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Abstract

We demonstrate that Nature-inspired lotus-like non-wetting phenomena can also be
used in the field of controlled drug delivery. Hydrophobically modified, and cellulose
microparticle roughened polyvinyl alcohol (PVA) biopolymer based thin films were
synthetised and converted into superhydrophobic (©=165.3°; y°t = 1.7+0.67 mJ/m?) thin
films. The surface wetting of the thin films was adjustable from superhydrophilic to
superhydrophobic nature and this affected the drug release properties as well.

We also prove that this surface wetting driven drug delivery system (DDS) is suitable
for the encapsulation and prolonged/ adjusted release of Mitomycin (MMC), a drug with
antifibrotic properties. The in vitro release experiments conducted under physiological
conditions (PBS, pH = 7.4) revealed that —due to the lower crystallinity— the release of MMC
was faster (k’=6.1x10° mM/s) from the hydrophilic film compared to the pure, crystalline
(k’=1.21x10"° mM/s) MMC. Neverteless, significantly lower MMC dissolution rate (k’=5x10-

8 mM/s) was obtained for the superhydrophobic sample featuring a non-wetting, lotus-like



nature. Based on this in vitro study, we suggest that the presented surface wetting driven DDS
loaded with MMC could be useful for example in the area of head and neck surgeries to prevent

scar tissue formation.

Keywords: mitomycin, biopolymer layer, surface modification, adjusted surface wetting, drug

release

1. Introduction

Mitomycin C (MMC) isolated from Streptomyces caespitosus is an antineoplastic, antifibrotic
[1] and antibiotic, poorly water soluble anti-proliferative bifunctional alkylating agent which
causes the inhibition of the DNA-synthesis by bonding to the DNA chains [2,3]. Apart from the
administration as a commonly known chemotherapeutic agent, MMC is widely used as an
antifibrotic drug after ophthalmic and — nowadays more and more often — after head and neck
surgeries to prevent scar tissue formation [4,5]. Although MMC is soluble in water, its reported
solubility and thus its bioavailability is very low (~0.9 mg/mL) [6]. Thus, it is essential to make
efforts to improve its utility by reducing its size to micro- or nano level and improve drug
efficacy and bioavailability by using various delivery methods. The intermolecular forces of
attraction in dissolving a solute can be reduced in order to improve the solubility of a drug [7].
Ethanol is one of the typical organic solvents highly miscible with water, also it is classified in
Class 3 of ICH guidelines and residual ethanol in finished product has a low safety risk [8]. The
increased solubility with the addition of ethanol is most likely due to the formation of hydration
shell around the MMC that acts as a compatible layer between the drug and ethanol [9].

MMC administered in a free form (e.g. subcutaneous injection) is excreted from the body in a
very short period of time [10]. Therefore, in order to provide the prolonged therapeutic effect
of the drug, it is required to design and apply drug delivery systems (DDS) which are capable
of prolonged drug release. Biocompatible, polymer-based (e.g. polyvinyl alcohol/cellulose)
composite drug delivery systems allow targeted, prolonged, effective localised drug release
without systemic side effects or harm to other organs. Other advantage of DDS is that they can
be modified [11] to fulfill the requirements of the drug administration, treatment conditions,
area of application, the needs of the patient, thus, achieving the maximal therapeutic effect.
Since polyvinyl alcohol (PVA) is a biocompatible, biodegradable synthetic polymer, which has

good mechanical properties and is easy to modify, provides an excellent basis for DDS. Thanks



to the characteristics mentioned above PVA displays mucoadhesive/bioadhesive properties
which can be exploited during the process of drug release. Mucoadhesive drug delivery systems
have many advantages over the conventional drug delivery systems: they increase the contact
time between the drug and the biological substrate which facilitates drug absorption and by
attaching to the specific sites of the body they enhance the bioavailability of the drug [12,13].
Besides its biomedical applications (e.g. drug delivery devices, contact lenses, wound dressings
promoting wound healing), PVA plays a significant role in electronics [14], cosmetics (e.g.
skin- and body care) [15] and it is also frequently used for tissue engineering purposes, such as
fabrication of artificial cartilage, vascular and bone tissue, etc. [16-22]. The silane-modified
or hydrophobized polyvinyl alcohols have the same scope of application as non-derivatized
polyvinyl alcohols. Thus, they are applied in cosmetics, especially hair cosmetics as well as in
food packaging [23] and they can be also used to fabricate DDS displaying (super)hydrophobic
properties [24]. Cellulose is one of the most abundant biopolymers on Earth. As a biocompatible
material having excellent mechanical properties, cellulose is widely used in different fields
depending on the particle size, shape and degree of crystallinity, such as cosmetics (e.g.
stabilizer, thickener), food (e.g. adjuvant) and pharmaceutical industries (e.g. binder), and
biomedical field (e.g. extended drug release in drug delivery systems) [25-27].

