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ABSTRACT

Data fusion has shown potential to improve the accuracy of land cover mapping, and selection
of the optimal fusion technique remains a challenge. This study investigated the performance
of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-stacking method at the pixel
level and Dempster-Shafer (D-S) theory-based approach at the decision level, for mapping six
land cover classes in Thu Dau Mot City, Vietnam. At the pixel level, S-1 and S-2 bands and their
extracted textures and indices were stacked into the different single-sensor and multi-sensor
datasets (i.e. fused datasets). The datasets were categorized into two groups. One group
included the datasets containing only spectral and backscattering bands, and the other
group included the datasets consisting of these bands and their extracted features. The
random forest (RF) classifier was then applied to the datasets within each group. At the
decision level, the RF classification outputs of the single-sensor datasets within each group
were fused together based on D-S theory. Finally, the accuracy of the mapping results at both
levels within each group was compared. The results showed that fusion at the decision level
provided the best mapping accuracy compared to the results from other products within each
group. The highest overall accuracy (OA) and Kappa coefficient of the map using D-S theory
were 92.67% and 0.91, respectively. The decision-level fusion helped increase the OA of the
map by 0.75% to 2.07% compared to that of corresponding S-2 products in the groups.
Meanwhile, the data fusion at the pixel level delivered the mapping results, which yielded an
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OA of 4.88% to 6.58% lower than that of corresponding S-2 products in the groups.

1. Introduction

Land cover information plays an important role in
monitoring the environment and natural resources
as well as in urban management (Arowolo et al.
2018; Grigoras and Uritescu 2019; Rimal et al. 2017).
Therefore, the knowledge of the spatial distribution
and pattern of land cover in a specific area is necessary.
Among the various sources for delivering land cover
information and producing land cover maps, remote
sensing is considered as an essential one due to its
efficiency, economic benefits, and reliability (Cai et al.
2019).

Data fusion is defined as a technique that “com-
bines data from multiple sensors, and related informa-
tion from associated databases, to achieve improved
accuracy and more specific inferences than could be
achieved by the use of single sensor alone” (Hall and
Llinas 1997). In the earth observation field, the rapid
development of different kinds of sensors and data
sources has made data fusion a vital research approach
that aims to extract more detailed information from
the remote sensing imagery (Zhang 2010; Solberg
2006; Schmitt and Zhu 2016). By different fusion
methods ranging from simple to complex, the
extracted information can effectively serve various

fields such as urban management (Shao et al. 2021a;
Guan et al. 2017; Shao et al. 2021b), agriculture
(Mfuka, Byamukama, and Zhang 2020; Prins and
Van Niekerk 2020), environmental monitoring (Xu
and Ma 2021), etc. In general, remote sensing data is
fused at three common levels: pixel level, feature level,
and decision level (Pohl and van Genderen 2016).
For land cover classification and monitoring, opti-
cal and radar data are two types of remote sensing data
that are often used as the input for various fusion
methods to achieve better mapping results. For
instance, Tavares et al. (2019) combined Sentinel-1
(S-1) and Sentinel-2 (S-2) data at the pixel level for
urban land cover mapping in Belem, Eastern Brazilian
Amazon. The authors used the simple method of layer
stacking for fusing data and applied the random forest
(RF) algorithm as a classifier. Their results showed
that, in comparison to other combinations, the inte-
gration of all spectral and backscattering bands
achieved the best mapping result with overall accuracy
(OA) reached 91.07%. Liu et al. (2018) combined S-1,
S-2, Multi-Temporal Landsat 8 and digital elevation
model (DEM) data for mapping eight forest types in
Wouhan city, China. The authors derived various spec-
tral indices and textures and compositing the data in
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various scenarios. Afterward, they applied a complex
hierarchical strategy, including multi-scale segmenta-
tion, threshold analysis, and the RF algorithm. Their
results showed that the fusion of imagery, terrain, and
multi-temporal data reached the highest classification
accuracy (OA = 82.78%) among the scenarios. Tabib
Mahmoudi, Arabsaeedi, and Alavipanah (2019) classi-
fied urban land cover by fusing Landsat-8 and Terra
SAR-X textures images at the feature level. They used
the multi-resolution segmentation technique and
knowledge-based classification based on thresholds
and decision rules to fuse the data. The accuracy of
the fusion result was not too high, as the OA and
Kappa coeflicient were 50.53% and 0.37, respectively.
However, they improved by 2.48% and 0.06, respec-
tively, compared to that of Landsat-8 imagery. Shao
et al. (2016) fused S-1 and Gaofen-1 images at the
decision level based on Dempster-Shafer (D-S) theory
to map the urban impervious surfaces in the metro-
politan area of Wuhan city in China. Their results
indicated that fusion at the decision level achieved an
OA ranging from 93.37% to 95.33%, which is better
than those from single-sensor data. Ban, Hu, and
Rangel (2010) fused Quickbird multi-spectral (MS)
and RADARSAT synthetic aperture radar (SAR) data
at the decision level for mapping 16 urban land cover
classes at the rural-urban fringe of the Greater
Toronto Area, Ontario, Canada. Complex hierarchical
object-based and rule-based approaches were applied
in both single-sensor data and their fused outputs. The
study results revealed that decision-level fusion helped
improve the accuracy of some vegetation classes by
a range from 17% to 25%. In addition, some emerging
data sources, such as LIDAR or social data, can also be
used in conjunction with conventional data sources.
For example, Prins and Van Niekerk (2020) investi-
gated the effectiveness of combining LiDAR, Sentinel-
2, and aerial imagery for classifying five crop types.
The data were combined in various ways, and 10
machine learning algorithms were used. Their results
showed that the highest OA of 94.4% was achieved
when applying the RF algorithm on the combination
of all three data sources. Shao et al. (2021b) combined
Landsat images and Twitter’s location-based social
media data to classify urban land use/land cover and
analyze urban sprawl in the Morogoro urban munici-
pality, Africa. Their results proved the potential of
combining remote sensing, social sensing, and popu-
lation data for classifying urban land use/land cover
and evaluating the expansion of urban areas and the
status of access to urban services and infrastructure.
These study results demonstrate that fusion data
from various sources at the three fusion levels can
improve accuracy in land cover mapping. In these stu-
dies, various fusion techniques were used, ranging from
simple to very complex methods. However, selecting
which fusion method should be applied to deliver the

