the following, the relationship between the emrgence of the instability is and the

flow conditions (Pe) is outlined and compared with preexisting research. It is observed

that the higher the Pe is, either with an increase of h and/or q in our experiments, the
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faster the instability appears which leads to the creation of more vortices for the same flow

cell width w (the wavelength decreases). When observing experiments under the same

flow conditions (same Pe) but with different ∆ρ between the two fluids, the influence

of density gradient is apparent (Figure 4). Larger ∆ρ leads to an earlier onset of the

instability and an increase of the number of counter-rotating vortices in the flow domain.

Hence, the emergence and development mechanism of the instability clearly depends on

the magnitude of buoyant forces as well.

A similar trend for the instability wavelength depending on h has been previously ob-

served for experiments with radial injection16 and numerical simulations in a rectilinear

geometry with free slip walls36. Also note the faster progression of the displacement on

the left side of Figure 4. Even though the average flow velocity, U , and the Pe number are

equal for both cases, the higher ∆ρ affects the displacement progress. This probably can

be ascribed to a stronger gravity current occurring in that case. As discussed by John et

al.40, such a gravity current leads to a faster tip advancement. This fact might also con-

tribute to the faster onset of the buoyant instability because steeper local density gradients

are created. An analysis based on an advancing gravity current has been discussed by

Pótári et al36.

B. Scaling of the instability onset

Using the introduced non-dimensional parameters, we can construct a flow map for

the linear displacement as shown in Figure 5a. The Pe vs. ScRa diagram is based on

the collective data through the complete range of ∆ρ , h and q. The slight changes in

Sc are caused only by the variation of the glycerol concentration in the solutions used.

The ScRa quantity is the product of the Sc and Ra numbers, also expressed as: ScRa =

∆ρgh3/ρD2. In the chart, ◦ indicates the cases where no instability was observed during

the displacement, while + is used for the cases where the instability is present. The results
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FIG. 4: Temporal progression of the instability through shadowgraph images of two

experiments with Pe = 342 with (a) Ra = 30 260 and (b) Ra = 20 070. The images are all

taken at ≈ 10 mm dowstream the inlet.

of the numerical simulations, which are in good agreement with the experimental results,

are also plotted in Figure 5a. In Figure 5b, the experimental correlation between Pe and

Ra for the critical values is sketched. The cases with the lowest Pe in which instability

occurs under otherwise identical experimental conditions (h and ∆ρ) are coined critical.

For high ScRa values, which means that the magnitude of buoyancy effects is stronger,

lower Pe values are required to destabilize the displacement. After fitting these critical

values, we observe a correlation between the two of the form: Pe ∝ (ScRa)−0.39. We

can thus assume, that the critical condition in our experiments is mainly controlled by the

characteristic length (h), the density difference (∆ρ) and the magnitude of the advective

flow (U). All of the above can be combined using the quantities expressed by ScRa and

Pe.
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For experiments at low h values (0.12 and 0.25 mm), we observed no instability at any

flow rate. This is seemingly an effect of spatial suppression of the instability (small h),

as it is the case for a Rayleigh-Taylor convection observed in similar miscible systems

without advection38. In that case, the diffusion time scale is smaller than the instability

onset time, smearing out the glycerol concentration gradient, and as a result, the density

gradient as well. Because of this confinement stabilization effect, the prediction of the

critical Pe number where the instability arises, should not be extrapolated for lower ScRa

values, as such instability might not arise for ScRa values below a threshold limit.
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FIG. 5: Flow regime chart for the displacement including experimental and numerical

values (a) and correlation of the experimental critical points for the instability emergence

(b)

The onset time, tc, of the instability, defined as the time interval between the entrance

of the injected fluid in the flow cell and the moment the instability sets in, seems to vary

when the experimental conditions change. To draw a more consistent comparison, a non-

dimensional onset time is defined as: Tc = tc/T ∗. To define the physical onset time, tc, the

standard deviation of the grayscale value of the shadowgraph images (or the ∇
2cz, for the
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CFD results) is used. The tc is approximately set to the time when the standard deviation

starts increasing rapidly (cf. SI).

In Figure 6a the instability onset time is plotted against the Pe number, for various ex-

perimental conditions. Each data series represents experiments carried out for the same

h and ∆ρ , while the only varying parameter affecting Pe was the flow rate, q. Tc shows

a weak proportional decrease according to ∼ 1/Pe, a finding in accordance with previous

studies in similar systems24. For systems without advection, scaling laws of similar struc-

ture have been proposed: either for the stationary Rayleigh-Taylor instability38 or for a

solutal system, based on the Rayleigh-Bénard scaling laws46,47. Although other studies

suggest an independency of tc by Pe16,36, we suppose this is caused by the relatively high

flow rates used in those cases, where the differences between tc might be negligible.
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FIG. 6: Dependence of the non-dimensional critical time, Tc on Pe for various

experiments with different Ra (a). Correlation of Tc with Pe and Ra (b). The fitted curve

is extracted using the experimental values. The numerical values are included for

completeness.

