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A B S T R A C T   

Background: Diabetes Mellitus outpatients would benefit from a lifestyle support tool that delivers reliable short 
term Blood Glucose Level (BGL) predictions. 
Aim: To develop a method for BGL prediction based on the baseline BGL, the insulin dosing and a dietary log. 
Methods: A new training method is proposed for a neural network in which an absorption model is applied that 
uses the nutrient contents of meals. The numerical characteristics of the computed absorption curve are fed to the 
neural network as training inputs along with the applied insulin doses and BGL evolution measured by a 
Continuous Glucose Monitoring System. For comparison, another version of the training in which raw carbo-
hydrate values are used as dietary inputs has also been implemented. The method was validated in a clinical trial 
with 5 patients using a total of 167 meals. 
Results: It was found that the proposed method performed significantly better on the 60- and 120-min prediction 
horizons, with a Root Mean Square Error of 1.12 mmol/l and 1.75 mmol/l, respectively, and more than 96% of 
the predicted values falling in the ‘clinically acceptable’ class according to clinical practice. These results surpass 
those published results to which our method is directly comparable, and also those of the carbohydrate-only 
version (1.81 mmol/l and 2.53 mmol/l). 
Conclusion: The integration of the absorption model in the training process has successfully contributed to the 
success of the model. Future research will focus on a new trial with more patients to verify these promising 
results.   

1. Introduction 

Diabetes mellitus (DM) is a widespread chronic metabolic disorder in 
which cells of the body are unable to take up sugar from the blood in 
sufficient volume, resulting in abnormally high blood glucose levels 
(BGL). The cause of this phenomenon is the absolute or relative lack of 
insulin. Accordingly, type 1 or type 2 diabetes mellitus (T1DM or T2DM) 
can be distinguished. The two types are significantly different in etio-
logical (causal) terms. In T1DM, due to autoimmune disease, insulin 
production is virtually eliminated and must be replaced externally. In 
the case of T2DM, there is limited insulin production and/or increased 
insulin resistance, consequently, cells have limited ability to absorb 
circulating glucose. All T1DM and some T2DM patients use external 
insulin, most often in the form of subcutaneous injections, typically one 
injection for each main meal, and all DM patients must take special care 

of their diet to prevent overly low BGL (hypoglycemia), which can lead 
to an emergency, as well as high BGL (hyperglycemia), which may cause 
severe complications if it is sustained for a long time. In practice, this 
means that the patients on external insulin must estimate their insulin 
needs such that it matches their daily meals—for which they can rely on 
some general medical guidelines, frequent fingertip BGL measurements, 
and their personal experience. The main objective of our work is to assist 
DM patients, especially those on external insulin, by providing short 
term (1–4 h) BGL predictions based on their dietary and insulin 
administration log. If the prediction is reliable and the method is inte-
grated into a mobile lifestyle management application, the patients 
could be warned of hypo/hyperglycemia in time to reconsider their 
insulin dosage or planned meal. It should be emphasized that in contrast 
to artificial pancreas research, the aim now is not to give a recommen-
dation for insulin dosing, but to provide only a prediction—either as an 
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educational aid or as a tool to test ‘what-if’ scenarios. 
Due to the significance of the problem, the characteristics of BGL 

evolution have been researched extensively in healthy and DM persons 
in the past decades, and BGL was found to be influenced by physical 
activity [1], stress [2], mental state, and most of all, nutrition. In order 
to model the effect of nutrition, i.e. the effect of absorbed carbohydrates 
entering the circulation, on the BGL regulation system, several hundred 
mathematical models of various complexity have been proposed [3]. 
Generally, complex models with many parameters can simulate the 
human metabolism better than simple models with few parameters, but 
they are increasingly harder to ‘personalize’ for a real DM outpatient, 
due to the significant personal (natural) variations in the model 
parameters. 

In an earlier study the authors applied genetic algorithms (GA) and 
other methods to find the personalized parameter set using a simple but 
quite powerful state-of-the-art model for BGL regulation. The training 
input to the model was a detailed nutrition and medication log of a 
clinical trial, complemented with frequent BGL readings from a 
Continuous Glucose Monitor (CGM) device. Stress and excessive phys-
ical activity were avoided by the patients during the trial. The glucose 
intake profiles of the consumed meals were computed with an absorp-
tion model that could also handle the effect of other nutrients like di-
etary fiber and the glycemic mix of the logged items. Evolutionary 
parameter search and diurnal parameter profiles were applied during 
model training [4,5] and special representation of long-acting insulins 
[6] to decrease the errors of the model. The results were promising, 
especially compared to published results of similar trained or untrained 
models for outpatient care. 

In this work, a ‘gray-box’ approach is proposed by keeping only the 
simple absorption model and not using any BGL regulation model at all. 
Instead, the patients’ reactions to the computed glycemic load are pre-
dicted using an Artificial Neural Network (NN) that is trained by the past 
meals and corresponding BGL measurements of the patient. Compared 
to similar work on NN based BGL prediction, the novelty of this 
approach lies in the use of an absorption model output instead of raw 
carbohydrate values, for the training. Our hypothesis is that the inte-
gration of ‘some’ a priori domain-specific knowledge in the training 
process will counter-balance the limited number and variety of meal 
samples available for NN training, which will in turn improve the 
prediction. 

The differences from our research group’s previous work [4,5] can be 
summarized as follows:  

• In this work, data from a new clinical trial is used in which longer 
CGM records were available  

• The previously proposed method used a BGL regulation model for 
short and long term BGL prediction. The input of the model was the 
direct output of an absorption model. In contrast, in this paper a 
method is proposed for short term BGL prediction only that uses a 
trained NN. The input of the NN is a feature vector that is computed 
from the output of the same absorption model as was used in our 
previous work. 

The rest of this paper is structured as follows. In the State of the art 
section, the problem domain and the results of the relevant published 
studies are briefly reviewed. The Methods section introduces our 
approach, focusing on the new contribution. Results are described and 
discussed in the Results and Discussion sections. Finally, conclusions are 
drawn. 

2. State of the art 

NN’s are computational tools with a structure resembling biological 
neural networks, often used to learn the behavior of systems that are 
generally too complex for accurate modeling and identification. 

NN’s consist of processing units connected by controlled, weighted 

links. The processing units are similar to biological neurons, which is 
why they are referred to as ‘artificial neurons’. The structure of artificial 
neurons is shown in Fig. 1. The artificial neuron generates its current 
output value from its input values using the activation function (a 
thresholding in the simplest case) applied to the sum of the weighted 
values of the inputs. 

