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Abstract  

 A series of CeO2 supported Cu, Co, and Ni catalysts have been synthesized by the wet-

impregnation method for CO2 thermo-catalytic hydrogenation from 200 – 400 °C in the fixed bed 

reactor. All catalysts were characterized by XRD, N2-isotherms, and H2 temperature-programmed 

reduction. XRD results have suggested that the incorporated Cu, Co, and Ni have uniformly 

distributed on the CeO2 surface, N2-isotherm analysis confirmed that the pores of CeO2 were 

blocked by incorporated metals and H2-TPR indicated strong interaction between active metal and 

CeO2. The CO2 consumption rate and product selectivity depend on the type of active metal on 

CeO2 and reaction temperature. The order of CO2 consumption rate for 5wt% catalysts was 

5Ni/CeO2 > 5Co/CeO2 > 5Cu/CeO2 at 400 °C. The high CO2 consumption rate for 5Ni/CeO2 was 

attributed to the presence of more number of active metallic Ni during the reaction which 

dissociated H2 molecule to H-atoms. The formed H-atoms reacted with active CO2 molecule and 

formed CH4 with 100% selectivity.  
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1. Introduction  

  Carbon dioxide is one of the environmental pollutant gases which is liberated by the use 

of fossil fuels, high growth of petrochemical and automobile industries. It causes global-warming 

in the atmosphere. The concentration of CO2 in the atmosphere can be diminished by the capture 

and utilization or storage (CCUS) [1]. Among these methods, CO2 utilization is the most important 

one. In this method, CO2 is converted into chemicals and fuels such as CO, hydrocarbons, and 
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alcohols using a solid catalyst [2-4]. The products are used as fuel and important feedstock in the 

chemical industry.  

 

CO2 + H2 → CO + H2O ΔH298 K = +41 kJ/mol   RWGS reaction 

CO2 + 4H2 → CH4 + 2H2O ΔH298 K = -165 kJ/mol  Sabatier reaction  

CO2 + H2 → CH3OH + H2O ΔH298 K = - 49.5 kJ/mol  Methanol synthesis  

Active metal-supported catalysts such as Pt [5], Pd [6],  Ru [7], Rh [8], Co [9], and Ni [10] 

have been used for the study of CO2 catalytic hydrogenation. In these metals, Ru, Rh, Pt, and Pd 

supported catalyst have shown high CO2 utilization. However, these metals are very expensive. 

Therefore, non-noble metals such as Cu, Co, and Ni supported catalysts are useful for CO2 

hydrogenation. The selectivity of CO or CH4 depends on the type of catalyst, support, and reaction 

conditions. The CO2 catalytic hydrogenation at high-temperature results in coke formation on the 

surface of the catalyst which deactivates the active metal. It can be overcome by the use of selective 

support. Metal oxides like Al2O3 [11], ZrO2 [12],  SiO2 [13], carbon materials [14, 15], CeO2 [16], 

TiO2 [17], and MnO2 [18] were used as supports to deposit the active metals for the study of CO2 

catalytic hydrogenation. 

Among these supports, CeO2 has high oxygen storage capacity and redox property which 

enhances the catalytic activity [19].  T.A. Le et al have studied CO and CO2 hydrogenation over 

Ni supported on different supports such as SiO2, TiO2, γ-Al2O3, ZrO2, and CeO2 [20]. In this article, 

we have chosen CeO2 as the support and incorporated different non-noble metals like Cu, Co, and 

Ni to find out CO2 consumption rate in CO2 thermo-catalytic hydrogenation and selectivity of the 

products CO or CH4 in the temperature range from 225 – 400 °C in the fixed bed reactor under 

atmospheric pressure. 

 

2. Experimental  

2.1 Chemicals  

 Analytical grade chemicals such as copper (II) nitrate trihydrate (Cu(NO3)2.3H2O), cobalt 

(II) nitrate hexahydrate (Co(NO3)2.6H2O), nickel (II) nitrate hexahydrate (Ni(NO3)2.6H2O), and 

ammonia solution (NH3, 25wt%) were purchased from the M/s. Across organics, Germany. The 

commercial ceria (CeO2) was purchased from the M/s. Rhodia Company, France. All chemicals 

were used without purification. Ultra-high pure gases such as carbon dioxide, hydrogen, nitrogen, 

helium, and 10% (vol.) H2/Ar was purchased from the M/s. Messer Company, Hungary.  