The rate of the drug release from the polymer network can be tuned by modifying the physico-
chemical properties (hydrophobicity, pore and particle size, etc.) of the DDS, such as preparing
superhyrophobic surfaces by changing the wettability of the polymer network, e.g. by surface
functionalization or by surface roughening [28,29]. Conducting the drug release experiment
and fitting the appropriate kinetic model (e.g. zero, first or second order kinetics, Korsmeyer-
Peppas, Hopfenberg model, Higuchi’s, Weibull’s equation, etc.) to the obtained set of data
points, it is possible to get an insight into the mechanism of the drug release (as well as to come
up with new methods to develop our DDS) [30,31].

Numerous surfaces, e.g. leaves of certain plant species, the wings of butterflies and related
insects, found in nature, exhibit superhydrophobic properties, thus, they are said to possess so
called self-cleaning ability [32—-34]. The wettability of a surface is determined by its roughness,
chemical composition or surface topography. Hydrophobic surfaces which have roughness on
the micro- and/or nanometer scale show superhydrophobic properties [35,36]. The relation
between surface roughness and wettability first described by Wenzel [37], Cassie and Baxter
[38] provided a valuable basis for further research [35]. Non-wettable surfaces having high
water contact angles (WCAs> 150°) and high droplet mobility even at a small tilt angle, are

called superhydrophobic surfaces [34,39]. Increasing the roughness of non-wettable surfaces
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increases their water-repellency and leads to higher water contact angles. The adhesive
interactions between the water droplets and the surface are getting stronger with greater
roughness as it increases the contact area between them. However, when the roughness reaches
a critical value, it is energetically more favourable for the water droplets to bridge over the
roughness. At great roughness values the contact area between the droplets and the surface is
decreased, thus, it rolls off the surface easily, carrying away any contamination [36,40]. The
operational principle of self-cleaning surfaces, described above, laid the basis for designing our
drug delivery systems.

This paper reports about the designing, testing and characterization of surface wetting driven
drug delivery systems (DDS) suitable for the encapsulation and prolonged release of MMC.
The in vitro release experiments were conducted under physiological conditions (PBS, pH =
7.4) with DDS having different surface properties (such as different roughness and wettability).
It was found out that the rate of MMC drug release can be tuned by changing the wettability of

the system’s surface.

2. Materials and methods

Materials

For the synthesis of biopolymer thin films polyvinyl alcohol (PVA, degree of hydrolysis: 86 —
89%) was acquired from Nagart Kft., Hungary. Cellulose powder (0.02-0.15 mm, acid washed)
and microcrystalline cellulose (20 um) were acquired from Fluka and from Sigma-Aldrich,
respectively. The MMC (CisH1sN4Os, 10 mg) as model drug was purchased from Medac
GmbH, Wedel, Germany. For the preparation of phosphate buffered saline solution (pH = 7.4)
disodium hydrogen phosphate dodecahydrate (Na2HPO4x12H-0) and sodium chloride (NaCl)
were obtained from Molar Chemicals Kft.,, Hungary, while sodium dihydrogen phosphate
monohydrate (NaH2POsxH>O) from Sigma-Aldrich. Butyl trichlorosilane (=98 %) was
purchased from Sigma—Aldrich. All chemicals were used as received without further

purification.

2.1. Hydrophobization of water-soluble PVA biopolymer with butyl trichlorosilane

Functionalization of PVA with butyl trichlorosilane (BTS) was performed according to the
following protocol: 0.5 g of PVA powder was dispersed in 10 mL of hexane solution with a
systematically varied volume ratio of BTS silylating agent (0, 0.01, 0.1, 0.25, 0.5, 1, 2 and 5

vIv%). The reaction mixture was left under magnetic stirring for 1.5 h at room temperature until

4



the completion of the silylation reaction. After the reaction time, the dispersion was decantated
and the BTS-PVA product was washed two times with hexane to remove residue of silylating
agent followed by leaving in the oven at 50 °C for 30 min to remove the excess of solvent. A
water dispersibility test was applied to check the hydrophobization and wetting of the obtained

products.