best results is a challenge. In general, selecting a method
for image classification depends on many factors. The
factors comprise the purpose of study, the availability of
data, the performance of the algorithm, the computa-
tional resources, and the analyst’s experiences (Lu and
Weng 2007). In addition, the performance of each
method also depends partly on the characteristics of
the study area, the dataset used, and how the method
works. A method can yield highly accurate results in
one dataset and give poor results in others (Xie et al.
2019). Moreover, it is not necessary to employ
a complicated technique when a simple one can solve
the problem well. Therefore, for studies related to land
cover mapping, it is essential to compare the perfor-
mance of different methods to choose the optimal one
that gives the most accurate results.

Since being launched into space in 2014 under
the Copernicus program (The European Space
Agency 2021), Sentinel-1 and Sentinel-2 missions
provide a high-quality satellite imagery source for
earth observation. The Sentinel-1 mission com-
prises a two-satellite constellation: Sentinel-1A
(S-1A) and Sentinel-1B (S-1B). The mission pro-
vides C-band SAR images with a 10-m spatial reso-
lution and a 6-day temporal resolution. Meanwhile,
the Sentinel-2 mission also consists of a two-
satellite constellation: Sentinel-2A (S-2A) and
Sentinel-2B (S-2B). S-2A/B data together have
a revisit time of 5 days, and they deliver the multi-
spectral products with a spatial resolution ranging
from 10 m to 60 m. The advantages of the Sentinel
data are a high spatial resolution and a short revisit
time, and S-2 are multi-spectral, while S-1 are
unaffected by <cloud and acquiring time.
Furthermore, they are free and easy to access and
download. Combining these data can help enhance
the efficiency of monitoring land cover informa-
tion, and as mentioned, selection of the optimal
combination method is needed. To the extent of
the authors’ knowledge from the literature review,
no study to date has compared the efficiency of the
fusion of S-1 and S-2 data at the pixel level and
decision level for land cover mapping.

With these issues in mind, the purpose of this paper
is to evaluate and compare the performance of fusing
S-1 and S-2 data at the pixel level and decision level for
land cover mapping in a case study of Thu Dau Mot
City, Binh Duong province, Vietnam. To achieve this
objective, our proposed procedure is briefly high-
lighted as follows:

e Pre-processing data and deriving textures and
indices.

e Stacking the obtained products into different
datasets.

e Applying the RF algorithm on the datasets to
produce land cover maps at pixel level.



e Fusing the RF results of single-sensor datasets
based on D-S theory to produce land cover
maps at decision level.

e Comparing the accuracy of the mapping results
at both levels.