NN’s are usually layered, with each layer consisting of artificial 
neurons. In general, there is a connection between all the neurons in the 
adjacent layers, while there is no connection between the non-adjacent 
layers. The input of each neuron is the output value of the neurons of the 
previous layer. The input of the first layer is provided by the input of the 
network. The layers between the first (input) and the last (output) layers 
are referred to as hidden layers. The NN is trained in several iterations by 
comparing the current output to the desired output (taken from the 
training set) and back-propagating the error through the layers. The 
training is accomplished by the neurons adaptively changing the syn-
aptic weights based on the error. 

To yield a practically usable prediction model, the NN must be 
provided with a sufficient amount of training data—in our case meal/ 
insulin log and BGL records. Key parameters of an NN are the number of 
hidden neural layers, the activation function used in the neurons, the 
number and interpretation of the inputs and outputs as well as several 
other algorithmic parameters of the training process [7]. The most 
common NN structures are as follows.  

• Feed-forward NN (FNN): The first and simplest type, the structure of 
which is described above, used for known inputs and given outputs.  

• Recurrent NN (RNN): A more complex structure having an infinite 
dynamic response due to hidden layers with directed feedback con-
nections. The information passes through a loop so when the neuron 
provides an output, it can take into account the response to previous 
inputs.  

• Autoregressive NN (ARNN): Such NN’s model current values of a 
series as a function of past values and have a finite dynamic response. 

The quality of BGL predictions is usually evaluated in the literature 
by the mean absolute error (MAE) and, more often, by the root mean 
square error (RMSE), where the error is the difference between the 
predicted and the measured BGL values at all time instances for which a 
BGL measurement is available over a prediction time frame, see Equa-
tions (1) and (2). 

MAE=

∑
i∣(xi − yi)∣

n
(1)  

Fig. 1. Structure of the artificial neuron.  
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RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i(xi − yi)
2

n

√

(2)  

where xi is the measured glucose value at the time instant ti, yi is the 
predicted BGL at the same time instant, and n is the total number of 
blood glucose measurements in each dataset. 

A CGM delivers a BGL estimated from the tissue serum glucose 
concentration every couple of minutes. The prediction time frame, also 
referred to as horizon, typically lasts for 15–240 min and the prediction is 
often started after a meal and insulin administration event. From the 
clinical point of view, the practical goal of the prediction is to estimate 
the patient’s glycemia between two main meals of the day, so 15-min 
predictions have limited applicability (however they can be used to 
assess model performance). The unit used for RMSE is either mmol/l or 
mg/dl; in this paper we’ll use only mmol/l for consistency. It should be 
noted that the error range of widely used fingertip BGL meters and 
calibrated CGM systems is around or above 1 mmol/l. 

Besides RMSE, the clinical reliability of BGL predictions is often 
evaluated with Clarke’s Error Grid Analysis (EGA) [8]. EGA classifies 
predictions into 5 classes A-B-C-D-E with respect to the clinical outcome 
of an insulin dosing based on the predicted BGL (see Fig. 2). The worst 
scenario (Class D and E) is an overly high BGL prediction when the 
actual BGL of the patient is in the <4 mmol/l range, because relying on 
such a prediction may lead to hypoglycemia, an emergency situation. 
Thus, the same absolute numerical error may be classified into various 
classes depending on the real BGL range and the sign of the error. A 
predicted value is termed ‘clinically acceptable’ if it is classified into 
either the A or B EGA class. CG-EGA is a variation of the EGA grid in 
which the ‘accurate’ domain is roughly equivalent to the EGA ‘clinically 
acceptable’ classification [9]. 

2.1. An overview of artificial neural networks used for BGL prediction 

The studies published in the literature can be characterized by the 
application area (real outpatients vs. simulated data), the number of 
patients, the model inputs (CGM or fingertip BGL log, diet, insulin 
dosing, physical activity, symptoms, etc.), the length of the training data 
set and the NN structure. 

One of the first works to propose NN for BGL prediction was due to 
Sandham et al., in 1998 who used two T1DM patients’ data sets of 10 
days each [10]. The training input consisted of insulin, diet (meaning CH 

quantity), exercise, BGL and an ‘X’ vector that included parameters such 
as stress and illness. The FNN had a hidden layer of 95 neurons and the 
output layer represented the predicted BGL values and used a linear 
activation function. The input data consisted of 122 events in 20 days, 
out of which 97 were used for training and the rest for evaluation. As a 
result, they found that most of the predictions were very close to the 
measured values (difference of 1.5 mmol/l or less). 

Later, especially in the last decade, several more results were pub-
lished in this field, due to the significance of the problem. Here an 
overview is given of only 10 recent studies that were selected as most 
relevant to this work. For a more comprehensive review, see [11]. 

Some authors use no dietary log for the prediction, only the past 
CGM or fingertip BGL data of the patient [12–15]. It should be noted that 
such an approach assumes that the patient has a very stable daily 
schedule with similar or controlled meals every day—an assumption 
that usually does not hold for real patients. The most recent of these is 
due to Ali et al., who used fingertip BGL data recorded from 13 T1DM 
patients. The prediction horizons were 15, 30, 45, and 60 min, and the 
resulting RMSE values 0.36, 0.4, 0.45l and 0.5 mmol/l, respectively 
[12]. Two years earlier, the work of Frandes et al. was very similar as 
they monitored 17 T1DM patients for 4–7 days in free-living conditions, 
with slightly less accurate results (30-min: 0.1, 60-min: 0.2, and 90-min: 
1.2 mmol/l) [13]. Zarkogianni et al. had 6 patients monitored for 7–15 
days and trained a special adaptive neuro-fuzzy inference system with 
wavelet activation functions that integrated both NN and fuzzy logic 
principles. They validated the model according to EGA. For the 30-min 
horizon, 94% of the predicted values were in the A class, which fell to 
72% for the 60-min horizon [15]. As for the earlier results, Daskalaki 
et al. compared the performance of a NN model to that of an autore-
gressive model with or without external insulin input, using a simulator 
for validation with 30 virtual patients. The NN provided more accurate 
results compared to other models for the 45-min horizon with an RMSE 
of only 0.3 mmol/l versus 1.6 mmol/l and 1.4 mmol/l for the autore-
gressive models [14]. 