 

2.2 Synthesis of CeO2 supported Cu, Co, and Ni catalysts 

 The CeO2 supported Cu, Co, and Ni catalysts were synthesized by the incipient wet 

impregnation method. Briefly, a desired quantity of copper (II) nitrate trihydrate solution was 

added dropwise to CeO2 support then dried at 120 °C for 12 h followed by calcination at 550 °C 

for 2 h with a heating rate of 5 °C/min in static air. The calcined sample was denoted as xCu/CeO2. 

(Where x was 1, 5, and 10 wt %). Similarly, Co and Ni supported on CeO2 were also synthesized 
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by the same method as that of Cu/CeO2 and denoted as yCo/CeO2 and zNi/CeO2. Where y and z 

represent wt% of Co and Ni. (Where y and z = 1, 5, and 10 wt %). 

 

2.3 Characterization 

 The Rigaku Miniflex-II X-ray diffractometer was used to record the X-ray diffractions of 

CeO2 supported catalysts using Ni filtered Cu Kα radiation having tube voltage 30 KV and current 

15 mA. The Quantachrome NOVA 3000e gas adsorption analyzer was used to measure N2 

adsorption-desorption isotherms at 77 K. Before N2 measurement, the sample was degasified at 

300 °C for 2 h under vacuum. The specific surface area was calculated by the Brunauer-Emmett-

Teller (BET) method. The pore size was calculated from desorption isotherm by the Barret-Joyner-

Halenda (BJH) method. Total pore volume was calculated at a relative pressure of P/P0 = 0.99. 

The hydrogen temperature-programmed reduction (H2-TPR) was carried out using the 

Quantachrome Autosorb-iQ instrument. About, 30 mg of sample was loaded in a U-type micro-

reactor and heated at 300 °C for 1 h in an inert gas to remove moisture then cooled to room 

temperature. After cooling to room temperature, the sample was exposed to 10% H2 balanced Ar 

(v/v) with a flow rate of 50 mL/min and heated to 850 °C with a heating rate of 10 °C/min. The 

effluent H2 concentration was monitored using a thermal conductivity detector (TCD).  

 

2.4 Catalytic hydrogenation of CO2 

 The CO2 thermo-catalytic hydrogenation has been studied in the fixed bed reactor having 

an 8 mm ID and 200 mm length at atmospheric pressure. The reactor dead volume was filled with 

quartz beads. The gas reactants and temperature of the reaction were monitored using the mass-

flow controller and PID controller. The gas line out of the reactor was kept at 150 °C to avoid the 

condensation. About, 0.15 g of the catalyst was loaded at the center of the reactor, CO2/H2 (1:4 

vol. %) flow rate 50 mL/min, and temperature 225 – 400 °C were maintained. Before studying the 

reaction, Cu and Ni catalysts were reduced with hydrogen at 400 °C for 2h and Co catalysts were 

reduced at 500 °C for 2h. The composition of the gas came out from the reactor was analyzed by 

online-gas chromatography Agilent 6890N having a thermal-conductivity detector and flame-

ionization detector. CO2 conversion and consumption rate, CH4, and CO selectivity were 

calculated using the formulas presented in the article [21]. 

 

3. Results and discussion  

3.1 Structural characterizations  

 Fig. 1 shows the XRD patterns of CeO2 supported Cu, Co, and Ni catalysts. CeO2 has 

shown major diffraction peaks at 2θ = 28.4°, 32.9°, 47.4°, and 56.2° that correspond to the planes 

(111), (200), (220), and (311) (JCPDS card no. 81-0792) (Fig. 1a) [22]. In Cu, Co and Ni supported 

on CeO2, the diffraction peaks of CuO, Co3O4, and NiO have not appeared which indicated that 

incorporated metal oxides were highly distributed on the surface of CeO2 or not in the detection 

limit of XRD (Fig. 1a-c). Xiaoxia et al have reported that there was no appearance of diffraction 

peaks of incorporated metal oxide on CeO2 in low wt% of metal oxide [23].  
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Fig. 1 XRD of CeO2 supported Cu, Co, and Ni catalysts 

 

The porosity of supported catalysts has been found by the N2 adsorption-desorption 

isotherms at -196 °C. Fig. 2 shows the N2 isotherms of CeO2 supported Cu, Co, and Ni catalysts. 