2.2. Preparation of thin films

2.2.1. Preparation of MMC loaded PVA based thin films

The PVA thin films containing MMC were prepared by the solvent casting process. First, the
PVA or hydrophobized BTS-PVA was dissolved in water/ethanol (=90/10 v/v%) mixture to get
a 10 wt.% homogeneous polymer solution and afterwards 1.5625 mg MMC powder was
dissolved in 6.25 g of this solution. Next, the prepared solution containing both the MMC and
PVA was subjected to ultrasound for 1 minute to ensure homogeneous composition. Lastly, the
homogeneous MMC/PVA solution was transferred into a petri dish, followed by drying in an
oven for 24 hours at 60 °C. Accordingly, the final thin (60.8+£5.5 um) film contains 0.25 wt.%
MMC.

2.2.2. Preparation of MMC loaded and cellulose roughened PVA thin films

Cellulose microparticles roughened thin films were also prepared using the same synthesis
method. Before the preparation, a cellulose mixture was prepared consisting of 1:1 weight ratio
of cellulose powder (0.02—0.15 mm) and microcrystalline cellulose (20 pm). During the film
synthesis 6 x 1.5625 mg MMC powder was dissolved in 10.00, 7.50, 5.00, 2.50, 1.25, 0.626 g
of 5 wt.% PVA solution, respectively. Next 0.1250, 0.2500, 0.3750, 0.5000, 0.5625, 0.5938 g
of cellulose powder mixture was added to this solution to get samples with increasing (19.95,
39.90, 59.85, 79.80, 89.78 and 94.76 wt.%, respectively) cellulose content (Table 1.).

In the following step, the prepared suspension was subjected to ultrasound for 1 minute to
ensure homogeneous composition. Lastly, the homogeneous MMC/cellulose/PV A suspension
was dried in an oven for 24 hours at 60 °C. Both hydrophilic and hydrophobic MMC loaded,
cellulose roughened PVA thin film series were prepared. Beside the 0.25 wt.% MMC

containing samples MMC free PVA based thin films were also synthtised for references.



Table 1. Mass of the added components during the synthesis and the measured film thickness

and porosity values.

Cellulose content (wt.%0) 19.95 39.9 59.85 79.8 89.78 94.76

5 wt.% PVA solution () 10 7.5 5 25 1.25 0.625
Cellulose powder mixture (g) 0.125 0.25 0.375 0.5 0.5625 0.5938
MMC powder (g) 1.5625-10%3

Film thickness (um) 60.845.5 98.346.4 149.948.9 174.8+75 193.2+95 206.6+10.2
Porosity (%)* 24.1+2.3 415+3.9 64.9£3.7 72.3+3.8 76.5+4.7 77.3+6.5

* from CT measurements

2.3. Methods of characterization

The solubility of the polymers in water and water/ethanol (=90/10 v/v.%) mixture was studied
by gravimetric analysis. The initial PVA and BTS hydrophobized PVA samples were dispersed/
dissolved in the solvents in a concentration of 15 wt.% and the samples were continuously
stirred for 48 hours. Next, the samples were centrifuged (5000 rpm, 5 min), the supernatant
(polymer solutions) were decanted and the remaining sediments (undissolved polymer

particles) were dried (60°C for overnight) and weighed.

The Fourier Transform Infrared Spectroscopy (FTIR) measurements were performed on the
BTS-modified PVA biopolymer applying a BioRad FTS-60A FT-IR spectrometer. The spectra
were registered between 3600 and 600 cm ™ at a resolution of 2 cm™.

The quantitative determination of OH value was evaluated via an acetic anhydride/pyridine
titration method. The acetylating agent was prepared by using 1.5 mL of acetic anhydride and
28.5 mL of pyridine with volume ratio (1:19). This solution was stirred for 1 h before usage.
Next, 0.1 g of PVA with different BTS hydrophobization percent (0, 0.01, 0.1, 0.25, 0.5, 1, 2
and 5 v/v%, respectively) was put in 5 mL of acetylating agent and the reaction mixture was
stirred at 65 °C for 24 h. After the reaction time, 5 mL distilled water was added to convert the
excessive acetic anhydride into acetic acid, which was titrated by 0.2 M NaOH in the presence
of phenolphthalein solution (1% w/v in ethanol) as an indicator. Blank solutions without PVA
were also tested as a control. The hydroxyl value (lon) was calculated using Equation (1):

(B-S):N-40
lo = &=L (1)



where B and S are the volumes in mL of NaOH solution consumed by the blank and sample, N
is the normality of the NaOH solution (0.2 M) and W is the sample weight (g) added to the
acetylation.

The water content of hydrogel was investigated by using thermogravimetric (TG) analysis. The
sample was prepared by adding 50 mg of polymer to 1 mL of distilled water and stirred for 48
h to reach equilibrium. After a time, the samples were centrifuged and the precipitate was
measured by TG. During TG measurements, the samples were heated from 25-200 °C with a
heating rate of 5 °C/min (Mettler-Toledo TGA/SDTA 851e Instrument).

