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Preface

This conference is the 13th in a series. The organizers aimed to bring together PhD students
working on any field of computer science and its applications to help them publishing one of
their first papers, and provide an opportunity to hold a scientific talk. As far as we know, this
is one of the few such conferences. The aims of the scientific meeting were determined on the
council meeting of the Hungarian PhD Schools in Informatics: it should

• provide a forum for PhD students in computer science to discuss their ideas and research
results;

• give a possibility to have constructive criticism before they present the results at profes-
sional conferences;

• promote the publication of their results in the form of fully refereed journal articles; and
finally,

• promote hopefully fruitful research collaboration among the participants.

The papers emerging from the presented talks will be invited to be considered for full paper
publication the Acta Cybernetica journal.

Szeged, June 2022 Judit Jász
Balázs Bánhelyi
Tamás Gergely

Melinda Katona
Zoltán Kincses

i



Contents

Preface i

Contents ii

Program iv

Plenary talks 1

András Benczúr: Research on Networks in the AI National Lab Hungary . . . . . . . . . . . . . . 1
Gergely Röst: The COVID-19 Modelling and Epidemiology Task Force in Hungary . . . . . . . . . 2
Herbert Edelsbrunner: A window to the persistence of linear lists or maps . . . . . . . . . . . . . 3

Short papers 4

Aadil Gani Ganie and Dr Samad Dadvandipour: Media Trail: Rise of Contradictive Reaction in

India during COVID-19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
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Towards Modelling IoT Workflows

András Márkus

Abstract: The cooperation of distributed computing and Internet of Things (IoT) paradigms
created numerous research challenges. Modern applications do not only compute certain tasks,
but they support various events that make human life more colourful. Considering workflows
in the IoT domain, opposed to general scientific workflows, the focus is on the optimal ex-
ecution of predefined sequences of various steps, however, computational tasks can also be
contained. Such a sequence of steps usually consists of performing a service call, receiving a
data packet in the form of a message sent by an IoT device, or executing a computational task
on a virtual machine. The development and testing of such IoT workflows and their manage-
ment systems in real life can be complicated due to high costs and access limitations, therefore
simulation solutions should be preferred. In this paper, we discuss the current capabilities
of scientific workflow simulation environments, define the needs of IoT workflow modelling
support, and make suggestions for a future realisation.

Keywords: Workflow, Internet of Things, Fog Computing, Simulation

Introduction

The advancement of distributed computing paradigms gave birth to various domains such
as Grid Computing, Cloud Computing and Fog Computing. Scientific computations leverage
this technological involvement, and instead of utilising a monolithic application, data process-
ing can be done in a distributed and scalable fashion exploiting virtualisation and the geo-
graphically distributed nature of these environments. In early times, scientific workflows such
as Montage, Epigenomics, LIGO, CyberShake or SIPHT from the field of astronomy, physics
and bioinformatics were executed on Grid environments [1]. The on-demand resource provi-
sioning, virtualisation and accessibility made available by Cloud Computing opened ways for
evolution, however researchers still need to solve optimisation problems of resource utilisation
and task scheduling on virtual machines [2].

These types of grid and cloud applications can be considered as workflows described with a
directed acyclic graph (DAG). In a DAG, vertices represent a task (i.e. job), whilst edges define
the dependencies among the tasks. Until the dependencies of a task are not resolved, it must
be considered as suspended. The number of incoming and outgoing edges is not restricted to
one, except the start and stop events where in and out directions are missing, respectively. An
example of such a scientific workflow is depicted in Figure 1.

Involving the Internet of Things (IoT) domain, IoT workflows must meet novel require-
ments. Billions of smart devices, gadgets and sensors generate vast amounts of data, therefore
IoT is often paired to Fog Computing to enhance data processing and minimise latency by
connecting to computing nodes located close to end-users. IoT-Fog-Cloud systems may cover
many aspects of our daily life in the frame of smart homes, healthcare and autonomous driving,
which typically follow the sense-process-actuate model. IFTTT [3] offers trigger-based online
services for IoT, for instance if a new sleep is logged to a smartwatch then a service modifies
the room temperature accordingly. Such IFTTT applications or service compositions can be
considered as IoT workflows.

Currently there are only a few simulation tools and software solutions aiming execution of
workflows in Cloud and Fog environments, however the existing, general workflow descrip-
tion formats are unable to define similar IoT workflows, we defined earlier. To the best of our
knowledge, the literature lacks unified IoT workflow description and simulation tools, thus
this work represent the first step in this direction.
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Figure 1: Epigenomics workflow [4]

Research background

Workflow description languages are not executable themselves, therefore typically require
execution engines to be run. For scientific workflows (e.g. Montage) the XML-based DAX1 de-
scription is applied. DAX is typically used by Pegasus [1], which was designed to map abstract
workflows onto Grids. CWL2 (CommonWorkflow Language) can be written in JSON or YAML
to define command line tools and corporate them in order to create workflows. OpenWDL3

(OpenWorkflowDescription Language) is a human readable andwritable way to express tasks
and workflows, it has an dedicated, unique grammar. GCP (Google Cloud Platform)4 also has
workflow support accepting JSON or YAML-based definitions. It is dedicated to combining
and executing GCP services and custom services hosted on GCP.