The textural properties were presented in Table 1. Bare CeO2 has shown a hysteresis loop in the 

relative pressure range (P/P0) = 0.4 – 1 (Fig. 2a). The commercial CeO2 shows type-IV adsorption-

desorption isotherm with an H2-hysteresis loop which indicates the presence of mesopores [24].  

The specific surface area, pore size, and pore volume of commercial CeO2 were 139.5 m2/g, 8.95 

nm, and 0.28 cm3/g. The CeO2 supported Cu, Co, and Ni catalysts have also shown an N2-isotherm 

curve similar to bare CeO2 (Fig. 2a-c). However, the quantity of N2 adsorption capacity was 

decreased compared with bare CeO2. It was due to the blockage of pores of CeO2 by the 

incorporated metal oxide. Hence, the physical property values of the catalyst have been changed.  

For Cu supported on CeO2 catalysts, the surface area, pore size, and pore volume decreased to 

122.1 m2/g, 8.4 nm, and 0.25 cm3/gy. Co supported on CeO2 catalysts have shown a decrease in 
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surface area, pore size, and pore volume to 121.9 m2/g, 8.1 nm, and 0.24 cm3/g. Similarly, Ni 

catalysts have also shown a decrease in textural property values. 

 

  

 

 
 

Fig. 2 N2 adsorption-desorption isotherms of CeO2 supported Cu, Co, and Ni catalysts 
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Table 1 Textural properties of bulk CeO2 and CeO2 supported Cu, Co, and Ni catalysts  

 

Sample Surface area 

(m2/g) 

Average pore size 

(nm) 

Total pore volume  

(cm3/g) 

CeO2                      140 8.95 0.28 

1Cu/CeO2              133 8.17 0.27 

5Cu/CeO2         131 8.12 0.26 

10Cu/CeO2     122 8.4 0.25 

1Co/CeO2 132 7.9 0.26 

5Co/CeO2 130 8.0 0.25 

10Co/CeO2 121 8.1 0.24 

1Ni/CeO2 133 8.0 0.27 

5Ni/CeO2 129 8.1 0.26 

10Ni/CeO2 124 8.3 0.25 

  

Fig. 3 shows the H2 temperature-programmed reduction of CeO2 supported Cu, Co, and Ni 

catalysts. Bare CeO2 has shown reducible peaks at 300 °C, 372 °C, 486 °C and 786 °C which 

correspond to the reducibility of surface and lattice oxygen of CeO2 [25].  In CeO2 supported Cu 

catalysts, 2 major reducible peaks have appeared below 200 °C. For 1Cu/CeO2 catalyst, 2 reducible 

peaks have appeared at 156 °C and 174 °C which was related to the reducibility of copper species 

(CuO) on the surface on ceria and within the lattice of ceria (Cu-O-Ce).  With an increase in copper 

content on ceria, the reducibility of these copper species icreased. Because of the high content of 

Cu on the surface and lattice of CeO2 (Fig. 3a) [26]. 

 

 With an increase in Co loading, the reduction peaks of surface Ce+4 shifted to a lower temperature. 

The reduction peaks at 220 °C and 265 °C for 5Co/CeO2, 197 °C and 234 °C for 10Co/CeO2 have 

represented the stepwise reduction of Co3O4 on the CeO2 support [27]. Similarly, in CeO2 

supported Ni catalysts the reducible peaks of CeO2 decreased to lower temperature compared to 

bare CeO2 with an increase of Ni loading. The reducible peaks at 197 °C, around 250 °C, and 

350 °C represent adsorbed and surface oxygen species of Ce+4 in nickel supported CeO2 catalysts. 

The reducible peak at 300 °C for 5Ni/CeO2 and 306 °C for 10Ni/CeO2 showed NiO reducible peak. 

