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Comparison of Layer-stacking and Dempster-Shafer Theory-based Methods 
Using Sentinel-1 and Sentinel-2 Data Fusion in Urban Land Cover Mapping
Dang Hung Bui a,b and László Mucsi a

aDepartment of Geoinformatics, Physical and Environmental Geography, University of Szeged, Szeged, Hungary; bInstitute for 
Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

ABSTRACT
Data fusion has shown potential to improve the accuracy of land cover mapping, and selection 
of the optimal fusion technique remains a challenge. This study investigated the performance 
of fusing Sentinel-1 (S-1) and Sentinel-2 (S-2) data, using layer-stacking method at the pixel 
level and Dempster-Shafer (D-S) theory-based approach at the decision level, for mapping six 
land cover classes in Thu Dau Mot City, Vietnam. At the pixel level, S-1 and S-2 bands and their 
extracted textures and indices were stacked into the different single-sensor and multi-sensor 
datasets (i.e. fused datasets). The datasets were categorized into two groups. One group 
included the datasets containing only spectral and backscattering bands, and the other 
group included the datasets consisting of these bands and their extracted features. The 
random forest (RF) classifier was then applied to the datasets within each group. At the 
decision level, the RF classification outputs of the single-sensor datasets within each group 
were fused together based on D-S theory. Finally, the accuracy of the mapping results at both 
levels within each group was compared. The results showed that fusion at the decision level 
provided the best mapping accuracy compared to the results from other products within each 
group. The highest overall accuracy (OA) and Kappa coefficient of the map using D-S theory 
were 92.67% and 0.91, respectively. The decision-level fusion helped increase the OA of the 
map by 0.75% to 2.07% compared to that of corresponding S-2 products in the groups. 
Meanwhile, the data fusion at the pixel level delivered the mapping results, which yielded an 
OA of 4.88% to 6.58% lower than that of corresponding S-2 products in the groups.
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1. Introduction

Land cover information plays an important role in 
monitoring the environment and natural resources 
as well as in urban management (Arowolo et al. 
2018; Grigoraș and Urițescu 2019; Rimal et al. 2017). 
Therefore, the knowledge of the spatial distribution 
and pattern of land cover in a specific area is necessary. 
Among the various sources for delivering land cover 
information and producing land cover maps, remote 
sensing is considered as an essential one due to its 
efficiency, economic benefits, and reliability (Cai et al. 
2019).

Data fusion is defined as a technique that “com
bines data from multiple sensors, and related informa
tion from associated databases, to achieve improved 
accuracy and more specific inferences than could be 
achieved by the use of single sensor alone” (Hall and 
Llinas 1997). In the earth observation field, the rapid 
development of different kinds of sensors and data 
sources has made data fusion a vital research approach 
that aims to extract more detailed information from 
the remote sensing imagery (Zhang 2010; Solberg 
2006; Schmitt and Zhu 2016). By different fusion 
methods ranging from simple to complex, the 
extracted information can effectively serve various 

fields such as urban management (Shao et al. 2021a; 
Guan et al. 2017; Shao et al. 2021b), agriculture 
(Mfuka, Byamukama, and Zhang 2020; Prins and 
Van Niekerk 2020), environmental monitoring (Xu 
and Ma 2021), etc. In general, remote sensing data is 
fused at three common levels: pixel level, feature level, 
and decision level (Pohl and van Genderen 2016).