The more typical approach is to use the CH content of the meal 
consumed and the bolus insulin dose administered before the meal as 
inputs for the prediction, thus supporting a more realistic application 
scenario [16–22]. The latest of these results is that of Li et al., who could 
use a very long training sample of 1–3 months from 10 real and 10 
simulated patients. The results for the real patients are impressive 
(30-min 1.17, 60-min 1.85 mmol/l RMSE) [21]. Mirshekarian et al. had 
worse results (30-min 1.19, 60-min 2.11 mmol/l RMSE), but their 
training sample contained only 400 records collected from 10 T1DM 
patients [22]. Jankovic et al. focused on the effect of physical activity on 
BGL evolution in their study involving 6 T1DM patients and using a 
hybrid NN they tried to predict post-exercise BGL based on training with 
pre-exercise data [19]. Mathiyazhagan & Schechter monitored only 2 
patients with CGM but for a longer period (over 8 weeks each). The 
inputs contained exercise type and duration as well as the time of day. 
Instead of RMSE, they published MAE error for the 30-min (1.7 mmol/l), 
60-min (3.2 mmol/l) and 120-min (5.7 mmol/l) horizons [20]. An 
earlier result is due to Pappada et al. with the highest reported number 
of real patients (27) and many kinds of inputs including emotions in a 
carefully designed and elaborate clinical trial. The performance of the 
model was validated on 10 patients not included in the model training 
set, so the objective was slightly different from ours i.e. personalized 
prediction model research. An RMSE of 2.44 mmol/l was found on the 
75-min horizon [16]. 

The closest approach to ours is perhaps that of Zecchin et al., who 
first proposed a predictor based ‘jump’ NN, trained with CH and CGM 
data form 10 patients, resulting in an RMSE of 0.9 mmol/l on the 30-min 
horizon [18]. In 2016 the authors tested their jump NN for 20 T1DM 
patients, with 4 different model versions with respect to the input: (1) 
CGM only, (2) CGM and insulin dosing, (3) CGM and CH, (4) CGM, in-
sulin and CH. The MAE error was 0.79 mmol/l in scenario (1), 0.8 
mmol/l in scenario (2), 0.75 mmol/l in scenario (3) and 0.78 mmol/l in Fig. 2. Error Grid Analysis, adapted from [8].  
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scenario (4), all for the 30-min horizon, showing that meal intake 
improved prediction accuracy more than insulin information [17]. 

All the above trials used T1DM patients as BGL prediction for T2DM 
is much less researched, though T2DM patients form the majority of the 
DM population. An exception, shown in the first row of Table 1, is the 
ongoing work of Kim et al., in which they used an FNN for 16 T2DM 
patients [23]. The RMSE results were 2.1 mmol/l (30-min) and 2.3 
mmol/l (45-min). 

As a summary, Table 1 shows a compact reference for the main pa-
rameters of the above prediction models and the results achieved. 

The literature survey can be concluded by stating that, concerning 
the nutrition information as training input for a NN, none of the pub-
lished prediction models used other than raw CH content of the meal to 
our best knowledge. This is the point that this work tries to improve. 

2.2. Some recent results on BGL prediction achieved by other methods 

Though this paper focuses on NN-based methods, some of the latest 
results on BGL prediction using any other technique are mentioned here, 
in order to provide a basis for comparison. 

Using random forests with grammatical evolution engines, Ignacio 
et al. generated models of BGL, and selected the models to assemble with 
bagging techniques. The results for 5 patients were evaluated over a 15- 
day period according to the EGA classes, 60-min A/B: 97.45%, 120-min: 
95.63% [24]. 

The Kernel Ridge Regression technique was used by Marcus et al. for 
11 T1DM patients with 7–50 days of CGM data, with the result of 45-min 
1.13 mmol/l RMSE [25]. 

Liu et al. used a compartmental glucose/insulin model based on a 
deconvolution method on the CGM signal. Besides CGM, the inputs 
included the quantity of insulin, CH, and optionally, the type of the 
absorption speed (slow/medium/fast)—for the latter the authors 

assumed that breakfast and snack were fast absorption meals, while 
lunch and dinner were assumed to be medium absorption meals. The 
results on 10 T1DM and 10 simulated datasets in a two-week clinical 
trial were 30-min 0.98, 60-min 1.68, 90-min 2.12 and 120-min 2.25 
RMSE, the 60-min EGA A/B was 97.1% [26]. 

3. Methods 

The concrete goal of this work is to predict the short term BGL 
evolution for insulin-dependent DM patients using the following input:  

• Baseline (starting) BGL  
• Insulin dosing administered by the patient  
• Detailed dietary log 

Since the essence of the contribution is the more precise modeling of 
the nutritional input, the absorption model is introduced first. 

3.1. The glucose absorption model 

There are many methods for modeling nutrient absorption proposed 
in the literature [27], the most well-known of which is the one used in 
the Diabetes Advisory System (DIAS) [28]. DIAS uses a 
one-compartment (stomach) absorption model, without considering the 
effect of the glycemic index of the various carbohydrates contained in 
the meal, nor the fiber and other nutrient content. The insulin-glucose 
dynamics model due to Dalla Man also starts from the gastro-intestinal 
tract, but it does not use parameters related to the absorption rate of 
various carbohydrates [29]. 

In contrast to the above model, the two-compartment model due to 
Arleth et al., has a separate compartment for the intestine and it can 
model the timing of the absorption processes, such as the breakdown of 

Table 1 
Recent studies on NN based BGL prediction. CH means the total CH content of the meal consumed. All CGM data is recorded every 5 min. All RMSE and MAE results are 
in mmol/l. NDA: no data available, h: hours, d: days, m: months, sim.: simulated, acc.: accuracy.  

First Author (Year) NN Type Inputs No. patients 
or data sets 

Length of a single data set Validation Approach 
(Train./Valid.) 

Results (RMSE/EGA/CG-EGA) 
for each horizon 

Kim (2019) FNN CGM 16 real 
T2DM 

NDA NDA 30-min: 2.1, 45-min: 2.3 

Li (2019) Convolutional RNN CGM, insulin, CH 10 sim., 10 
real 

Sim.: 360 d Real: 6 m 50/50% RMSE Sim.: 30-min: 0.5, 60- 
min: 1.05; Real: 30-min: 1.17, 
60-min: 1.85 

Ali (2018) FNN CGM only 12 real 14 d 70/30% 15-min: 0.36, 30-min: 0.41, 
45-min: 0.45, 60-min: 0.5 

Mirshekarian 
(2017) 

RNN CGM, insulin, CH 
quantity 

10 real 400 measurements 50/50% 30-min: 1.19, 60-min: 2.11 

Jankovic (2016) ARNN vs. RNN CGM, insulin, CH, 
physical activity 

6 real CGM: 48 h before and 35 
h after exercise 

Pre-exercise for 
training, post-exercise 
for evaluation 

15-min: 0.47, 30-min: 0.98, 
45-min: 1.35 

Frandes (2016) ARNN CGM only 17 real 4–7 d NDA 30-min: 0.13, 60-min: 0.24, 
90-min: 1.23 