However, bulk Ce+4 reduction shifted to higher temperatures with an increase of Ni loading 

because of the strong interaction between Ni and CeO2 (Fig. 3c) [28]. 
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Fig. 3 H2 temperature-programmed reduction of CeO2 supported Cu, Co, and Ni catalysts 

 

 

 

3.2 CO2 catalytic hydrogenation 

3.2.1 CeO2 supported Cu catalysts  

 Fig. 4 shows the CO2 catalytic hydrogenation of ceria supported Cu catalysts. The 

10Cu/CeO2 catalyst has shown high CO2 consumption rate at each reaction temperature because 

of high dispersion and more number of active Cu sites on the surface of CeO2 compared to 1 wt% 

and 5 wt% of Cu on CeO2 (Fig. 4a). The highest CO2 consumption rate 9871 nmol/g/s was obtained 

for 10Cu/CeO2 catalyst at 400 °C. Moreover, CO selectivity was 100% for all Cu catalysts (Fig. 

4b).  
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Fig. 4 a) CO2 consumption rate and b) CO selectivity over CeO2 supported Cu catalysts 

at different temperatures. Standard reaction conditions are defined as T = 225- 400 °C, P = 

Atmospheric, CO2/H2 = (1:4 V%), flow rate = 50 mL/min. 

 

 

3.2.2 CeO2 supported Co catalysts  

CO2 catalytic hydrogenation of Co/CeO2 catalysts was shown in Fig. 5. The CO2 

consumption rate increased with an increase in temperature and formed products CO and CH4. The 

obtained products have represented that CO2 catalytic hydrogenation on Co/CeO2 catalyst was 

proceeded in the following ways (Eqs. 1 and 2). First, CO2 was converted into CO via reverse 

water gas shift reaction. The formed CO reacted with hydrogen and produced CH4 [29].  

CO2 + H2   ↔   CO + H2O       (1) 

            Reverse water gas-shift reaction 

CO + 3H2 → CH4 + H2O        (2) 

 The high content of cobalt on ceria, 10Co/CeO2 has shown a high CO2 consumption rate 

compared to 1Co/CeO2 and 5Co/CeO2 throughout the temperature because higher number of CO2 

molecules were activated during the reaction (Fig. 5a). The highest CO2 consumption rate was 

9716 nmol/g.s for 1Co/CeO2, 14871 nmol/g.s for 5Co/CeO2 and 15853 nmol/g.s for 10Co/CeO2 at 

400 °C. 1Co/CeO2 catalyst has shown 94.5% CO selectivity whereas ~ 81% CH4 selectivity was 

obtained for 5Co/CeO2 and 10Co/CeO2 catalysts. It was represented that the high content of cobalt 

(5 and 10 wt%) on CeO2 has gained a high CO2 consumption rate and high CH4 selectivity (Fig. 

5b). In the time of stream study at 400 °C (Fig. 5c and d), 1Co/CeO2 has displayed a slight decrease 

in the CO2 consumption rate and selectivity. However, 5Co/CeO2 and 10Co/CeO2 have shown a 

higher decrease in CO2 consumption rate in long-duration by the formation of coke on the surface 

of the catalyst and a mild change in CO and CH4 selectivity.  
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Fig. 5 a) CO2 consumption rate b) CO and CH4 selevtivity values for a H2/CO2 (4:1 vol. %) 

mixture in the range of 225 – 400 oC at atmospheric pressure. c,d) Time on stream at 400 oC 

over CeO2 supported Co catalysts 

 

 

 

 

3.2.3 CeO2 supported Ni catalysts  

CeO2 supported Ni catalysts were also used for the catalytic hydrogenation of CO2 and the 

results were presented in Fig. 6. The highest CO2 consumption rate for each catalyst was shown in 

table 4. Among the synthesized Ni/CeO2 catalysts, 5Ni/CeO2 has obtained a high CO2 consumption 

rate of 32666 nmol/g.s with 100% CH4 selectivity at 400 °C compared to that of 1Ni/CeO2 and 

10Ni/CeO2 catalysts. The order of CO2 consumption rate at 350 °C was 5Ni/CeO2 > 10Ni/CeO2 > 

1Ni/CeO2 (Fig. 6a). Moreover, the selectivity of CH4 on Ni/CeO2 catalysts was > 97% (Fig. 6b). 