For land cover classification and monitoring, opti
cal and radar data are two types of remote sensing data 
that are often used as the input for various fusion 
methods to achieve better mapping results. For 
instance, Tavares et al. (2019) combined Sentinel-1 
(S-1) and Sentinel-2 (S-2) data at the pixel level for 
urban land cover mapping in Belem, Eastern Brazilian 
Amazon. The authors used the simple method of layer 
stacking for fusing data and applied the random forest 
(RF) algorithm as a classifier. Their results showed 
that, in comparison to other combinations, the inte
gration of all spectral and backscattering bands 
achieved the best mapping result with overall accuracy 
(OA) reached 91.07%. Liu et al. (2018) combined S-1, 
S-2, Multi-Temporal Landsat 8 and digital elevation 
model (DEM) data for mapping eight forest types in 
Wuhan city, China. The authors derived various spec
tral indices and textures and compositing the data in 
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various scenarios. Afterward, they applied a complex 
hierarchical strategy, including multi-scale segmenta
tion, threshold analysis, and the RF algorithm. Their 
results showed that the fusion of imagery, terrain, and 
multi-temporal data reached the highest classification 
accuracy (OA = 82.78%) among the scenarios. Tabib 
Mahmoudi, Arabsaeedi, and Alavipanah (2019) classi
fied urban land cover by fusing Landsat-8 and Terra 
SAR-X textures images at the feature level. They used 
the multi-resolution segmentation technique and 
knowledge-based classification based on thresholds 
and decision rules to fuse the data. The accuracy of 
the fusion result was not too high, as the OA and 
Kappa coefficient were 50.53% and 0.37, respectively. 
However, they improved by 2.48% and 0.06, respec
tively, compared to that of Landsat-8 imagery. Shao 
et al. (2016) fused S-1 and Gaofen-1 images at the 
decision level based on Dempster-Shafer (D-S) theory 
to map the urban impervious surfaces in the metro
politan area of Wuhan city in China. Their results 
indicated that fusion at the decision level achieved an 
OA ranging from 93.37% to 95.33%, which is better 
than those from single-sensor data. Ban, Hu, and 
Rangel (2010) fused Quickbird multi-spectral (MS) 
and RADARSAT synthetic aperture radar (SAR) data 
at the decision level for mapping 16 urban land cover 
classes at the rural–urban fringe of the Greater 
Toronto Area, Ontario, Canada. Complex hierarchical 
object-based and rule-based approaches were applied 
in both single-sensor data and their fused outputs. The 
study results revealed that decision-level fusion helped 
improve the accuracy of some vegetation classes by 
a range from 17% to 25%. In addition, some emerging 
data sources, such as LiDAR or social data, can also be 
used in conjunction with conventional data sources. 
For example, Prins and Van Niekerk (2020) investi
gated the effectiveness of combining LiDAR, Sentinel- 
2, and aerial imagery for classifying five crop types. 
The data were combined in various ways, and 10 
machine learning algorithms were used. Their results 
showed that the highest OA of 94.4% was achieved 
when applying the RF algorithm on the combination 
of all three data sources. Shao et al. (2021b) combined 
Landsat images and Twitter’s location-based social 
media data to classify urban land use/land cover and 
analyze urban sprawl in the Morogoro urban munici
pality, Africa. Their results proved the potential of 
combining remote sensing, social sensing, and popu
lation data for classifying urban land use/land cover 
and evaluating the expansion of urban areas and the 
status of access to urban services and infrastructure.

These study results demonstrate that fusion data 
from various sources at the three fusion levels can 
improve accuracy in land cover mapping. In these stu
dies, various fusion techniques were used, ranging from 
simple to very complex methods. However, selecting 
which fusion method should be applied to deliver the 

best results is a challenge. In general, selecting a method 
for image classification depends on many factors. The 
factors comprise the purpose of study, the availability of 
data, the performance of the algorithm, the computa
tional resources, and the analyst’s experiences (Lu and 
Weng 2007). In addition, the performance of each 
method also depends partly on the characteristics of 
the study area, the dataset used, and how the method 
works. A method can yield highly accurate results in 
one dataset and give poor results in others (Xie et al. 
2019). Moreover, it is not necessary to employ 
a complicated technique when a simple one can solve 
the problem well. Therefore, for studies related to land 
cover mapping, it is essential to compare the perfor
mance of different methods to choose the optimal one 
that gives the most accurate results.

Since being launched into space in 2014 under 
the Copernicus program (The European Space 
Agency 2021), Sentinel-1 and Sentinel-2 missions 
provide a high-quality satellite imagery source for 
earth observation. The Sentinel-1 mission com
prises a two-satellite constellation: Sentinel-1A 
(S-1A) and Sentinel-1B (S-1B). The mission pro
vides C-band SAR images with a 10-m spatial reso
lution and a 6-day temporal resolution. Meanwhile, 
the Sentinel-2 mission also consists of a two- 
satellite constellation: Sentinel-2A (S-2A) and 
Sentinel-2B (S-2B). S-2A/B data together have 
a revisit time of 5 days, and they deliver the multi- 
spectral products with a spatial resolution ranging 
from 10 m to 60 m. The advantages of the Sentinel 
data are a high spatial resolution and a short revisit 
time, and S-2 are multi-spectral, while S-1 are 
unaffected by cloud and acquiring time. 
Furthermore, they are free and easy to access and 
download. Combining these data can help enhance 
the efficiency of monitoring land cover informa
tion, and as mentioned, selection of the optimal 
combination method is needed. To the extent of 
the authors’ knowledge from the literature review, 
no study to date has compared the efficiency of the 
fusion of S-1 and S-2 data at the pixel level and 
decision level for land cover mapping.

With these issues in mind, the purpose of this paper 
is to evaluate and compare the performance of fusing 
S-1 and S-2 data at the pixel level and decision level for 
land cover mapping in a case study of Thu Dau Mot 
City, Binh Duong province, Vietnam. To achieve this 
objective, our proposed procedure is briefly high
lighted as follows:

● Pre-processing data and deriving textures and 
indices.