2, Study area

Thu Dau Mot City is the administrative, economic,
and cultural center of Binh Duong province,
Vietnam. The city is located in the southwest of
the province, between 10°56'22" to 11°06'41"
N latitude and 106°35'42" to 106°44'00"
E longitude (Figure 1). It belongs to the tropical
monsoon climate, which has the rainy season from
May to November and the dry season from
December to April of the following year. Its annual
mean temperature is 27.8°C; its annual rainfall
ranges from 2104 mm to 2484 mm; and its annual
mean air humidity varies from 70 to 96% (Binh
Duong Statistical Office 2019). The mean elevation
of the city is from 6 to 40 m, and it increases from
west to east and from south to north. However, the
terrain surface is relatively flat, and the majority of
the city has a slope of 7 degrees or less. The total
area of the city is about 118.91 km? and its popu-
lation was 306,564 in 2018 (Binh Duong Statistical
Office 2019).
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Figure 1. Study area.
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The main types of land cover in the city are built
up, vegetation, bare land, and water surface. Based
on a field survey trip in January 2020 and careful
consideration of the characteristics of each land
cover subject, the land cover in the study area
was categorized into the following classes
(Figure 2):

(i) Bare land with high albedo (BL_H): including
totally bare soil areas without any cover or very
little vegetation.

(ii) Bare land with low albedo (BL_L): including
bare land areas partly covered with sunburned
vegetation and/or little fresh vegetation.

(iii) Built-up with high albedo (BU_H): mainly
including factories and industrial buildings
that are often light-colored corrugated iron
or concrete.

(iv) Built-up with low albedo (BU_L): mainly
including residences, commercial and office
buildings, and roads that are often concrete,
clay, tole, asphalt, or a mix of these
materials.

(v) Vegetation (VE): including crops, fruit trees,
industrial trees, mature trees for landscaping,
and fresh grass.

(vi) Open water surface (WA): including rivers,
canals, lakes, ponds, and pools.
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1 1
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(c) Built up with high albedo

(e) Vegetation

Figure 2. Land cover classes in the study area.

3. Materials and methods
3.1. Data

3.1.1. Satellite images

One free-cloud tile of S-2A Multispectral Instrument
(MSI) Level-2A and one tile of S-1A Ground Range
Detected (GRD), which cover the study area, were
downloaded from the Copernicus Scientific Data
Hub (https://scihub.copernicus.eu/).

The S-2A MSI Level-2A product provides the
bottom of atmosphere (BOA) reflectance images.
The product includes four bands of 10 m (2, 3,
4, 8), six bands of 20 m (5, 6, 7, 8A, 11, 12), and
two bands of 60 m (1, 9). The cirrus band 10 was

(b) Bare land with low albedo

(d) Built up with low albedo

(f) Open water surface

omitted as it does not contain surface information.
The product’s band wavelength ranges from about
493 nm to 2190 nm, and its radiometric resolution
is 12 bits.

The S-1A GRD product provides the C-band
SAR data, which had been detected, multi-looked
and projected to ground range using an Earth
ellipsoid model. The acquired imagery was col-
lected in the Interferometric Wide Swath (IW)
mode with high resolution (a pixel spacing of
10 m and a spatial resolution of approximately
20 m x 22 m) in dual-polarization mode: vertical
transmit-vertical receive (VV) and vertical trans-
mit-horizontal receive (VH).


https://scihub.copernicus.eu/

Due to its climatic characteristics, the study area is
often covered by clouds during the rainy season (i.e.
from May to November). Therefore, in this study, the
optical product was collected in the dry season. One
free-cloud tile of S-2, acquired on 22 February 2020
was selected. Meanwhile, although the radar product is
not affected by cloud coverage, the selected tile of S-1
was acquired on 25 February 2020 to minimize the
change in the land cover.

3.1.2. Vector data

The administrative boundary of the study area was
downloaded from the Database of Global
Administrative Areas (GADM) project website
(https://gadm.org/). It was used for subsetting and
masking the satellite images.