Zecchin (2014, 
2016) 

Jump NN CGM, CH 20 real 2–3 d 10 for training, the 
other 10 for validation 

30-min: 0.92 

Zarkogianni 
(2014, 2015) 

adaptive neuro-fuzzy 
inference system 

CGM, BGL change, 
physical activity 

10 real 6 d 10-fold cross- 
validation 

30-min: 0.74, 60-min: 1.26, 
120-min: 2.08, 
CG-EGA acc. in hypo-glycemic 
range: 60-min: 73.3%, 120- 
min: 33.7% 

Mathiyazhagan 
(2014) 

Adaptive network- 
based fuzzy inference 
system 

CGM, insulin, CH 2 real 56 d Both patients: 6 pieces 
of 2-h CGM records for 
training. 

MAE: 30-min; 1.72, 60-min: 
3.16, 120-min: 5.71 

Daskalaki (2012) ARNN CGM, insulin 30 sim. 8 d 50/50% 30-min:0.2, 45-min: 0.3; CG- 
EGA acc.: 89% (93% in 
hypoglycemic range) 

Pappada (2011) FNN CGM, insulin, CH, 
emotions, symptoms 

27 real 115 CGM h for training, 
39 h for validation 
(calculated) 

17 for training, the 
other 10 for validation 

75-min: 2.43; EGA ‘A/B’ 
92.3%, ‘A’: 62.3% 

Sandham (1998) RNN fingertip BGL, 
insulin, CH, illness, 
stress, pregnancy 

2 real 10 d (122 total BGL 
records) 

97 events/25 events MAE: 1.5  
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starch to monosaccharide, in finer detail [30]. This model has been 
chosen for our work. The structure of the model is shown in Fig. 3. 

The Arleth model takes the consumed quantities of lipids, proteins, 
dietary fibers, monosaccharides and starch as inputs. An important 
feature of the model is the support of a Glycemic Index (GI) parameter 
that can be attached to a meal item or ingredient because it facilitates 
the modeling of mixed meals. Ranging from 0 (for water) to 140 (for 
glucose itself), the GI shows the BGL raising effect of a certain food [31]. 
Modern dietary databases are expected to contain GI information for 
each ingredient containing carbohydrates, so a meal can be modeled as a 
glycemic mix. 

The model consists of five parts, for the stomach compartment, the 
intestinal compartment, the breakdown of starch, the intestinal glucose 
absorption and the gastric emptying, respectively, using a total of 23 
equations. Out of these, the stomach compartment is the most important 
for our topic which uses 6 simple material balance equations describing 
the progress of the food through the stomach and the intestine as 
follows. 

sProteins(ti+1)= sProteins(ti)+ΔmProteins(ti) − ΔeProteins(ti) (3)  

sLipids(ti+1)= sLipids(ti)+ΔmLipids(ti) − ΔeLipids(ti) (4)  

Fibres(ti+1)= sFibres(ti)+ΔmFibres(ti) − ΔeFibres(ti) (5)  

Monosac(ti+1)= sMonosac(ti)+ΔmMonosac(ti)∗CHOAvail − ΔeMonosac(ti) 

+
∑

GI
ΔsStarchGI(ti)

(6)  

sStarchGI(ti+1)= sStarchGI(ti)+ΔmMonosacGI(ti)∗CHOAvail − ΔeStarchGI(ti)

− ΔsStarchGI(ti)

(7) 

The above equations use the present material amount (s prefix), the 
food consumed (m prefix) and the amount conveyed from the stomach 
into the intestine (e prefix). The CHOAvail constant represents the up-
take rate of monosaccharide and starch from the food in the stomach and 
is set to 0.76. Besides this, the model has 4 more parameters, two in the 
starch breakdown part, and two in the gastric emptying part. All 
parameter values are determined for healthy persons. For more details 
on the model and the parameters, please see Ref. [32]. Though the 
Arleth model was developed for healthy persons, and there are known 
differences in the absorption system of DM patients compared to the 
healthy state, the model is still used in this work with the same 
parameter set for all patients, as a starting point, due to its simplicity and 
favorable input set. 

That the dynamics of glucose uptake/absorption in the blood is 
indeed significantly dependent on GI and the presence of low-CH in-
gredients like fiber as well, is shown in the example below. Here the 
Arleth model was used to compute the theoretical glucose load curves of 
two real meals of a patient, similar in total CH content but different in 
composition (Table 2), and the CGM response was measured for the 
same patient in the clinical trial (Fig. 2). 

As Fig. 4 shows, though the 6618 meal contains ca. 54% more CH, its 
model-computed absorption peak is lower and the shape of the curve is 
wider than that of 6615, due to its composition. The CGM-measured BGL 
responses verify this phenomenon. 

3.2. Training data and model training 

The FNN structure was chosen for its simplicity. To prepare the in-
puts for the training, the Lavinia application and the MenuGene dietary 
expert database [33] were used to find the lipid, protein, dietary fiber, 
monosaccharide and starch quantity of every logged meal, and then the 
Arleth model was run to compute its glucose absorption curve. In the 
next step, the shape of the computed absorption curve was ‘quantified’ 
with the following 3 numerical parameters (Fig. 5).  

• p1: time elapsed to the peak of the curve [minute]  
• p2: time elapsed to 50% of the peak of the curve [minute]  
• p3: rate of absorption at the maximum of the curve [g/minute] 

The rest two parameters of the training input vector were selected as 
follows. 

Fig. 3. Structure of the two-compartment glucose absorption model. Arrows show the transport and absorption (transformation) of the nutrients in the two 
compartments. 

Table 2 
Components of two meals and their nutritional values.  