● Stacking the obtained products into different 
datasets.

● Applying the RF algorithm on the datasets to 
produce land cover maps at pixel level.
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● Fusing the RF results of single-sensor datasets 
based on D-S theory to produce land cover 
maps at decision level.

● Comparing the accuracy of the mapping results 
at both levels.

2. Study area

Thu Dau Mot City is the administrative, economic, 
and cultural center of Binh Duong province, 
Vietnam. The city is located in the southwest of 
the province, between 10°56′22″ to 11°06′41″ 
N latitude and 106°35′42″ to 106°44′00″ 
E longitude (Figure 1). It belongs to the tropical 
monsoon climate, which has the rainy season from 
May to November and the dry season from 
December to April of the following year. Its annual 
mean temperature is 27.8°C; its annual rainfall 
ranges from 2104 mm to 2484 mm; and its annual 
mean air humidity varies from 70 to 96% (Binh 
Duong Statistical Office 2019). The mean elevation 
of the city is from 6 to 40 m, and it increases from 
west to east and from south to north. However, the 
terrain surface is relatively flat, and the majority of 
the city has a slope of 7 degrees or less. The total 
area of the city is about 118.91 km2, and its popu
lation was 306,564 in 2018 (Binh Duong Statistical 
Office 2019).

The main types of land cover in the city are built 
up, vegetation, bare land, and water surface. Based 
on a field survey trip in January 2020 and careful 
consideration of the characteristics of each land 
cover subject, the land cover in the study area 
was categorized into the following classes 
(Figure 2):

(i) Bare land with high albedo (BL_H): including 
totally bare soil areas without any cover or very 
little vegetation.

(ii) Bare land with low albedo (BL_L): including 
bare land areas partly covered with sunburned 
vegetation and/or little fresh vegetation.

(iii) Built-up with high albedo (BU_H): mainly 
including factories and industrial buildings 
that are often light-colored corrugated iron 
or concrete.

(iv) Built-up with low albedo (BU_L): mainly 
including residences, commercial and office 
buildings, and roads that are often concrete, 
clay, tole, asphalt, or a mix of these 
materials.

(v) Vegetation (VE): including crops, fruit trees, 
industrial trees, mature trees for landscaping, 
and fresh grass.

(vi) Open water surface (WA): including rivers, 
canals, lakes, ponds, and pools.

Figure 1. Study area.
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3. Materials and methods

3.1. Data

3.1.1. Satellite images
One free-cloud tile of S-2A Multispectral Instrument 
(MSI) Level-2A and one tile of S-1A Ground Range 
Detected (GRD), which cover the study area, were 
downloaded from the Copernicus Scientific Data 
Hub (https://scihub.copernicus.eu/).

The S-2A MSI Level-2A product provides the 
bottom of atmosphere (BOA) reflectance images. 
The product includes four bands of 10 m (2, 3, 
4, 8), six bands of 20 m (5, 6, 7, 8A, 11, 12), and 
two bands of 60 m (1, 9). The cirrus band 10 was 

omitted as it does not contain surface information. 
The product’s band wavelength ranges from about 
493 nm to 2190 nm, and its radiometric resolution 
is 12 bits.

The S-1A GRD product provides the C-band 
SAR data, which had been detected, multi-looked 
and projected to ground range using an Earth 
ellipsoid model. The acquired imagery was col
lected in the Interferometric Wide Swath (IW) 
mode with high resolution (a pixel spacing of 
10 m and a spatial resolution of approximately 
20 m × 22 m) in dual-polarization mode: vertical 
transmit-vertical receive (VV) and vertical trans
mit-horizontal receive (VH).

Figure 2. Land cover classes in the study area.
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Due to its climatic characteristics, the study area is 
often covered by clouds during the rainy season (i.e. 
from May to November). Therefore, in this study, the 
optical product was collected in the dry season. One 
free-cloud tile of S-2, acquired on 22 February 2020 
was selected. Meanwhile, although the radar product is 
not affected by cloud coverage, the selected tile of S-1 
was acquired on 25 February 2020 to minimize the 
change in the land cover.

3.1.2. Vector data
The administrative boundary of the study area was 
downloaded from the Database of Global 
Administrative Areas (GADM) project website 
(https://gadm.org/). It was used for subsetting and 
masking the satellite images.