The training dataset for the six land cover classes
was collected based on the results of the field trip in
January 2020 combined with Google Earth images. The
validation data were collected based on a stratified
random sampling strategy. Based on the classification
result of the S-2 dataset, the proportion of each land
cover class was roughly estimated by visual observa-
tion. Based on the proportion, 70 points of BL_H, 150
points of BL_L, 90 points of BU_H, 150 points of
BU_L, 140 points of VE, and 50 points of WA were
randomly selected. Thus, a total of 650 points were
generated. These points were visually interpreted by
the S-2 image, Google Earth image, and the authors’
personal knowledge. Some points being on mixed pix-
els, which could not be interpreted correctly, were
discarded. As a result, only 532 points could be used
for validation, including 56 points of BL_H, 86 points
of BL_L, 89 points of BU_H, 135 points of BU_L, 115
points of VE, and 51 points of WA.

3.2. Methods

Five main steps were carried out to achieve the study
goals. First, the downloaded S-1 and S-2 data were pre-
processed, and their textures and indices were
extracted. In the second step, the products obtained
were stacked into different datasets, including the
datasets from single sensors and the fused datasets
from multiple sensors. The datasets were categorized
into two groups based on whether they included tex-
tures and indices or not. In the third step, the RF
classifier was then applied to each dataset, and the
accuracy of their results was assessed. In the fourth
step, the classification results of the single-sensor data-
sets within each group were used as the inputs for the
decision-level fusion based on D-S theory. Finally, the
accuracy of classification results at the decision level
was assessed and compared to those at the pixel level.
The overall process followed in this study is presented
in Figure 3 and described in detail below.
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3.2.1. Pre-processing and extracting indices and
textures

The S-2 tile was downloaded as a Level 2 product in
WGS 84/UTM Zone 48 N projection, which has
already applied geometric and atmospheric correction
and is ready to use for classification. Bands 2, 3, 4, 8
(10 m) 5, 6, 7, 8A, 11, 12 (20 m) were used in this
study. The 20-m bands were resampled to the 10-m
ones using the nearest neighbor method to ensure the
preservation of original values. Then, the Normalized
Difference Vegetation Index (NDVI) and Normalized
Difference Water Index (NDWI) were extracted.
These two indices were included in this study because
they have been widely used and have shown the poten-
tial to improve land cover classification results (Shao
et al. 2016; Tian et al. 2016).

Several common pre-processing steps were applied
with the downloaded S-1 GRD tile. They included
apply orbit file, thermal noise removal, calibration,
speckle filtering, range-Doppler terrain correction
using WGS 84/UTM Zone 48 N projection and 30 m
Shuttle Radar Topography Mission (SRTM), and con-
version to dB (sigma0 dB) for both VH and VV. The
pre-processed products had a resolution of 10 m.
Speckle filtering was used for reducing noise to
improve image quality (Filipponi 2019); however, it
also can lead to a massive loss of information when
extracting texture features (Hu, Ghamisi, and Zhu
2018). Therefore, there were two sets of products in
this step: VH and VV with speckle filtering were used
as input data for classifiers, and the ones without
speckle filtering were used for extracting textures.
Afterward, eight gray-level co-occurrence matrix
(GLCM) textures were derived for both VH and VV
by using a 9 x 9 window size in all directions. The
derived textures included mean, correlation, variance,
homogeneity, contrast, dissimilarity, entropy, and
angular second moment. As a result, 16 texture pro-
ducts were generated.

Because there was a small shift in pixels between the
optical and SAR products, the resulting products were
aligned using band 2 of S-2 as a reference image to
make them fit together. Finally, all products were
subset to the study area. These pre-processing steps
were conducted on the Sentinel Application Platform
(SNAP) and Quantum Geographic Information
System (QGIS) software.

3.2.2. Combination, classification, and accuracy
assessment

After pre-processing, the products were stacked into
different datasets, including the datasets from single
sensors (D1, D2, D3, and D4) and the fused datasets
from multiple sensors (D5 and D6). This study applied
the common combination method of layer stacking to
fuse the data from S-1 and S-2 together at the pixel
level. The datasets were then categorized into two
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Figure 3. Process flowchart.

groups: a group of datasets containing only spectral
and backscattering bands (group 1) and a group of
datasets consisting of these bands and their extracted
textures and indices (group 2). Table 1 summarizes the
information of all datasets.