In Figure 6b, we attempt to combine both the buoyancy contribution (Ra) and the

16

T
hi

s 
is

 th
e 

au
th

or
’s

 p
ee

r 
re

vi
ew

ed
, a

cc
ep

te
d 

m
an

us
cr

ip
t. 

H
ow

ev
er

, t
he

 o
nl

in
e 

ve
rs

io
n 

of
 r

ec
or

d 
w

ill
 b

e 
di

ffe
re

nt
 fr

om
 th

is
 v

er
si

on
 o

nc
e 

it 
ha

s 
be

en
 c

op
ye

di
te

d 
an

d 
ty

pe
se

t.

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
 1

0
.1

0
6
3
/5

.0
1
5
1
7
5
7



Accepted to Phys. Fluids 10.1063/5.0151757

advective-diffusive contribution (Pe) in an expression predicting the critical time, Tc , fur-

ther extending the trends identified in previous studies. The Tc values seem to collapse into

the scaling: Tc =Pe−0.91Ra−0.55. The numerical data are not taken into account for the cal-

culation of the relation. They appear to have slightly higher values than the experimental

data, although they qualitatively follow the same trend. This fact can be mainly attributed

to the absence of any externally imposed disturbances in the numerical simulations, that

indeed exist in experimental tries, such as vibrations or imperfect inlet conditions which

may lead to the "premature" emergence of the instability in laboratory conditions. Never-

theless, certain perturbations in the simulations result from the numerical noise (e.g., due

to the discrete grid). Depending on the physical parameters, the numerical noise may have

different influence at the delicate point of instability onset, causing the observed variation

in the numerical data points.

FIG. 7: Dependence of the non-dimensional wavelength, λ/h, on Pe and Ra. The fitted

curve is extracted using the experimental values. The numerical values are included for

completeness.

Since a trend for the non-dimensional wavelength (λ/h) of the instability could be

identified from the shadowgraph images, another scaling is suggested in Figure 7. The
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value of λ is defined as the average distance between two dark regions in the shadowgraph

image across the cells’s width (see embedded sketch in Figure 7). In contrast with previous

studies that propose scalings using exclusively the advective flow contribution24 expressed

by Pe or using exclusively the gravitational effect36, here, it appears more appropriate to

combine both contributing forces, resulting in the Pe−0.23Ra−0.14 term. This reinforces

the argument that two different mechanisms act to promote the onset of the instability. Ra

is governed by ∆ρ , g and h. The higher Ra is, the more unstable the system gets and the

wavelength decreases. On the other hand, a high Pe number means low diffusive mass

transfer compared to the advective transfer by the injection flow. Thus, a higher driving

density gradient is conserved, favoring the convective instability. In the opposite case of

small Pe, the dynamics are strongly affected by diffusion, which assumes a stabilizing role

(through erasing concentration gradients in small scales). Hence the wavelength increases,

or for very low Pe, the instability does not occur at all (cf. Figure 5 for the critical Pe). The

same tendency is observed for the numerical results (♦ in Figure 7), with good qualitative

and quantitative agreement. Slight deviations are due to the experimental conditions which

can result in less pronounced density gradients, i.e., slight initial premixing at the inlet.

This initial premixing further will vary to some extent with the experimental parameters,

for example the inlet velocity, contributing to the scatter of the experimental data points in

Figure 7.

Compared to radial or laterally-non-confined rectilinear assemblies, we also expect

some discrepancies to the overall scalings of the occuring instability. The lateral walls in-

duce a sheared (Poiseuille) flow and are also expected to confine the emerging flow struc-

tures. The manufacturing of the lateral walls, which consist of the PTFE spacers, might

also slightly affect the flow and induce disturbances because of their nonzero roughness.

In addition, the discrete h/w ratios used are expected to have a certain influence on the

observed pattern wavelengths.
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C. Pattern evolution

In some cases, a vortex exchange phenomenon is observed, termed as "tip splitting" in

previous literature16 for the radial case. This "tip splitting" phenomenon was attributed

to the radial divergence of the flow. Here, we observe a similar phenomenon of vortex

generation and dissipation whose mechanism is not trivial to understand. As can be seen

in Figure 8, the counter-rotating vortices tend to diverge from their rectilinear direction

and begin to position themselves towards the wall (Figure 8, for t0). Figure 8a shows the

experimental shadowgraph images for the case with Pe = 280 and Ra = 176 460. With

regards to the "numerical shadowgraph" images, similar structures as in the experiments

appear as shown in Figure 8.