The surface structure and morphology of the prepared thin film samples were examined
applying a field emission scanning electronmicroscope (SEM—Hitachi S-4700) using a
secondary electron detector and 10 kV acceleration voltage, while the presence of the drug, i.e.
the nitrogent content of the MMC in the thin films were studied using a Réntec EDX detector.
Profilometry measurements were performed using a VVeeco, Dektak 8 Advanced Development
Profiler®. The tips employed had a radius of curvature of 5 um, and the force applied to the
surface during scanning was ~30 uN. The length examined was 1000 pm for each sample. The
measurement range was 655 kA and the resolution was 0.167 um/sample. The used short and
long pass filter cutoff were 25-25 pm. The data have been evaluated by Dektak software
(Microsoft® Windows XP®: interactive data acquisition).

The inner structure and porosity of the initial PVA film and cellulose containing
(super)hydrophobic layer were investigated via X-ray micro-computed tomography analysis,
which was conducted using the X-ray Microtomography equipment (Bruker Skyscan 2211,
Belgium). The samples were scanned using 11Mp cooled CCD camera by applying the source
voltage of 60 kV and the source current 500 pA with an exposure time of 550 ms. The voxel
size of these dataset was 800x800x800 nm?®. NRecon reconstruction software was used to
reconstruct the projected images with the pixel size of 4032 x 2688 and CTVox and CTAnN
(Bruker, Belgium) software were used to represent the 3D models and the 2D cross sections,
respectively.

The thickness of the films was measured using an Elcometer 224 type digital profile gauge.
The initial contact angles on the cellulose particles roughened films were measured according
to the sessile drop technique at 25.0+ 0.5 °C under atmospheric pressure, applying an EasyDrop
drop shape analysis system (Kriss GmbH, Hamburg, Germany) equipped with DSA100
software, a Peltier temperature chamber and a steel syringe needle of 0.5 mm diameter and
using distilled water as a test liquid.



The advancing and receding contact angles were also measured according to the protocol of
Drelich [41]. The obtained advancing and receding contact angles are also suitable for the
estimation of the total apparent surface free energy (ys'®") of the layer, knowing the surface
tension of the probe liquid, (y1, 72.1 mN/m in the case of distilled water at 25°C) and its contact
angle hysteresis, which is defined as the difference between the advancing (®.) and receding
(®r) contact angles (2) [42]:

1+cos 0,)?
yStOt — ( Y1(1+cos8g) ) (2)

(2+cos 0,+cosby)

Beside the above presented total surface free energy determination method, the polar and
dispersive components were also determined by contact angle measurements. Overall surface
free energy (y&°%) and its polar (yF) and dispersive (y2 ) components of the composites with
increasing cellulose loading were determined from seven sets of contact angles using different
test liquids with different surface free tension values (Table S1.) according to Owens-Wendt-
Kaelble equation ([43]).

y1(1+ cos®) = 2[yPyP1V/2 + 2[yfyF1Y/? 3)

where, y4, ¥ and y2 are surface tension of test liquid, the polar component and the dispersive
component of the surface free energy of the liquid and y°t is the total surface free energy,
respectively. The values of the surface free energies of the test liquids obtained from the
literature are given in Table S1. ([44]).

The in vitro release experiments were carried out in 50 mL of phosphate buffered saline solution
(PBS, pH = 7.4, 0.9 wt.% NaCl content) at 37 °C. The MMC loaded 1 cm x 1 cm PVA based
thin films with their rougher surface facing the outside were fixed to a 2.6 cm x 7.6 cm plastic
foil. The samples were dried in an oven for 24 hours at 60 °C and subsequently placed into the
gently stirred solution of PBS. At selected time intervals, 3 mL of release samples were
withdrawn from the release media, and the determination of the released MMC concentration
was carried out spectrophotometrically, on the basis of previously plotted calibration curve
(absorbance maximum value of MMC = 364 nm).

The X-ray diffractograms of the powdered MMC and polymer coated MMC were recorded on
a Philips X-ray diffractometer (XRD) with CuK, (=0.1542 nm) as the radiation source at
ambient temperature in the 2-70° (20@) range applying 0.02° (20) step size.

3. Results and discussion



3.1. Structural and quantitative characterization of the BTS hydrophobized PVA

The initial water-soluble properties of the PVA were modified by silylation with BTS molecules
to get hydrophobized biopolymer with reduced solubility and wettability. After this
modification the initially well-water-soluble PVA polymer becomes hydrophobic and the BTS-
PVA powder floated on the surface of the water without any wetting or dissolving (Fig. 1.).