In this study, the RF algorithm, developed by
Breiman (2001), was selected as the classifier for land
cover classification at the pixel level. A random forest
consists of a set of decision trees, each of which is
generated by randomly drawing a subset from the
training dataset. From the results of the trees,
a majority vote is conducted to determine the final
output (Xie et al. 2019). RF is easy to use, highly
efficient, fast to process, and suitable for remote sen-
sing applications (Belgiu and Dragut 2016; Gudmann
et al. 2020). Since its results come from voting, RF has
the ability to produce classification output as

probabilities of each class, which was used as the
input for fusion at the decision level. The classification
process was implemented on R software, using the
“randomForest” package (Liaw and Wiener 2002).
Two important parameters affecting the classification
performance of the RF model are the maximum num-
ber of trees (ntree) and the number of variables ran-
domly sampled as candidates at each split (mtry). The
mtry parameter was set at the default value, which is
equal to the square root of the total number of fea-
tures. After testing the relationship between the ntree
and the decrease in out-of-bag error rates, the ntree
was set at 300 trees as out-of-bag error rates were
relatively stable after this point. The composited data-
sets were used as inputs for the classification process.
As a result, six land cover maps were generated at the
pixel level, and their accuracy was then assessed. In



Table 1. Summary of the input datasets.

Dataset Data sources Variables Note
D1 S-1 only VH, W Group 1
D2 S-2 only 2,3,4,56,7,8 8A, 11,12 Group 1

D3 S-1 with GLCM  VH, WV, and textures of mean, Group 2

textures correlation, variance,
homogeneity, contrast,
dissimilarity, entropy, and
angular second moment of
VH and WV
D4 S-2 with 2,3,4,56,7,8,8A, 11,12, Group 2
indices NDVI, NDWI
D5 D1 and D2 All variables of D1 and D2 Group 1,
pixel-
level
fusion
D6 D3 and D4 All variables of D3 and D4 Group 2,
pixel-
level
fusion
D7 Random forest Probability of each land cover Group 1,
results of D1 class, and OA, or UA, or PA decision-
and D2 of each result level
fusion
D8 Random forest Probability of each land cover Group 2,
results of D3 class, and OA, or UA, or PA decision-
and D4 of each result level
fusion

GLCM = gray-level co-occurrence matrix; VV = vertical transmit-vertical
receive; VH = vertical transmit-horizontal receive; NDVI = Normalized
Difference Vegetation Index; NDWI = Normalized Difference Water
Index; OA = overall accuracy; UA = user’s accuracy; PA = producer’s
accuracy.

addition, four classification results of single-sensor
datasets, in the form of probabilities of each land
cover class, were also produced to use in the next
stages.

At the decision level, the probability-form classifi-
cation results were fused within each group. The clas-
sification result of D1 was fused with that of D2 (D7),
while the results of D3 and D4 were combined (DS8).
This study applied the data fusion method based on
the D-S evidence theory (Dempster 1967; Shafer 1976)
using the dst package (Boivin and Stat. ASSQ 2020) in
R software. D-S evidence theory, which is often
described as a generalization of the Bayesian theory,
is based on belief functions and plausible reasoning.
The advantages the theory offer in data classification
include: (i) flexible construction of the mass function
and the data organization; (ii) no requirement regard-
ing the prior knowledge or conditional probabilities,
which makes it suitable for handling data with unseen
labels; and (iii) possibility to provide the uncertainty of
the result (Chen et al. 2014). Theoretical calculation
steps were carried out according to the detailed
description of Shao et al. (2016). The Basic
Probability Assignment (BPA - or mass function) of
each pixel, which is a prerequisite for fusion according
to D-S theory, was calculated as follows:

mi(A) = p, X pi

in which m; (A) is the mass function value of the
calculated pixel in class A of data source i, p, is the
probability of belonging to each land cover class of
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the calculated pixel, and p; is the probability of
correct classification of data source i. In this
study, the OA, user’s accuracy (UA) and producer’s
accuracy (PA) were used in turn to measure the
probability of correct classification for the
calculation.

As a result, six land cover maps (two by using OA,
two by using UA, and two by using PA) were gener-
ated at this decision level, and their accuracy was then
assessed. Finally, the accuracy of all classification
results at both pixel and decision levels was compared
by both visual assessment and OA, PA, UA, and
Kappa coefficients.

4. Results and discussion

The accuracy assessments of all classification results
are presented in Table 2. The land cover maps of the
two groups are also presented in Figures 4 and 5. The
fusion results wusing PA were chosen as
a representation of the decision level in these figures.