The training dataset for the six land cover classes 
was collected based on the results of the field trip in 
January 2020 combined with Google Earth images. The 
validation data were collected based on a stratified 
random sampling strategy. Based on the classification 
result of the S-2 dataset, the proportion of each land 
cover class was roughly estimated by visual observa
tion. Based on the proportion, 70 points of BL_H, 150 
points of BL_L, 90 points of BU_H, 150 points of 
BU_L, 140 points of VE, and 50 points of WA were 
randomly selected. Thus, a total of 650 points were 
generated. These points were visually interpreted by 
the S-2 image, Google Earth image, and the authors’ 
personal knowledge. Some points being on mixed pix
els, which could not be interpreted correctly, were 
discarded. As a result, only 532 points could be used 
for validation, including 56 points of BL_H, 86 points 
of BL_L, 89 points of BU_H, 135 points of BU_L, 115 
points of VE, and 51 points of WA.

3.2. Methods

Five main steps were carried out to achieve the study 
goals. First, the downloaded S-1 and S-2 data were pre- 
processed, and their textures and indices were 
extracted. In the second step, the products obtained 
were stacked into different datasets, including the 
datasets from single sensors and the fused datasets 
from multiple sensors. The datasets were categorized 
into two groups based on whether they included tex
tures and indices or not. In the third step, the RF 
classifier was then applied to each dataset, and the 
accuracy of their results was assessed. In the fourth 
step, the classification results of the single-sensor data
sets within each group were used as the inputs for the 
decision-level fusion based on D-S theory. Finally, the 
accuracy of classification results at the decision level 
was assessed and compared to those at the pixel level. 
The overall process followed in this study is presented 
in Figure 3 and described in detail below.

3.2.1. Pre-processing and extracting indices and 
textures
The S-2 tile was downloaded as a Level 2 product in 
WGS 84/UTM Zone 48 N projection, which has 
already applied geometric and atmospheric correction 
and is ready to use for classification. Bands 2, 3, 4, 8 
(10 m) 5, 6, 7, 8A, 11, 12 (20 m) were used in this 
study. The 20-m bands were resampled to the 10-m 
ones using the nearest neighbor method to ensure the 
preservation of original values. Then, the Normalized 
Difference Vegetation Index (NDVI) and Normalized 
Difference Water Index (NDWI) were extracted. 
These two indices were included in this study because 
they have been widely used and have shown the poten
tial to improve land cover classification results (Shao 
et al. 2016; Tian et al. 2016).

Several common pre-processing steps were applied 
with the downloaded S-1 GRD tile. They included 
apply orbit file, thermal noise removal, calibration, 
speckle filtering, range-Doppler terrain correction 
using WGS 84/UTM Zone 48 N projection and 30 m 
Shuttle Radar Topography Mission (SRTM), and con
version to dB (sigma0 dB) for both VH and VV. The 
pre-processed products had a resolution of 10 m. 
Speckle filtering was used for reducing noise to 
improve image quality (Filipponi 2019); however, it 
also can lead to a massive loss of information when 
extracting texture features (Hu, Ghamisi, and Zhu 
2018). Therefore, there were two sets of products in 
this step: VH and VV with speckle filtering were used 
as input data for classifiers, and the ones without 
speckle filtering were used for extracting textures. 
Afterward, eight gray-level co-occurrence matrix 
(GLCM) textures were derived for both VH and VV 
by using a 9 × 9 window size in all directions. The 
derived textures included mean, correlation, variance, 
homogeneity, contrast, dissimilarity, entropy, and 
angular second moment. As a result, 16 texture pro
ducts were generated.

Because there was a small shift in pixels between the 
optical and SAR products, the resulting products were 
aligned using band 2 of S-2 as a reference image to 
make them fit together. Finally, all products were 
subset to the study area. These pre-processing steps 
were conducted on the Sentinel Application Platform 
(SNAP) and Quantum Geographic Information 
System (QGIS) software.

3.2.2. Combination, classification, and accuracy 
assessment
After pre-processing, the products were stacked into 
different datasets, including the datasets from single 
sensors (D1, D2, D3, and D4) and the fused datasets 
from multiple sensors (D5 and D6). This study applied 
the common combination method of layer stacking to 
fuse the data from S-1 and S-2 together at the pixel 
level. The datasets were then categorized into two 
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groups: a group of datasets containing only spectral 
and backscattering bands (group 1) and a group of 
datasets consisting of these bands and their extracted 
textures and indices (group 2). Table 1 summarizes the 
information of all datasets.