The diverging rolls are probably due to the shear induced by the lateral walls and the

non-uniform concentration gradients in the lateral direction, stemming from the Poiseuille

profile itself. Later on, at t0+2 s and t0+4 s, the outermost vortices have already dissipated

in Figure 8a and the distance between the remaining vortices has increased. As a result of

the diverging and dissipating rolls, there is space for the creation of a second generation

of vortices inbetween. The complex dynamics of the interaction between the 1st and 2nd

generation of vortices is difficult to decipher. In this case, there seems to be a fusion event

towards the tail of the vortices, leaving only one vortex behind (t0+8 s to t0+14 s, noted on

Figure 8 with the red arrows). It is presumed that this vortex replacement will carry on as

long as the density gradient across the displacement stratification is high enough to sustain

the generation of new vortices replacing the dissipated ones. Diverging and newly forming

rolls are likewise observed in the numerical results in Figure 8b. However, the vortex

dissipation only sets in later (t0 + 14 s), due to the above-discussed delay in the pattern

evolution. This kind of dynamic vortex interaction is not observed in previously studied

rectilinear cases of the instability24,32,36. We strongly suspect that the shear induced by the

lateral walls (
dux

dy
) might contribute to the phenomenology of the resulting vortex pattern.
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FIG. 8: Progression of a displacement exhibiting the complex interaction between

vortices for a case with Pe = 280 and Ra = 176 460 in experiment (a) and simulation (b).

The red arrows signify the merge of two vortices.

To further support this hypothesis, we simulated one case of the displacement using a

free slip condition on the lateral walls. For this case, the vortex movement towards the

sides disappears (for Pe = 280, Ra = 176 460, as described above), a fact that supports the

hypothesis that the vortex-vortex-wall interactions appear because of the lateral shearing

of the velocity profile. Note that a naturally diverging flow is present in the case of radial

displacements studied experimentally16 causing vortex-vortex interactions of a different

kind. In previous numerical studies in rectilinear geometries, where lateral walls were not
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present, no such vortex interactions were observed40.

FIG. 9: Space-time plot of the instability at the point behind the displacement’s front tip

for a case with Pe = 280 and Ra = 176 460 from shadowgraph experiment (a), numerical

simulation (b) and numerical simulation with free-slip wall boundary conditions (c).

The above-described temporal pattern evolution is visually represented in Figure 9

where the shadowgraph data from the forward part of the front are plotted against time

(a moving sampling line is used, that progresses to the right with the average velocity

of the displacement). The lateral movement of the vortices and the subsequent collision

with the wall is visible, both for the experimental case (Figure 9a) and the simulation with

no-slip lateral walls (Figure 9b). The generation of new vortices can also be spotted for

both cases in Figure 9(a,b). For the simulation with free-slip lateral walls (Figure 9c), the
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space-time plot shows that the divergent movement of the vortices is absent in this case,

and no new vortices are generated. On the contrary, vortices disappear with time, leading

to an increase in the pattern wavelength due to the gradually decreasing density gradient.

D. Velocity field

To further quantify the instability, we investigated the flow field with µ-PIV. Only a

small part of the experimental flow cell is captured in the µ-PIV recordings. In Figure 10b,

the averaged flow field result is presented.

FIG. 10: Schematic representation of the PIV measurements field of view marked by a

white rectangle (a), and time-averaged velocity magnitude in the same area for the time

the instability requires to pass through the field of view (approx. 25 s) (b).

The vector field is averaged throughout the time the instability required to go through

the entire optical field (≈ 25 s). In parallel, a shadowgraph image is shown, to better locate

the flow field domain (Figure 10a). The flow field comprises the x and y velocity compo-

nents. These values correspond to an averaged velocity magnitude over the z direction, due

to the depth-of-field resulting from the optical configuration, in this case ∆z = 0.18 mm.
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This optical averaging only allows a rough representation of the velocity field. The two

regions with high velocity magnitude correspond to the two vortices that are close to the

wall, in the region marked by a red rectangle in Figure 10a. This slight increase in the

velocity magnitude is caused by an increase in the ux and uy component of the velocity

vectors. The total movement of the eddies toward the wall might also contribute to the

local increase of the uy component. On the contrary, the velocity magnitude decreases in

the zones in-between the vortices, because of the absence of velocity components in the y

direction. The wall area is also visible in Figure 10b for y < -0.5 mm where the velocity

magnitude is close to zero.

To better visualize the progress of the velocity magnitude in time, Figure 11a shows

the temporal progression of the flow velocity magnitude at a stationary line for x ≈ 8 mm

downstream of the flow cell entrance, in the sense of a space-time plot. In Figure 11b

a space-time plot for the numerical results representing the ux velocity magnitude at z =

0.2 mm, for x = 20 mm downstream the inlet is shown.