In group 1, the fusion method using D-S theory
provided the most accurate results, in which OA ran-
ged from 90.23% to 90.60% and the Kappa coefficient
was 0.88. The best result in this group occurred in the
fusion of D7, based on the OA. Similarly, results from
the decision-level fusion in group 2 also gave the high-
est accuracy, with the OA ranging from 91.35% to
92.67% and the Kappa coefficient varying from 0.89
to 0.91. The fusion of D8 using UA produced the best
result in this group with an OA of 92.67% and a Kappa
coefficient of 0.91. It was also the product with the
most accuracy in all datasets. Therefore, the highest
accuracy was found in the results of fusion at the
decision level in both groups, whether using OA,
UA, or PA for mass function construction. In contrast,
the poorest results occurred in S-1 only (OA = 42.86%,
Kappa = 0.29) in group 1 and in S-1 with its texture
variables (OA = 52.07%, Kappa = 0.41) in group 2. In
general, both groups followed a similar trend in the
accuracy of mapping results from datasets and

Table 2. Comparison of the overall accuracy and Kappa coeffi-
cient of the classification result of all datasets.

Dataset Overall Accuracy (%) Kappa coefficient
Group 1: datasets without textures and indices

D7 using OA 90.60 0.88
D7 using PA 90.23 0.88
D7 using UA 90.23 0.88
D2 89.47 0.87
D5 84.59 0.81
D1 42.86 0.29
Group 2: datasets with textures and indices

D8 using UA 92.67 0.91
D8 using PA 91.92 0.90
D8 using OA 91.35 0.89
D4 90.60 0.88
D6 84.02 0.80
D3 52.07 0.41

OA = overall accuracy; UA = user’s accuracy; PA = producer’s accuracy.
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Figure 4. Land cover maps from the datasets without textures and indices: (a) dataset D1; (b) dataset D2; (c) dataset D5; (d) dataset

D7 using PA.

decreased in the following order: decision-level fusion
dataset, single optical dataset, pixel-level fusion data-
set, and single SAR dataset.

As a result, the fusion results from S-1 and S-2
products at the decision level increased mapping
accuracy by a range of 0.75% to 2.07% in comparison
to the results of corresponding S-2 products in the
two groups. D-S theory considered each land cover
class from different inputs as independent evidence.
Evidential probability was constructed entirely based
on the results of the classification algorithm at the
pixel level, without taking into account the input of
that algorithm. Therefore, this evidence theory could
reduce the impact of noise data and feature selection
in land cover classification (Shao et al. 2016). By that
advantage, the use of D-S theory at the decision level
in this study produced mapping results with a higher
level of accuracy. This finding is consistent with
many previous studies (Ran et al. 2012; Shao et al.
2016; Mezaal, Pradhan, and Rizeei 2018). It is clear
that the result of the D-S fusion depends on how the
mass function is constructed. Mezaal, Pradhan, and
Rizeei (2018) converted the posterior probabilities of

the classification results to the form of mass function
directly; Ran et al. (2012) identified the parameter for
the mass function construction from a literature
review and expert knowledge; The p, parameter of
the mass function in Shao et al. (2016) was similar to
our study, and the p; was based on the PA of each
class. This study is distinguished by testing the con-
struction of mass function using the OA, UA, and PA
in turn for the parameter of p; to get a more compre-
hensive assessment of the effectiveness of the
D-S theory-based fusion. As mentioned, each of the
three construction methods yielded better results
than that of single-sensor and fused datasets at the
pixel level. The results show that whether using the
OA, UA, or PA for mass function construction,
applying the D-S fusion method on S-1 and S-2 data
provides a better result for land cover mapping. In
addition, the results suggest that such a method is
applicable for high-accuracy mapping in other urban
areas.

However, the fusion data from different sensors
using the layer-stacking technique at the pixel level
did not improve classification efficiency. It reduced
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Figure 5. Land cover maps from the datasets with textures and indices: (a) dataset D3; (b) dataset D4; (c) dataset D6; (d) dataset D8

using PA.

the accuracy of classification by a range of 4.88% to
6.58% compared to the results of corresponding
optical products in the two groups. Although
most studies in the literature reported the ability
to improve the overall accuracy when fusing var-
ious data sources at the pixel level compared to
using a single data source, some studies have
shown the opposite (de Furtado et al. 2015;
Fonteh et al. 2016). Zhang and Xu (2018) found
that whether the combination of optical and SAR
data could improve the accuracy of urban land
cover mapping or not depended on the fusion
levels and the fusion methods. Therefore, in our
study, the extraction and selection of variables as
well as the choice of combination technique and
classification algorithm may have influenced the
outcome of the classification. To improve mapping
performance at the pixel level, further studies are
needed to determine the optimal variable selection
for data integration and to test other fusion tech-
niques, such as the component substitution meth-
ods or the multi-scale decomposition methods
(Kulkarni and Rege 2020).