Meal 
ID 

Food CH 
(gr) 

Lipids 
(gr) 

Protein 
(gr) 

GI 
index 

Fiber 
(gr) 

6615 Ham 0.16 2.84 9.04 0 0 
Light 
margarine 

0 2.5 0 0 0.06 

Mineral water 0 0 0 0 0 
Bread roll 30.78 0.38 5.08 75 1.78 

6618 Mineral water 0 0 0 0 0 
Ham 0.4 7.1 22.6 0 0 
Green pepper 2.7 0.27 1.08 0 2.03 
Tomato 4.6 0.23 1.15 0 1.99 
Bread 39.86 1.27 6.54 66 11.6 
Cold cuts of 
turkey 

0.05 3.75 10.3 0 0  
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• p4: insulin amount [pmol/1000]  
• p5: baseline BGL [mmol/l] 

3.3. FNN training and evaluation 

The FNN used in the training had 5 inputs (see above) and 30 to 120 
outputs depending on the desired prediction horizon. As the CGM device 
used in the trial took a measurement every 2 min, 30 outputs were used 
for the 1-h, 60 outputs for the 2-h, 90 outputs for the 3-h and 120 outputs 

for the 4-h long predictions. For the training regime, the Quasi-Newton 
method was used [34]. The most important algorithmic parameters of 
the training were determined empirically to achieve the best results; as a 
result, the number of hidden layers was set to 20, the maximum number 
of iteration cycles to 118 and the error threshold to 10E-16, meaning 
that in most cases the iteration limit served as the stop condition. Using 
more hidden layers or more iteration cycles was found to result in 
over-training, and hence worse predictions. 

To verify our original hypothesis that the use of an absorption model 

Fig. 4. Glucose absorption in the blood computed by the Arleth model of two alternative meals (solid thick blue and red curves) and the measured CGM values (thin 
blue and red curves) for a patient of the clinical trial. For clarity, dashed lines show the smoothed version of the CGM. The smoothed curves were calculated over a 
sliding window of length 30 across neighboring data points. 

Fig. 5. Meal absorption curve represented by numerical parameters.  
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could be beneficial for the accuracy of the FNN model, the same FNN 
was also trained with the raw nutrient values of the meals, i.e. without 
using the absorption model. In this version, the following 5 training 
inputs were used:  

• p1: CH (g)  
• p2: Lipids (g)  
• p3: Fiber (g),  
• p4: insulin amount [pmol/1000]  
• p5: baseline BGL [mmol/l] 

In order to distinguish the two versions, the code FNN-ABS will be 
used for the absorption model-based version and FNN-NUT for the 
version using raw nutrient quantities. 

Though, to our best knowledge, all the NN-based BGL prediction 
methods proposed in the literature use raw (if any) CH values and none 
uses GI, a sub-version of FNN-NUT has also been implemented in which 
the p3 parameter was replaced with the ‘summary GI’ of the logged 
meal. This was computed as the average of the GI’s of the meal’s in-
gredients weighed by the ingredients’ quantity. 

When comparing the performance of the FNN-ABS to the FNN-NUT, 
the paired sample t-test was used to check for significant differences 
[35]. Since it can be argued that the ‘predictability’ of patients may 
differ, we also evaluated the ANOVA nonparametric test with the patient 
identifier as a factor, for the comparison of the FNN-NUT-GI and the 
FNN-ABS methods. 

The following figures of merit were used in the evaluation.  

• Average absolute error (MAE)  
• Root mean square error (RMSE)  
• Percentage of predicted values in the ‘clinically acceptable’ EGA 

classes A and B. As a ‘worst case’ scenario, the FNN-NUT and FNN- 
ABS percentages in the classes D and E were also compared. 

The predictions were evaluated on the 1, 2 and 3-h horizons. 
It should be noted that our primary goal is to reduce the RMSE, as the 

chosen model optimization method (FNN) considers only the differences 
between the model output and the measured CGM values, and no EGA 
classes. The EGA results were only evaluated in the paper for 
completeness and comparison to other published results that include 
only EGA results without RMSE values. 

3.4. Data used for training and validation 

8 volunteers had participated in the clinical study when the data set 
was finalized. The data sets were examined concerning the accuracy and 
completeness of the CGM and lifestyle log data. As a result, 3 patients 
were excluded from the study due to their lack of cooperation resulting 

in incomplete lifestyle logs. In total, 84 days of CGM data and lifestyle 
logs were available, containing 365 meals and 391 insulin injections. 
Table 3 shows a summary of the data available for the study. 

In the next step, meals were excluded that had no corresponding pre- 
meal insulin dosing information in the log and those whose total CH 
content was less than 5 g. A meal was also excluded if the time to the 
patient’s next meal was less than our minimal prediction horizon, 1 
hour. After this process, a total of 167 meals were left that could be used 
in the study. Table 4 shows the patient-wise distribution of the meals 
used for training (2/3) and validation (1/3). The separation of the 
training data from the validation data was performed on the basis of the 
date of the meal: the first 2/3 at the beginning of the trial was used for 
training and the last 1/3 at the end for validation. 

In order to check the effect of the data separation scheme between 
training and validation data, a 3-fold cross validation was performed for 
the proposed FNN-ABS method. This meant three training sessions for 
each patient, with another 2/3 of the data. If the performance of the 
three trained models is similar, then the approach can be considered 
robust with respect to data selection. 

Since the considerable differences in the number of meals available 
for training may have an effect on the patient-wise performance of the 
models, a test to compare the FNN-ABS and FNN-NUT method was also 
run in which the number of training meals was set to that of P03 (17, the 
lowest number). The 17 training meals in this test were selected from the 
available meals for the P01, P02, P04 and P05 patients at random. 

3.5. The clinical study 

The clinical study was performed at the Cardiac Rehabilitation 
Institute of the Military Hospital, Balatonfüred, Hungary. The study 
included insulin-dependent T1DM and T2DM patients taking part in 3- 
week rehabilitation courses between April and August 2019, with 
daily activities similar to everyday life. The patients were under 
continuous medical and dietary supervision and an informed consent 
was obtained from the patients as a prerequisite to enter the trial. The 
CGM system used was the Medtrum’s S7 EasySense CGM System [36], 
which registered subcutaneous glucose values every 2 min. Mérykék 800 
fingertip BGL sensors were used to record the baseline BGL. 

3.6. Ethical considerations 

The study protocol was approved on 9 April 2018 by the National 
Institute of Pharmacy and Nutrition (OGYÉI), Budapest, Hungary, 
chaired by Péter Bunyitai, under the submission number OGYÉI/4778/ 
2018. The protocol was designed and implemented in compliance with 
the World Medical Association Declaration of Helsinki on Ethical Prin-
ciples for Medical Research Involving Human Subjects. 

3.7. Data processing tools 

Mongodb database technology was used for storing the dietary and 
insulin logs [37]. For calculating the ingredient quantity and the GI 
values from the dietary logs as required by the absorption model, the 
Lavinia application and the MenuGene dietary expert database was used 

Table 3 
Properties of the datasets used for the study.  