10Ni/CeO2 has also reported a high CO2 consumption rate up to 300 °C compared to the other two 

catalysts because of more accessible Ni metallic sites which were confirmed by H2-TPR analysis 

(Fig. 3c). In supported Ni catalysts, the metallic Ni dissociates the H2-molecule into H-atoms on 

the surface of the catalyst then the dissociated H-atoms are moved to active CO2 molecule which 

is adsorbed on the support to form CH4 [30].  
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Fig. 6 a) CO2 consumption rate and b) CH4 selectivity over CeO2 supported Ni catalysts 

at different temperatures. Standard reaction conditions are defined as T = 225- 400 °C, P = 

Atmospheric, CO2/H2 = (1:4 vol. %), flow rate = 50 mL/min. 

 

3.2.4 Comparison of CO2 consumption rates  

For the comparison study, the CO2 consumption rates of 5Cu/CeO2, 5Co/CeO2, and 

5Ni/CeO2 catalysts at 400 °C were presented in Fig. 7. At all  temperatures, 5Ni/CeO2 has obtained 

the highest CO2 consumption rate compared with other catalysts. The order of CO2 consumption 

rate was 5Ni/CeO2 > 5Co/CeO2 > 5Cu/CeO2. The metallic Ni was more active towards dissociation 

of H2 molecule to H-atoms which reacted with more active CO2 molecules. Hence, it showed a 

high CO2 consumption rate compared with Cu and Co supported on CeO2. The CO2 catalytic 

hydrogenation of CeO2 supported Cu, Co, and Ni catalysts have been compared with previously 

reported catalysts (Table 2). The CeO2 supported non-noble metal (Cu, Co, and Ni) catalysts have 

shown high CO2 consumption rate with high CO or CH4 selectivity compared to some of the 

Co/KIT-6 [31], Fe/Al2O3 [32], Ni/TiO2 [33] and Pt/MnO2 [21] catalysts. Hence, CeO2 supported 

catalysts are prominent for the study of CO2 catalytic hydrogenation.  
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Fig. 7 CO2 consumption rate of 5Cu/CeO2, 5Co/CeO2, and 5Ni/CeO2 catalysts  

 

Table 2 Comparison of CO2 conversion and consumption rate, CO and CH4 selectivity of CeO2 

supported Cu, Co, and Ni catalysts with reported one 

Catalyst FCO2
 a 

(mL/s) 

T b  

(°C) 

XCO2

c 

(%) 

RCO2

d 

(nmol/g/s) 

SCO 
e 

(%) 

SCH4

f  

(%) 

Ref. 

0.5wt% Pt/MnO2 0.166 375 °C 25.3 12541 100 - [21] 

20wt% Co/KIT-6 0.061 280 °C 49 13335 - 100 [31] 

15wt% Fe/Al2O3 0.166 500 °C 36 10707 90 10 [32] 

15wt% Ni/TiO2 0.133 260 °C 96 5716 - 100 [33] 

15wt% Ni/Al2O3 0.333 325 °C 79 95178 - 98 [34] 

Ce1.1Cu1 composite 0.083 400 °C  32.5 24166 100 - [35] 

5wt%Cu/CeO2 0.166 400 °C 27.1 9594 100 - Present work 

5wt%Co/CeO2 0.166 400 °C 58 14871 19 81 Present work 

5wt%Ni/CeO2 0.166 400 °C 80 32666 - 100 Present work 

a FCO2
: CO2 flow rate (mL/s), b Temperature, c XCO2

: CO2 conversion, d RCO2
:CO2 consumption 

rate (nmol/g.s), e SCO: CO selectivity, f SCH4
: CH4 selectivity. 

 

 

 

 



12 
 

4. Conclusion  

 In this work, we have reported the CO2 consumption rate of CeO2 supported Cu, Co, and 

Ni catalysts in CO2 thermo-catalytic hydrogenation. The characterization results have confirmed 

the existence of active metals and strong interaction with CeO2. The Ni supported catalysts have 

shown a high CO2 consumption rate compared with Co/CeO2 and Cu/CeO2 catalysts. The 

selectivity of CH4 was higher for Co and Ni supported on CeO2 whereas CO selectivity was higher 

for Cu supported on CeO2. Hence, the type of active metal and nature of support has influenced 

the CO2 consumption rate and selectivity of the product.   
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