When comparing the results from group 1 and
group 2, the accuracy of most of the datasets contain-
ing indices and textures was higher than that of the
corresponding datasets without these extracted vari-
ables, except for the pair of datasets D5 and D6. The
most significant increase took place in the pair of
datasets D1 and D3, where the addition of the
GLCM textures along with VH and VV raised the
OA by 9.21%. The accuracy of the remaining pairs
also increased by a range of 1.12% to 2.07% when
including these extracted variables in the datasets.
This finding confirms that the GLCM textures can
provide additional useful information to improve clas-
sification results (Lu et al. 2014; Zakeri, Yamazaki, and
Liu 2017; Tavares et al. 2019); however, the effective-
ness of spectral indices is still controversial. Our
results showed the spectral indices were effective in
land cover classification to some extent. While many
studies have included some common spectral indices
(e.g. NDVI, NDWI, and Normalized Difference Built-
up Index) in the input dataset and enhanced the accu-
racy of mapping results (Shao et al. 2016; Tian et al.
2016; Abdi 2020), other studies have indicated the
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opposite results (Adepoju and Adelabu 2020; Tavares
et al. 2019). This discrepancy may result from differ-
ences in land cover characteristics of the study areas
and the selection of indices included in the dataset.
Therefore, these indices should be used with caution
in future studies.

A detailed comparison of PA and UA in each class
of each classification result is presented in Tables 3
and 4. In addition, three example regions from classi-
fication maps in group 2 are presented in Figure 6 to
provide a visual comparison. The Google Earth images
were captured on 16 April 2020 using the historical
imagery function on Google Earth Pro software. As
seen in Tables 3 and 4, while S-1 only and S-1 with
GLCM texture classification results yielded relatively
low accuracy, the majority of PA and UA of all classes
from other classifications were high (over 85%). BL_L
was the class that had the most misclassifications,
which resulted in the lowest accuracy in most cases.

At the pixel level, the fusion data from different
sources significantly reduced the PA of BL_L and
the UA of BU_L when compared to the correspond-
ing S-2 products in both fusion cases. The former
was reduced by 31.39% in the datasets without
derived products and by 27.91% in the datasets

Table 3. The producer’s accuracy and user’s accuracy of the
classification result of the datasets without textures and
indices.

Accuracy Class
Dataset index BLLH BL_L BULH BU_L VE WA
D1 PA (%) 10.71 46.51 41.57 43.70 64.35 23.53
UA (%) 60.00 31.50 37.37 51.30 49.01 40.00
D2 PA (%) 91.07 93.02 87.64 83.70 91.30 96.08
UA (%) 89.47 7339 92.86 91.13 97.22 98.00
D5 PA (%) 9286 61.63 92.13 86.67 86.96 90.20
UA (%) 9455 69.74 9535 71.34 97.09 95.83
D7 using  PA (%) 91.07 94.19 86.52 88.15 92.17 94.12
OA UA (%) 89.47 7864 95.06 89.47 97.25 97.96
D7 using  PA (%) 91.07 8837 86.52 89.63 92.17 96.08
UA UA (%) 89.47 83.52 92.77 8643 96.36 96.08
D7 using  PA (%) 91.07 9535 86.52 85.93 92.17 94.12
PA UA (%) 89.47 7736 95.06 89.92 96.36 97.96

BL_H = Bare land with high albedo; BL_L = Bare land with low albedo;
BU_H = Built-up with high albedo; BU_L = Built-up with low albedo;
VE = Vegetation; WA = Open water surface; OA = overall accuracy;
UA = user’s accuracy; PA = producer’s accuracy.

Table 4. The producer’s accuracy and user’s accuracy of the
classification result of the datasets with textures and indices.