In this study, the RF algorithm, developed by 
Breiman (2001), was selected as the classifier for land 
cover classification at the pixel level. A random forest 
consists of a set of decision trees, each of which is 
generated by randomly drawing a subset from the 
training dataset. From the results of the trees, 
a majority vote is conducted to determine the final 
output (Xie et al. 2019). RF is easy to use, highly 
efficient, fast to process, and suitable for remote sen
sing applications (Belgiu and Drăguţ 2016; Gudmann 
et al. 2020). Since its results come from voting, RF has 
the ability to produce classification output as 

probabilities of each class, which was used as the 
input for fusion at the decision level. The classification 
process was implemented on R software, using the 
“randomForest” package (Liaw and Wiener 2002). 
Two important parameters affecting the classification 
performance of the RF model are the maximum num
ber of trees (ntree) and the number of variables ran
domly sampled as candidates at each split (mtry). The 
mtry parameter was set at the default value, which is 
equal to the square root of the total number of fea
tures. After testing the relationship between the ntree 
and the decrease in out-of-bag error rates, the ntree 
was set at 300 trees as out-of-bag error rates were 
relatively stable after this point. The composited data
sets were used as inputs for the classification process. 
As a result, six land cover maps were generated at the 
pixel level, and their accuracy was then assessed. In 

Figure 3. Process flowchart.
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addition, four classification results of single-sensor 
datasets, in the form of probabilities of each land 
cover class, were also produced to use in the next 
stages.

At the decision level, the probability-form classifi
cation results were fused within each group. The clas
sification result of D1 was fused with that of D2 (D7), 
while the results of D3 and D4 were combined (D8). 
This study applied the data fusion method based on 
the D-S evidence theory (Dempster 1967; Shafer 1976) 
using the dst package (Boivin and Stat. ASSQ 2020) in 
R software. D-S evidence theory, which is often 
described as a generalization of the Bayesian theory, 
is based on belief functions and plausible reasoning. 
The advantages the theory offer in data classification 
include: (i) flexible construction of the mass function 
and the data organization; (ii) no requirement regard
ing the prior knowledge or conditional probabilities, 
which makes it suitable for handling data with unseen 
labels; and (iii) possibility to provide the uncertainty of 
the result (Chen et al. 2014). Theoretical calculation 
steps were carried out according to the detailed 
description of Shao et al. (2016). The Basic 
Probability Assignment (BPA – or mass function) of 
each pixel, which is a prerequisite for fusion according 
to D-S theory, was calculated as follows: 

mi Að Þ ¼ pv � pi 

in which mi (A) is the mass function value of the 
calculated pixel in class A of data source i, pv is the 
probability of belonging to each land cover class of 

the calculated pixel, and pi is the probability of 
correct classification of data source i. In this 
study, the OA, user’s accuracy (UA) and producer’s 
accuracy (PA) were used in turn to measure the 
probability of correct classification for the 
calculation.

As a result, six land cover maps (two by using OA, 
two by using UA, and two by using PA) were gener
ated at this decision level, and their accuracy was then 
assessed. Finally, the accuracy of all classification 
results at both pixel and decision levels was compared 
by both visual assessment and OA, PA, UA, and 
Kappa coefficients.

4. Results and discussion

The accuracy assessments of all classification results 
are presented in Table 2. The land cover maps of the 
two groups are also presented in Figures 4 and 5. The 
fusion results using PA were chosen as 
a representation of the decision level in these figures.

In group 1, the fusion method using D-S theory 
provided the most accurate results, in which OA ran
ged from 90.23% to 90.60% and the Kappa coefficient 
was 0.88. The best result in this group occurred in the 
fusion of D7, based on the OA. Similarly, results from 
the decision-level fusion in group 2 also gave the high
est accuracy, with the OA ranging from 91.35% to 
92.67% and the Kappa coefficient varying from 0.89 
to 0.91. The fusion of D8 using UA produced the best 
result in this group with an OA of 92.67% and a Kappa 
coefficient of 0.91. It was also the product with the 
most accuracy in all datasets. Therefore, the highest 
accuracy was found in the results of fusion at the 
decision level in both groups, whether using OA, 
UA, or PA for mass function construction. In contrast, 
the poorest results occurred in S-1 only (OA = 42.86%, 
Kappa = 0.29) in group 1 and in S-1 with its texture 
variables (OA = 52.07%, Kappa = 0.41) in group 2. In 
general, both groups followed a similar trend in the 
accuracy of mapping results from datasets and 

Table 1. Summary of the input datasets.
Dataset Data sources Variables Note

D1 S-1 only VH, VV Group 1
D2 S-2 only 2, 3, 4, 5, 6, 7, 8, 8A, 11, 12 Group 1
D3 S-1 with GLCM 

textures
VH, VV, and textures of mean, 

correlation, variance, 
homogeneity, contrast, 
dissimilarity, entropy, and 
angular second moment of 
VH and VV