Simulation is one of the most accepted ways to design and evaluate IoT-Fog-Cloud systems
as these tools are capable of modelling such complex systems realistically. The literature is rich
with various simulation environments, however only a few open-source tools exist especially
dedicated to workflow modelling.

Table 1: Comparison of the related simulators

Simulator Programming language Last updated Dependency Trace support

WorkflowSim
Java

2015 CloudSim
DAXFogWorkflowSim 2019 iFogSim, WorkflowSim

EdgeWorkflowReal 2021 FogWorkflowSim

WorkflowSim [5] is an extension of the well-known CloudSim simulator written in Java.
CloudSim has no workflow support by default, therefore the extended version provides nu-
merousmodules for workflowmanagement. The loadermodule only supports importing DAG
files formatted in XML (i.e. DAX), thus the primer goal was to simulate the behaviour of the
previously mentioned scientific workflows (e.g. Montage) in distributed cloud environments.
The main contribution is the horizontal clustering, which merges tasks into jobs so as to de-
crease the scheduling overheads. FogWorkflowSim [6] is also a broadening CloudSim-based
tool dedicated to model Fog Computing called iFogSim. Some components are also built upon

1DAX description (visited on 28.03.2022): https://pegasus.isi.edu/documentation/development/schemas.html
2CWL description (visited on 28.03.2022): https://www.commonwl.org/
3OpenWDL description (visited on 28.03.2022): https://openwdl.org/
4GCP description (visited on 28.03.2022): https://cloud.google.com/workflows
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WorkflowSim. FogWorkflowSim supports many greedy and GA-based workflow scheduling
algorithms by default, but unfortunately IoT-related workflow simulations are totally omitted.
EdgeWorkflowReal [7] inherited numerous function of FogWorkflowSim, furthermore it is ca-
pable of creating a real edge computing environment to execute workflow tasks and compare
to the simulated results. It also uses a database to store the structure of the real workflow and
the data for workflow tasks. Even if this work aims to simulate edge workflow applications,
only scientific workflows (i.e. Montage) were considered for the evaluation. The comparison
of the discussed simulators can be seen in Table 1.

According to the summarised research background, our observations are as follows: (i)
though the discussed simulation tools cover the domains of distributed computing paradigms,
IoT specific behaviour is not considered at all. To define a task in a scientific workflow, the
length of the task and the size of the incoming/outgoing files (i.e. dependent tasks) are enough
to be known. However, typical IoT-related tasks require more freely configurable options, for
instance waiting for a message (i.e. sensor data), notifying an actuator entity or expecting some
kind of human interactions. It is clearly seen that there is a very strong software dependency
(ii) among the different simulation approaches, which could make the modification towards
IoT workflows harder, especially if some of the tools were updated years ago. DAX is obvi-
ously the leading format applied by simulation communities, due to transparency and shorter
learning curve, so it might be a reasonable choice as the used description format (iii) for IoT
workflows as well.

Proposed solution

As discussed earlier, IoT workflows differ from the common scientific workflows, because
additional factors should be taken into account. To distinguish and highlight their differences
and similarities, we introduce an office routine IoT workflow, as shown in Figure 2. As a sim-
ilarity, the dependencies between tasks still exist, for instance until every sensor sends one
package of data and it arrives at the computing node, the data processing cannot be started. As
a consequence, computing tasks remain in the system as in case of scientific workflows. As a
novelty, time-dependent triggering events also appear in the system. For example, when a user
(programmer in this case) enters the office, a service executes an actualisation event by send-
ing instruction to an actuator to start an event automatically (e.g. turning on/off AC, lights
or start brewing coffee). Furthermore, time-dependent, recurring events are also part of the
system, e.g. measure temperature and humidity in every 30 seconds in the office, until the
programmer checks out.

Figure 2: Office routine workflow
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Such complex IoT workflows mostly cannot be investigated on a very large scale, when the
number of participant entities exceeds thousands in real life, due to the cost implications and
the need for large-scale behaviour. Therefore, in the future we plan to develop a simulation
extension of DISSECT-CF-Fog, which aims to model independent IoT workflow simulations
besides the general scientific workflows. DISSECT-CF-Fog is able to model various IoT de-
vice and application behaviours, as well as data centre management with realistic network set-
tings. It also considers energy consumption, IoT device mobility, and pricing schemes of real
providers. According to the preliminary plans, three extra modules should be implemented:
(i) abstract workflow handler, which transform the human readable format into tasks (ii) task
manager is responsible to map the tasks to the proper executors according to the type of a task
and finally, (iii) monitoring and reporting step analyses the results.

As a conclusion, in this paper we outlined the current position of workloads, simulation
environments and description formats regarding distributed computing environments and we
also discussed a research gap and a possible simulation solution in the field of IoT workflows.
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