As is evident for the experimental case, the instability reaches the respective position in

the flow cell at t ≈ 6 s. Before that point there is no clear pattern visible in the flow velocity

magnitude. The slight decrease in the velocity magnitude before the instability reaches x≈

8 mm is probably caused by a reduction in the seeding density of the PIV tracer particles,

due to some sedimentation before starting the injection of the second solution. After t ≈

6 s, the existence of two instability vortices is clear. Towards the end, the existence of the

vortices becomes less clear, as they start to dissipate and as a result the velocity magnitude

becomes more uniform along the y–axis. In the current representation we are observing the

spatio-temporal progression of the instability. Specifically, we observe the progression of

the counter rotating vortices in time as we move towards the right-hand area in Figure 11,

but at the same time the area of interest moves towards the upwind part of the vortices

(tails) since we plot the data on a stationary line. In Figure 11b, the instability arises in the

same way as in the experimental results. The magnitude of the velocities agrees well with
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FIG. 11: Space-time plot for velocity magnitude for the case with Pe = 1850 and

Ra = 123 930 (a): µ-PIV results representing velocity magnitude; (b) numerical results

representing the ux-uy velocity magnitude for z = 0.2.

the experimental results within the above-mentioned limitations of the PIV measurements.

Two emerging vortices and their movement can be traced in the selected region.

In Figure 12 the uz, uy velocity vector field and the magnitude for the uz (b) and uy (c)

velocities are presented in a sectional view. A main couple of counterrotating vortices can

be clearly seen in the center of the cross-section of the flow geometry. Towards the two

lateral walls the vortices have a slightly different structure and the ascending components

of the uz velocities appear more intense than in the center. This may compensate the

descending gravity current in the advancing tip due to continuity. The outwards movement

of the outer vortices can also be observed as the vectors close to the bottom wall have a

more pronounced vortex structure and higher velocity magnitudes pointing towards the

lateral walls.
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FIG. 12: Numerical velocity vector field in a cross section of the flow domain 45 mm

downstream the inlet for a case with Pe = 280 and Ra = 176 460 (a). The uz velocity

magnitude is displayed by the background color in (b) while the uy velocity magnitude is

displayed in (c).

In total, the cross-section clearly illustrates the flow structure caused by the buoyancy

instability of the lower side of the parabola-like profile (cf. Figure 1), while the upper

side is buoyantly stable and mainly contributes to the large-scale flow in the rectangular

geometry.

V. CONCLUDING REMARKS

In this study, we conducted for the first time a combined experimental and numerical

study, providing qualitative and quantitative insights of the buoyancy-driven instability

during the injection of a denser miscible fluid into a less dense one in a rectilinear laterally
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bounded geometry. We conducted experiments in a variety of gap widths, with different

fluid density differences (∆ρ) and varied injection flow rates (q). We visualized the ex-

periments using a shadowgraph technique and we conducted µ-PIV experiments for flow

field calculations.

The dependence of the developing instability on the flow parameters, characterized by

the dimensionless critical time, Tc, and the dimensionless wavelength, λ/h, was validated

experimentally and numerically. Approximate scalings were suggested, combining the

contribution of the advective flow via the Péclet number, and the buoyancy effect via the

Rayleigh number. In more detail, it has been shown that the instability requires a min-

imum Pe value to occur, which decreases as the ScRa value increases. For small ScRa

values a stabilization of the system is observed. It has also been shown that as Pe and Ra

increase the onset time of the instability, Tc decreases. The same effect is observed for the

characteristic wavelength, λ/h. Complex vortex-vortex dynamics are presented for the

rectilinear geometry and a comparison with the free-slip case and radial cases from pre-

vious work is drawn. The effect of the lateral walls plays a significant role on the vortex

dynamics. Initial PIV experiments provided first quantitative information on the flow field.

A comparison with the numerically obtained flow field supported the interpretation of the

velocity measurements. The simulations provided further insights in the full 3D velocity

distribution which is not accessible in the experiments.

The extracted scalings of the studied instability can serve as a guide to predict or even

suppress such instabilities in similar systems. This work forms a basis for future research

on more general scaling laws, in the direction of a rigorous analysis, or extended gov-

erning parameters. The complex vortex-vortex interactions, e.g. the detailed dissipation

mechanism, can further be elucidated as part of a future study.
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SUPPLEMENTARY MATERIAL

See the supplementary material for more details on the flow cells geometry, the experi-

mental parameters, the numerical simulation setup parameters (domain geometry, compu-

tational mesh), the methods to compute the critical time, Tc and dimensionless wavelength

λ/h, and the concentration distribution during the displacement resulting from the non-

parabolic proflie due to the gravity current.
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