Group 2

D4 S-2 with 
indices

2, 3, 4, 5, 6, 7, 8, 8A, 11, 12, 
NDVI, NDWI

Group 2

D5 D1 and D2 All variables of D1 and D2 Group 1, 
pixel- 
level 
fusion

D6 D3 and D4 All variables of D3 and D4 Group 2, 
pixel- 
level 
fusion

D7 Random forest 
results of D1 
and D2

Probability of each land cover 
class, and OA, or UA, or PA 
of each result

Group 1, 
decision- 
level 
fusion

D8 Random forest 
results of D3 
and D4

Probability of each land cover 
class, and OA, or UA, or PA 
of each result

Group 2, 
decision- 
level 
fusion

GLCM = gray-level co-occurrence matrix; VV = vertical transmit-vertical 
receive; VH = vertical transmit-horizontal receive; NDVI = Normalized 
Difference Vegetation Index; NDWI = Normalized Difference Water 
Index; OA = overall accuracy; UA = user’s accuracy; PA = producer’s 
accuracy.

Table 2. Comparison of the overall accuracy and Kappa coeffi
cient of the classification result of all datasets.

Dataset Overall Accuracy (%) Kappa coefficient

Group 1: datasets without textures and indices
D7 using OA 90.60 0.88
D7 using PA 90.23 0.88
D7 using UA 90.23 0.88
D2 89.47 0.87
D5 84.59 0.81
D1 42.86 0.29

Group 2: datasets with textures and indices
D8 using UA 92.67 0.91
D8 using PA 91.92 0.90
D8 using OA 91.35 0.89
D4 90.60 0.88
D6 84.02 0.80
D3 52.07 0.41

OA = overall accuracy; UA = user’s accuracy; PA = producer’s accuracy.
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decreased in the following order: decision-level fusion 
dataset, single optical dataset, pixel-level fusion data
set, and single SAR dataset.

As a result, the fusion results from S-1 and S-2 
products at the decision level increased mapping 
accuracy by a range of 0.75% to 2.07% in comparison 
to the results of corresponding S-2 products in the 
two groups. D-S theory considered each land cover 
class from different inputs as independent evidence. 
Evidential probability was constructed entirely based 
on the results of the classification algorithm at the 
pixel level, without taking into account the input of 
that algorithm. Therefore, this evidence theory could 
reduce the impact of noise data and feature selection 
in land cover classification (Shao et al. 2016). By that 
advantage, the use of D-S theory at the decision level 
in this study produced mapping results with a higher 
level of accuracy. This finding is consistent with 
many previous studies (Ran et al. 2012; Shao et al. 
2016; Mezaal, Pradhan, and Rizeei 2018). It is clear 
that the result of the D-S fusion depends on how the 
mass function is constructed. Mezaal, Pradhan, and 
Rizeei (2018) converted the posterior probabilities of 

the classification results to the form of mass function 
directly; Ran et al. (2012) identified the parameter for 
the mass function construction from a literature 
review and expert knowledge; The pv parameter of 
the mass function in Shao et al. (2016) was similar to 
our study, and the pi was based on the PA of each 
class. This study is distinguished by testing the con
struction of mass function using the OA, UA, and PA 
in turn for the parameter of pi to get a more compre
hensive assessment of the effectiveness of the 
D-S theory-based fusion. As mentioned, each of the 
three construction methods yielded better results 
than that of single-sensor and fused datasets at the 
pixel level. The results show that whether using the 
OA, UA, or PA for mass function construction, 
applying the D-S fusion method on S-1 and S-2 data 
provides a better result for land cover mapping. In 
addition, the results suggest that such a method is 
applicable for high-accuracy mapping in other urban 
areas.

However, the fusion data from different sensors 
using the layer-stacking technique at the pixel level 
did not improve classification efficiency. It reduced 

Figure 4. Land cover maps from the datasets without textures and indices: (a) dataset D1; (b) dataset D2; (c) dataset D5; (d) dataset 
D7 using PA.
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the accuracy of classification by a range of 4.88% to 
6.58% compared to the results of corresponding 
optical products in the two groups. Although 
most studies in the literature reported the ability 
to improve the overall accuracy when fusing var
ious data sources at the pixel level compared to 
using a single data source, some studies have 
shown the opposite (de Furtado et al. 2015; 
Fonteh et al. 2016). Zhang and Xu (2018) found 
that whether the combination of optical and SAR 
data could improve the accuracy of urban land 
cover mapping or not depended on the fusion 
levels and the fusion methods. Therefore, in our 
study, the extraction and selection of variables as 
well as the choice of combination technique and 
classification algorithm may have influenced the 
outcome of the classification. To improve mapping 
performance at the pixel level, further studies are 
needed to determine the optimal variable selection 
for data integration and to test other fusion tech
niques, such as the component substitution meth
ods or the multi-scale decomposition methods 
(Kulkarni and Rege 2020).