Patient ID P01 P02 P03 P04 P05 Total 

Gender Female Male Male Male Male – 

Age 56 47 69 63 23 – 
Type T2DM T2DM T2DM T2DM T1DM – 
HbA1c [%] 9.3 11.0 6.7 9.0 7.7 – 
Height [cm] 169 175 160 183 197 – 
Weight [kg] 77 133 50 97 82 – 
Log length [days] 24 23 15 12 10 84 
# meals 97 109 75 39 45 365 

Breakfast 20 23 15 10 7 75 
Lunch 22 23 14 11 9 79 
Dinner 19 23 13 11 9 75 
Other 36 40 33 7 20 136 

# insulin 87 92 107 58 47 391 
# CGM records 5523 14,558 5420 7692 2311 35,504  

Table 4 
Number of monitoring days and meals used for FNN training and validation, for 
each patient.  

Patient # days # meals (training) # meals (validation) # all meals 

P01 23 19 10 29 
P02 22 28 15 43 
P03 14 17 9 26 
P04 11 22 12 34 
P05 15 22 13 35 

SUM 85 108 59 167  
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[38]. 
The absorption model was implemented according to the original 

paper due to Arleth [30], in the form of a custom desktop application for 
BGL modeling [5]. 

The FNN used for the study was the OpenNN library, a feed-forward, 
multilayer perceptron network implemented as a C++ open-source li-
brary [39]. 

Microsoft Excel 2013 was used for statistical analysis and 
visualization. 

4. Results 

Table 5 shows the results achieved by the three training method 
versions, with the best results highlighted in bold face, while Table 6 
shows the FNN-ABS results in 3-fold cross validation for comparison. 

4.1. Comparison of FNN-NUT/FNN-NUT-GI to FNN-ABS 

It was found that the FNN-NUT performed worse on all horizons and 
with all figures of merit, though the difference was not always statisti-
cally significant. Table 7 shows the average gain of the prediction ac-
curacy as a percentage, in favor of FNN-ABS. 

FNN-NUT was found to produce more EGA D and E class (worst case) 
scenarios than FNN-ABS as shown in Table 8. 

The FNN-NUT-GI version performed slightly better than the FNN- 
NUT. Table 9 shows the average gain of its prediction accuracy as a 
percentage, in favor of FNN-ABS. 

Detailed results of the test with the same number of meals (i.e. 17 
meals only) used for training in the FNN-ABS and FNN-NUT methods are 
shown in Table 10. 

Table 11 shows the summary comparison of the above test. 
Finally, for a qualitative visual comparison, Fig. 6 shows the first 60 

min of the BGL measured by the CGM and predicted by the NUT and ABS 
methods, belonging to a typical meal of the P03 patient. 

5. Discussion 

Table 5 shows that there are considerable differences among the 5 
patients concerning the accuracy of the predictions. This may be partly 
due to the quality of the input data or even more to the length of the 
training sample: P02 and P04 had much more samples than P01 and 

P03, and performed ca. 30% better. A NN is naturally expected to pro-
duce a better model if a longer training sequence is available. However, 
results for P05 were much worse than those for P04 despite the nearly 
same number of their logged meals. Also, the test with the same number 

Table 5 
Results of the FNN-ABS, FNN-NUT and FNN-NUT-GI methods for the five patients (best results in bold) P05 is the only T1DM patient, the others are T2DM.    

FNN-ABS FNN-NUT FNN-NUT-GI 

Patient Figure of merit 1 h 2 h 3 h 1 h 2 h 3 h 1 h 2 h 3 h 

P01 AVG 1.651 2.095 3.070 1.450 2.633 2.795 1.430 2.346 2.736 
RMSE 1.908 2.426 3.568 2.096 3.402 3.838 2.006 2.982 3.738 
EGA acceptable 86% 95% 87% 93% 91% 89% 90% 92% 88% 

P02 AVG 0.768 1.208 1.504 1.421 1.548 1.628 1.084 1.524 1.598 
RMSE 0.887 1.434 1.721 1.647 1.996 2.019 1.456 1.812 2.004 
EGA acceptable 98% 99% 99% 98% 99% 99% 98% 99% 99% 

P03 AVG 1.060 1.900 2.147 2.245 2.550 2.617 1.885 2.240 2.478 
RMSE 1.237 2.283 2.484 3.214 3.641 3.398 2.684 3.211 3.418 
EGA acceptable 96% 100% 95% 83% 83% 81% 87% 86% 83% 

P04 AVG 0.477 0.961 1.349 1.032 1.623 1.501 0.973 1.572 1.481 
RMSE 0.540 1.126 1.571 1.293 1.967 1.906 1.232 1.843 1.736 
EGA acceptable 100% 100% 99% 100% 100% 99% 99% 100% 99% 

P05 AVG 1.047 1.582 1.660 1.146 1.969 1.965 1.132 1.753 1.912 
RMSE 1.236 1.825 1.976 1.312 2.248 2.336 1.341 2.203 2.273 
EGA acceptable 100% 97% 98% 99% 97% 92% 98% 98% 94% 

All datasets 
All datasets AVG 0.965 1.550 1.870 1.412 2.054 2.025 1.253 1.932 1.971 

RMSE 1.120 1.755 2.176 1.816 2.535 2.585 1.666 2.316 2.518 
EGA acceptable 96% 98% 96% 95% 95% 93% 95% 96% 94%  

Table 6 
Results of the 3-fold cross-validation for the FNN-ABS. The V1 version used the 
first 2/3 time period for training (also shown in detail in Table 5). V2 used the 
first and last 1/3, while V3 used the last 2/3 for training.  

Version Figure of merit 1-h 2-h 3-h 

V1 MAE 0.965 1.550 1.870 
RMSE 1.120 1.755 2.176 
EGA acceptable 96.46% 98.13% 96.03% 

V2 MAE 1.253 1.932 1.971 
RMSE 1.666 2.316 2.518 
EGA acceptable 95.31% 95.88% 93.80% 

V3 MAE 1.020 1.608 1.937 
RMSE 1.244 1.859 2.290 
EGA acceptable 98.95% 98.55% 97.73%  

Table 7 
Prediction accuracy gain of FNN-ABS over FNN-NUT. P-values show the sig-
nificance level of the paired sample t-test.  

Figure of merit 1-h 2-h 3-h ALL horizons together 

MAE 31.69% 24.56% 7.65% 21.30%  
P < 0.01 p<0.01 p>0.05  

RMSE 38.35% 30.76% 15.81% 28.31%  
p < 0.01 p<0.01 p>0.5  

EGA A/B 1.02% 3.28% 2.97% 2.42%  
p > 0.05 p = 0.017 p > 0.05   

Table 8 
FNN-ABS and FNN-NUT percentage of predictions in the EGA D and E classes. 
Patient-wise results are omitted for brevity.  