Accuracy Class
Dataset index BL.H BL_L BU_H BU_L VE WA
D3 PA (%) 7.14 47.67 7865 4593 60.00 60.78
UA (%) 50.00 44.57 46.67 50.82 5847 73.81
D4 PA (%) 96.43 91.86 92.13 83.70 95.65 86.27
UA (%) 9474 73.83 94.25 91.87 96.49 100.00
D6 PA (%) 8393 63.95 91.01 87.41 87.83 88.24
UA (%) 95.92 7432 88.04 69.82 98.06 100.00
D8 using  PA (%) 91.07 90.70 9551 87.41 9565 86.27
OA UA (%) 98.08 75.00 97.70 90.77 95.65 100.00
D8 using  PA (%) 94.64 87.21 9551 91.11 9478 94.12
UA UA (%) 98.15 83.33 98.84 89.13 95.61 96.00
D8 using  PA (%) 9286 91.86 9551 86.67 95.65 90.20
PA UA (%) 98.11 75.96 97.70 92.13 95.65 100.00

with derived products. Meanwhile, the latter was
decreased by 19.79% in the datasets of group 1 and
by 22.05% in the datasets of group 2. The misclassi-
fication between these two classes could be clearly
seen in the three sample regions, in which the BU_L
areas, especially roads, were misclassified as bare
land. Moreover, with the BU_H class, the misclassi-
fication from bare land areas to factories and from
factories to low albedo built-up areas decreased, but
the misclassification between factories and totally
bare soil areas increased. Therefore, the UA and
PA of classes increased or decreased unevenly, but
overall, the total reduction was greater than the total
increase in both fusion cases.

On the contrary, at the decision level, although the
UA and PA of classes also increased or decreased
unevenly, the total reduction was lower than the total
increase in both fusion cases. By visual assessment, the
greatest improvement was found in the classes BU_H,
BU_L, and BL_L. In these classes, the misclassification
from high-albedo build-up to bare soil and to low-
albedo built-up was significantly reduced, contribut-
ing to the increase in the OA of the mapping result.
However, because the BU_H class only took a small
proportion of the study area (about 5% of the total
area), the reduced misclassification only resulted in
a slight increase in the OA compared to the maps
from the optical datasets.

In general, in most cases of both single-sensor
datasets and integrated datasets, the BU_L and
BL_L had the highest rate of misclassification
among all classes, which may be due to the similar-
ity in their spectral characteristics. The study results
of Chen et al. (2019), Li et al. (2017), Shao et al.
(2016), and Wei et al. (2020) and many others have
also shown this issue. Meanwhile, although the UA
of water class achieved up to 100%, some water
areas were misclassified as high albedo built-up
area by visual assessment in all datasets at the near-
shore of an artificial swimming pool in example
region 3. The misclassification from WA to BU_H
in this region may be explained by a few factors.
First, the pool is in the Dai Nam Wonderland water
park, and in fact, it is an artificial sea with saline
water, not a freshwater swimming pool. The depth
of this artificial sea gradually rises from the near-
shore to the offshore, where the shallower water
leads to higher reflectance contribution from the
floor material of the water area (Chuvieco and
Huete 2016); Second, the floor of this artificial sea
is made of light-colored concrete, which belongs to
BU_H class. These factors combined may have
caused the misclassification from water to high-
albedo built-up area at the nearshore area of the
sea. For the vegetation class, the difference in the
accuracy was not significant between the fused data-
sets and corresponding optical datasets.
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Figure 6. Comparison of the classification results from the datasets with textures and indices in three example regions.

5. Conclusions

In summary, the fusion of S-1 and S-2 data based on
D-S theory at the decision level yielded better mapping
results compared to others. It comes from the advan-
tages of the D-S theory-based technique in reducing
the impact of noise data and feature selection in land
cover classification. The most obvious improvement
was found in the classes of barren land and built up. As
a result, the datasets fused at the decision level
increased the OA by a range of 0.75% to 2.07%

compared to the S-2 datasets. The fusion of S-1 and
S-2 data with their derived textures and indices at the
decision level using D-S theory brought the best
results in this study, achieving an OA and Kappa
coeflicient of 92.67% and 0.91, respectively.
Moreover, the integration of SAR and optical pro-
ducts using the layer-stacking technique at the pixel
level did not give more power to the classification
process. It reduced the accuracy of the mapping result
by 4.88% to 6.58% compared to that of the optical
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datasets. These findings may be influenced by the
processing and selection of features, fusion technique,
and classifier. Further studies on this issue are needed.

Furthermore, the inclusion of GLCM textures and
spectral indices in the datasets helped improve the
mapping results. However, while the effectiveness of
the textures is clear, the contribution of the indices
needs to be studied further.

In general, the results of this study show that using
the D-S fusion method for high-accuracy mapping in
other urbanized areas holds great potential. This study
represents an initial step, and it paves the way for
further research on land cover mapping using addi-
tional available data from the active and passive sen-
sors for performance improvement.
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