When comparing the results from group 1 and 
group 2, the accuracy of most of the datasets contain
ing indices and textures was higher than that of the 
corresponding datasets without these extracted vari
ables, except for the pair of datasets D5 and D6. The 
most significant increase took place in the pair of 
datasets D1 and D3, where the addition of the 
GLCM textures along with VH and VV raised the 
OA by 9.21%. The accuracy of the remaining pairs 
also increased by a range of 1.12% to 2.07% when 
including these extracted variables in the datasets. 
This finding confirms that the GLCM textures can 
provide additional useful information to improve clas
sification results (Lu et al. 2014; Zakeri, Yamazaki, and 
Liu 2017; Tavares et al. 2019); however, the effective
ness of spectral indices is still controversial. Our 
results showed the spectral indices were effective in 
land cover classification to some extent. While many 
studies have included some common spectral indices 
(e.g. NDVI, NDWI, and Normalized Difference Built- 
up Index) in the input dataset and enhanced the accu
racy of mapping results (Shao et al. 2016; Tian et al. 
2016; Abdi 2020), other studies have indicated the 

Figure 5. Land cover maps from the datasets with textures and indices: (a) dataset D3; (b) dataset D4; (c) dataset D6; (d) dataset D8 
using PA.
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opposite results (Adepoju and Adelabu 2020; Tavares 
et al. 2019). This discrepancy may result from differ
ences in land cover characteristics of the study areas 
and the selection of indices included in the dataset. 
Therefore, these indices should be used with caution 
in future studies.

A detailed comparison of PA and UA in each class 
of each classification result is presented in Tables 3 
and 4. In addition, three example regions from classi
fication maps in group 2 are presented in Figure 6 to 
provide a visual comparison. The Google Earth images 
were captured on 16 April 2020 using the historical 
imagery function on Google Earth Pro software. As 
seen in Tables 3 and 4, while S-1 only and S-1 with 
GLCM texture classification results yielded relatively 
low accuracy, the majority of PA and UA of all classes 
from other classifications were high (over 85%). BL_L 
was the class that had the most misclassifications, 
which resulted in the lowest accuracy in most cases.

At the pixel level, the fusion data from different 
sources significantly reduced the PA of BL_L and 
the UA of BU_L when compared to the correspond
ing S-2 products in both fusion cases. The former 
was reduced by 31.39% in the datasets without 
derived products and by 27.91% in the datasets 

with derived products. Meanwhile, the latter was 
decreased by 19.79% in the datasets of group 1 and 
by 22.05% in the datasets of group 2. The misclassi
fication between these two classes could be clearly 
seen in the three sample regions, in which the BU_L 
areas, especially roads, were misclassified as bare 
land. Moreover, with the BU_H class, the misclassi
fication from bare land areas to factories and from 
factories to low albedo built-up areas decreased, but 
the misclassification between factories and totally 
bare soil areas increased. Therefore, the UA and 
PA of classes increased or decreased unevenly, but 
overall, the total reduction was greater than the total 
increase in both fusion cases.

On the contrary, at the decision level, although the 
UA and PA of classes also increased or decreased 
unevenly, the total reduction was lower than the total 
increase in both fusion cases. By visual assessment, the 
greatest improvement was found in the classes BU_H, 
BU_L, and BL_L. In these classes, the misclassification 
from high-albedo build-up to bare soil and to low- 
albedo built-up was significantly reduced, contribut
ing to the increase in the OA of the mapping result. 
However, because the BU_H class only took a small 
proportion of the study area (about 5% of the total 
area), the reduced misclassification only resulted in 
a slight increase in the OA compared to the maps 
from the optical datasets.

In general, in most cases of both single-sensor 
datasets and integrated datasets, the BU_L and 
BL_L had the highest rate of misclassification 
among all classes, which may be due to the similar
ity in their spectral characteristics. The study results 
of Chen et al. (2019), Li et al. (2017), Shao et al. 
(2016), and Wei et al. (2020) and many others have 
also shown this issue. Meanwhile, although the UA 
of water class achieved up to 100%, some water 
areas were misclassified as high albedo built-up 
area by visual assessment in all datasets at the near
shore of an artificial swimming pool in example 
region 3. The misclassification from WA to BU_H 
in this region may be explained by a few factors. 
First, the pool is in the Dai Nam Wonderland water 
park, and in fact, it is an artificial sea with saline 
water, not a freshwater swimming pool. The depth 
of this artificial sea gradually rises from the near
shore to the offshore, where the shallower water 
leads to higher reflectance contribution from the 
floor material of the water area (Chuvieco and 
Huete 2016); Second, the floor of this artificial sea 
is made of light-colored concrete, which belongs to 
BU_H class. These factors combined may have 
caused the misclassification from water to high- 
albedo built-up area at the nearshore area of the 
sea. For the vegetation class, the difference in the 
accuracy was not significant between the fused data
sets and corresponding optical datasets.