Version 1-h 2-h 3-h 

FNN-ABS 3.59% 1.87% 2.95% 
FNN-NUT 4.18% 5.08% 6.48% 
Improvement 14.14% 63.30% 54.52%  
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of meals (17) used for training showed that, as it could be expected, the 
overall prediction performance decreased, but still the P04 and P02 
results were the best, though the differences decreased (Tables 10 and 
11). This phenomena may be due to fundamental differences in the 
‘predictability’ of humans: our model missed several factors that are 
hard to quantify, but which are known to influence BGL, such as emo-
tions, and it can be stipulated that those patients for whom the impact of 
such factors is relatively stronger are harder to predict. 

Personal variations in predictability naturally call for a larger num-
ber of patients to validate a prediction approach. As Table 1 shows, this 
number varies between 2 and 37 in the reported studies. These numbers 
are relatively low compared to other clinical research fields, which may 
be explained by the difficulties associated with the acquisition of high 
quality dietary and especially CGM data from volunteers in a properly 
managed clinical trial. 

Since the BGL of T1DM patients usually shows more variations and 
more extreme BGL values than T2DM patients, it could be expected that 
the BGL prediction performance of a NN will also be worse for T1DM. 
There was only one T1DM patient (P05) in our study, for whom the FNN- 
ABS results were ‘average’ i.e. worse than P02 and much worse than 
P04, yet slightly better than P03 and much better than P01. Based on 
these results, the above expectation can neither be confirmed nor dis-
missed. More patients would obviously be needed, especially T1DM, to 
make a statistically confirmed statement about the connection between 
the DM type and prediction performance. 

The cross-validation was performed to track the effect of training 
data selection on the performance of the trained model (Table 6). The 

best results (1.120, 1.755, 2.176 mmol/l RMSE on the 1-h/2-h/3-h ho-
rizons) were produced by the default scheme that used the first 2/3 time 
period, yet the worst version (V2 with 1.244, 1.859, 2.290 mmol/l 
RMSE) fell behind by only less than 0.13 mmol/l (ca. 12%). This shows 
that the FNN could quite robustly learn the behavior of the system. 

As expected, the FNN-NUT-GI version outperformed the FNN-NUT 
version (see Table 5), showing that the ‘summary’ GI computed for 
the meal was more valuable information for the learning than the fiber 
content, at least with this limited amount of data, though fiber is known 
to have an effect on GI. 

The superior performance of the ABS over the NUT/NUT-GI 
methods, shown in Tables 7 and 8, verified our startup hypothesis that 
additional domain knowledge formulated in an absorption model will 
improve the predictability of a complex system such as the human ab-
sorption system combined with the BGL regulation system. This 
conclusion may seem to contradict the results of Zecchin et al., who did 
not find much difference with respect to whether CH data was included 
in the training scenario [17]—however, they did not use an absorption 
model, only ‘raw’ CH values. 

Table 7 also shows that in general, while the accuracy of both 
methods decreases naturally for longer horizons, the performance 
advantage of the ABS method over the NUT also decreases (RMSE 1-h: 
38.35%, 2-h: 30.76%, 3-h: 15.81%, for MAE 31.69%, 24.56%, 7.65%, 
respectively). This phenomenon may be explained by the accumulation 
of ‘noise’ i.e. error due to not modeled factors, in the prediction error as 
time passes by. As the BGL curve becomes harder to explain by the ab-
sorption model, the ABS method loses its power over the simpler NUT 
method. EGA errors do not follow this rule as the differences are very 
small (1–3%) and not significant, but one should not forget that during 

Table 9 
Prediction accuracy gain of FNN-ABS over FNN-NUT-GI. P-values show the 
significance level of the paired sample t-test and the one-way ANOVE test.  

Figure of merit 1-h 2-h 3-h ALL horizons together 

MAE 22.25% 19.79% 5.09% 15.71% 
t-test p < 0.01 p<0.01 p>0.05  
ANOVA p<0.05 p>0.05 p > 0.05  

RMSE 32.80% 24.22% 13.59% 23.54% 
t-test p < 0.01 p<0.01 p>0.05  
ANOVA p = 0.01 p = 0.05 p > 0.05  

EGA A/B 1.19% 2.30% 2.33% 1.94% 
t-test p > 0.05 p > 0.05 p > 0.05  
ANOVA p > 0.05 p > 0.05 p > 0.05   

Table 10 
Results for the same number of meals for each patient.    

FNN-ABS FNN-NUT 

Patient Figure of merit 1-h 2-h 3-h 1 h 2-h 3-h 

P01 AVG 1.752 2.225 3.153 1.583 2.883 3.055 
RMSE 2.020 2.575 3.677 2.206 3.583 4.042 
EGA acceptable 85.15% 94.39% 85.69% 92.59% 90.00% 87.78% 

P02 AVG 0.983 1.433 1.998 1.957 2.278 2.327 
RMSE 1.131 1.681 2.247 2.044 2.540 2.548 
EGA acceptable 96.33% 98.18% 98.02% 96.32% 97.96% 98.40% 

P03 AVG 1.060 1.900 2.147 2.245 2.550 2.617 
RMSE 1.237 2.283 2.484 3.214 3.641 3.398 
EGA acceptable 95.56% 99.81% 95.06% 82.96% 82.78% 81.48% 

P04 AVG 0.977 1.331 1.598 1.425 1.820 1.842 
RMSE 1.055 1.417 1.846 1.662 2.120 2.178 
EGA acceptable 100.00% 100.00% 98.52% 100.00% 100.00% 98.64% 

P05 AVG 1.306 1.983 2.202 1.436 2.493 2.569 
RMSE 1.442 2.106 2.349 1.631 2.620 2.772 
EGA acceptable 99.94% 96.34% 97.16% 98.89% 96.06% 88.97% 

All datasets 
All datasets AVG 1.216 1.774 2.219 1.729 2.405 2.482 

RMSE 1.377 2.012 2.521 2.151 2.901 2.988 
EGA acceptable 95.40% 97.75% 94.89% 94.15% 93.36% 91.05%  

Table 11 
Prediction accuracy gain of FNN-ABS over FNN-NUT with the same number of 
training meals. P-values show the significance level of the paired sample t-test.  