Table 4. The producer’s accuracy and user’s accuracy of the 
classification result of the datasets with textures and indices.

Dataset
Accuracy 

index

Class

BL_H BL_L BU_H BU_L VE WA

D3 PA (%) 7.14 47.67 78.65 45.93 60.00 60.78
UA (%) 50.00 44.57 46.67 50.82 58.47 73.81

D4 PA (%) 96.43 91.86 92.13 83.70 95.65 86.27
UA (%) 94.74 73.83 94.25 91.87 96.49 100.00

D6 PA (%) 83.93 63.95 91.01 87.41 87.83 88.24
UA (%) 95.92 74.32 88.04 69.82 98.06 100.00

D8 using 
OA

PA (%) 91.07 90.70 95.51 87.41 95.65 86.27
UA (%) 98.08 75.00 97.70 90.77 95.65 100.00

D8 using 
UA

PA (%) 94.64 87.21 95.51 91.11 94.78 94.12
UA (%) 98.15 83.33 98.84 89.13 95.61 96.00

D8 using 
PA

PA (%) 92.86 91.86 95.51 86.67 95.65 90.20
UA (%) 98.11 75.96 97.70 92.13 95.65 100.00

Table 3. The producer’s accuracy and user’s accuracy of the 
classification result of the datasets without textures and 
indices.

Dataset
Accuracy 

index

Class

BL_H BL_L BU_H BU_L VE WA

D1 PA (%) 10.71 46.51 41.57 43.70 64.35 23.53
UA (%) 60.00 31.50 37.37 51.30 49.01 40.00

D2 PA (%) 91.07 93.02 87.64 83.70 91.30 96.08
UA (%) 89.47 73.39 92.86 91.13 97.22 98.00

D5 PA (%) 92.86 61.63 92.13 86.67 86.96 90.20
UA (%) 94.55 69.74 95.35 71.34 97.09 95.83

D7 using 
OA

PA (%) 91.07 94.19 86.52 88.15 92.17 94.12
UA (%) 89.47 78.64 95.06 89.47 97.25 97.96

D7 using 
UA

PA (%) 91.07 88.37 86.52 89.63 92.17 96.08
UA (%) 89.47 83.52 92.77 86.43 96.36 96.08

D7 using 
PA

PA (%) 91.07 95.35 86.52 85.93 92.17 94.12
UA (%) 89.47 77.36 95.06 89.92 96.36 97.96

BL_H = Bare land with high albedo; BL_L = Bare land with low albedo; 
BU_H = Built-up with high albedo; BU_L = Built-up with low albedo; 
VE = Vegetation; WA = Open water surface; OA = overall accuracy; 
UA = user’s accuracy; PA = producer’s accuracy.
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5. Conclusions

In summary, the fusion of S-1 and S-2 data based on 
D-S theory at the decision level yielded better mapping 
results compared to others. It comes from the advan
tages of the D-S theory-based technique in reducing 
the impact of noise data and feature selection in land 
cover classification. The most obvious improvement 
was found in the classes of barren land and built up. As 
a result, the datasets fused at the decision level 
increased the OA by a range of 0.75% to 2.07% 

compared to the S-2 datasets. The fusion of S-1 and 
S-2 data with their derived textures and indices at the 
decision level using D-S theory brought the best 
results in this study, achieving an OA and Kappa 
coefficient of 92.67% and 0.91, respectively.

Moreover, the integration of SAR and optical pro
ducts using the layer-stacking technique at the pixel 
level did not give more power to the classification 
process. It reduced the accuracy of the mapping result 
by 4.88% to 6.58% compared to that of the optical 

Figure 6. Comparison of the classification results from the datasets with textures and indices in three example regions.
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datasets. These findings may be influenced by the 
processing and selection of features, fusion technique, 
and classifier. Further studies on this issue are needed.

Furthermore, the inclusion of GLCM textures and 
spectral indices in the datasets helped improve the 
mapping results. However, while the effectiveness of 
the textures is clear, the contribution of the indices 
needs to be studied further.

In general, the results of this study show that using 
the D-S fusion method for high-accuracy mapping in 
other urbanized areas holds great potential. This study 
represents an initial step, and it paves the way for 
further research on land cover mapping using addi
tional available data from the active and passive sen
sors for performance improvement.
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