Figure of merit 1-h 2-h 3-h ALL horizons together 

MAE 29.70% 26.22% 10.58% 23.70%  
p < 0.01 p<0.01 p>0.05  

RMSE 35.99% 30.63% 15.63% 28.31%  
p < 0.01 p<0.01 p>0.05  

EGA A/B 1.30% 4.49% 4.04% 3.28%  
p < 0.01 p = 0.013 p > 0.05   
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training, an FNN always tries to minimize the difference between the 
measured and predicted values, which in our case was the MAE error 
and not the best EGA classification. The apparent contradiction that P02, 
P04 and P05 have nearly the same EGA yet quite different MAE or RMSE 
values can be explained by the quite wide bands of the EGA classes that 
do not punish an error until it crosses a region boundary. The RMSE 
shows a much clearer picture of the real power of the model. The 
improvement in terms of EGA are more apparent in the D and E (worst 
case) categories, as shown by Table 8. 

5.1. Comparison to related work 

First, the new results can be compared with our own earlier results 
using a state-of-the-art BGL regulation model, the parameters of which 
were trained (personalized) with various methods of optimization [4]. 
That study used a similar clinical protocol, the same dietary database, 
and it was supervised by the same medical team as this trial. The 60-min 
RMSE result with the best algorithmic setup was 1.62 mmol/l, consid-
erably worse than the 1.12 mmol/l of the FNN-ABS, proving that in the 
previous study the possibly over-simplified BGL model itself was a 
limitation. 

When our results are numerically compared with those of other 
studies, one should not forget that for a fair comparison, the various 
methods should be run on the same data sets which are not always 
available for sharing, due to restrictions of the clinical trials. In our 
specific case, dietary log data from other trials could not be used any-
way, because our method uses fiber, lipid, GI etc. values which are not 
included in other trials and which can only be computed from a localized 
(culture-specific) dietary expert database. That being said, it can be 
stated that the best new result (1.12 mmol/l) is very promising 
compared to the 60-min, outpatient and CH-insulin based RMSE results 
of the literature survey, (Li: 1.85, Mirshekarian: 2.11, Mathiyazhagan: 
3.16 mmol/l). Though there are far better results than this as well on the 
45/60-min horizon (cf. Ali: 0.5, Frandes: 0.24, Daskalaki: 0.3 on 45-min, 
Zarkogianni: 1.26), but these models do not consider the (possibly 
hectic) CH input of the patient, so a direct comparison would not be fair. 
Another point that one must bear in mind is that CGM-only predictors 
require a continuous CGM data input even when the model is already 
trained, which is not possible for a large part of the DM outpatient 
community for financial reasons. It could also be argued that it is not fair 
to compare our mostly T2DM-based results to studies with only T1DM 

patients. The only relevant study that was found in the literature with 
T2DM patients, due to Kim et al., had worse RMSE results (2.3 mmol/l) 
on the 45-min horizon than any of our patients on the 60-min horizon, 
including the single T1DM patient. For a more direct comparison, more 
T1DM patients would be needed. 

Published RMSE results of simulated datasets are considerably better 
than our results [14,21]. However, BGL is influenced by such factors as 
the mental state, emotions, sudden movement and environmental 
changes etc., which form an inherent part of an outpatient’s daily life, 
but which even sophisticated simulators cannot consider. However, the 
effect of these factors appears as a ‘noise’ imposed on the real-life 
measured BGL curve, which makes the accuracy of predictions for real 
patients worse than those validated on simulators (see these differences 
in e.g. Ref. [21]). Also, simulators cannot account for the significant 
variances in the personal parameters of the metabolism. Therefore, the 
direct comparison of simulator vs. real patients’ results would naturally 
be biased in favor of the simulators. 

Figs. 7 and 8 show a graphical evaluation of the RMSE results. Fig. 7 
compares the FNN-ABS best RMSE value to our previous best results 
(Math. model GA, [4]). 

There are only a few published RMSE results for the 120-min and no 
results for the 180-min horizons, making it hard to evaluate our results 
(1.75 mmol/l and 2.75 mmol/l, respectively) on these horizons. For 120 
min, Mathiyazhagan reported 5.71 mmol/l using CH input and Zarko-
gianni 2.08 mmol/l, the latter being close to our result (1.75 mmol/l). 
These values are graphically compared in Fig. 8 with the performance of 
the NUT methods. 

As for the EGA evaluation, though CG-EGA classes are not exactly 
comparable to EGA classes, our 96.46% result on the 60-min horizon for 
the ‘clinically acceptable’ classes compares very favorably to Pappada’s 
92.3% (75-min, EGA), Daskalaki’s 89% (93% in the hypoglycemic 
range, 45-min, CG-EGA), and Zarkogianni’s 73.3% (60-min, CG-EGA). It 
also a strength of our model that the EGA accuracy does not decrease 
significantly on the 120-min and 180-min horizons. 

6. Conclusion and future work 

The paper presented a new outpatient BGL predicting method that is 
based on the application of an absorption model to generate training 
input for a neural network. For the successful training of the network, a 
good quality dietary and insulin log as well as the CGMS data is needed 

Fig. 6. A typical meal’s measured BGL (black line) and predicted (FNN-ABS: blue, FNN-NUT: orange) BGL values of the P03 patient for 1 h. The abscissa shows the 
measured and predicted BGL curves in mmol/l of the subject P03, in the function of time (shown in minutes on the x-axis). 
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for a period of ca. one week. The trained model uses only a startup 
(fingertip) BGL, and the dietary and insulin log for a 60-min to 180-min 
prediction, therefore it is applicable in practice for outpatients without 
continuous access to a CGMS device. The RMSE and EGA accuracy of the 
prediction (60-min: 1.12 mmol/l, 96.46% clinically acceptable) is better 
than those published results to which our method is directly compara-
ble, and it also surpasses the authors’ previous results using personalized 
BGL control models. The study also showed that the application of the 
absorption model has significantly decreased the RMSE prediction error 
at least on the 60- and 120-min horizons compared to a CH-only version, 
so the integration of dietary science has indeed contributed to the suc-
cess of the model. 

Future research in this field must include, most of all, new trials with 
more patients to verify these promising results. On a larger sample, the 
inclusion of insulin types (basal vs. bolus insulin), the physical activity, 
and the presence of emotional or mental stress as training inputs are also 
expected to improve the accuracy of the prediction—if these factors 
could be monitored in a reliable way. 
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Fig. 7. Prediction results compared with the NUT methods and results from other studies on the 1-h prediction horizon (75 min for Pappada). Other studies are 
identified by the author and year. The abscissa shows the RMSE in mmol/l of the methods enlisted on the x-axis. 

Fig. 8. Prediction results compared with the NUT methods and results from other studies on the 2-h prediction horizon. Other studies are identified by the author and 
year. The abscissa shows the RMSE in mmol/l of the methods enlisted on the x-axis. 
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