FTIR measurements were performed for the characterization of the synthesized hydrophobic
PVA (Fig. 2.). The main peaks of PVA have been observed at 3280, 2960, 2925, 1720, 1425,
1380, 1325, 1250, 1100 and 840 cm . These peaks are assigned to the O—H stretching vibration
of the hydroxyl group, CH> asymmetric stretching vibration, CH> symmetric stretching
vibration, C=0 carbonyl stretching vibration, C—H bending vibration of CH2, C—H deformation
vibration, CH2 wagging vibration, C—O—C stretching vibration, C—O stretching of acetyl groups
and C—C stretching vibration, respectively [45-48]. It can be seen that the peak of OH (~3280
cm™) of BTS-PVA was reduced due to the functionalization of the OH group of PVA by BTS.

Figure 1. Silylation reaction of PVA using BTS molecules.

The main bands formed due to BTS treatment were observed at ~2880 cm™* for terminal methyl
groups of BTS and Si-O-C band at 1215 cm™. The formation of alkyl groups (C—CH>) from
BTS molecules was observed at 1463cm™t. The new peak at 800 cm™ was caused by stretching
vibrations of the Si—O bonds that confirmed the successful reaction between BTS and the
hydroxyl group of PVA [49,50].
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Figure 2. FTIR spectra of (a) initial PVA and (b) hydrophobized PVA (2 v/iv% BTS).

The quantitative determination of OH value before and after the silylation was evaluated via an
acetic anhydride/pyridine titration method. Fig. 3. shows the evolution of reacted OH groups
with the increasing concentration of silylating agent (BTS) solution. The molar ratio of the
reacted OH groups was calculated from the unreacted ones and the results reveal that increasing
the concentration of BTS solution led to an increase in the reacted OH groups and at around 1
vIv% BTS solution it reached the saturation value with ~19% hydrophobization degree. The
reason for this is that the PVA is insoluble in hexane and thus the modification of the polymer
mainly occurred on the surface of PVA microparticles with a particle size of 10-20 um (see the
inserted microscopic image in Fig. 3.). However, it will be presented that this partial

hydrophobization of the biopolymer is enough to prepare thin films even with
superhydrophobic character.
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Molar ratio of reacted OH groups (%)

1 2 3 4 5 6
Concentration of hexane based BTS solution
(vIv%)

Figure 3. The effect of BTS solution concentration used during the PVA hydrophobization
on the evolution of reacted OH groups. The dashed line is guide to eyes. The inserted photo
shows the microscopic image of PVA particles (scale bar: 10 um).

Based on the above presented results the 1% BTS-PVA sample was used for further
experiments. After the structural characterization, the water-uptake properties of the samples
were also examined in order to quantify the modified hydrophilicities of the samples. Fig. 4.
shows the thermoanalytical (TG and DTA) curves of the initial PVA and the hydrophobically
modified BTS-PVA. Before the TG measurements, the diluted 5 wt.% polymer solutions were
concentrated by centrifugation, the supernatants were removed and the water contents of the
obtained sediments were measured. The TG curves show that the weight loss of the initial PVA
was significantly higher, the sample had 97.4 wt.% water content, while the BTS-PVA only
contained 71.9 wt.% water. It can therefore be established that the hydrophobization of the PVA
also manifests itself in the course of TG measurements and silylation of the polymer
significantly reduced the water uptake properties of the PVA because the calculated values were
2.55 and 37.46 g water/g polymer for the BTS-PVA and unmodified PVA, respectively.
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Figure 4. The TG and DTA (inserted figure) curves of the hydrophilic PVA and hydrophobic
(1%) BTS-PVA based samples. The inserted picture represents the photos of the initial and
hydrophobically modified PVA solution/dispersion in aqueous media before centrifugation
(polymer content: 5 wt.%).

3.2 Morphological and wetting properties of the cellulose roughened and BTS
hydrophobized PVA thin films

During the sample preparation water/ethanol (=90/10 v/v.%) mixture was used in order to
increase the solubility of the MMC drug . Thus, the solubility of PVA, hydrophobized PVA and
cellulose was also studied in water and in water/ethanol (=90/10 v/v.%) mixture (Fig. S1). The
obtained results indicate that the initial PVA is soluble in water in a concentration of at least
15% but its solubility was continuously decreased with the increasing hydrophobicity and at
2% BTS silylated sample it was only 3.1% in water. However, in water/ethanol mixture the
solubility of the hydrophobized samples was significantly higher and it can be seen that the
obtained data exceeded the 10% during the whole range. The solubility of cellulose was also
studied in both water and water/ethanol (=90/10 v/v.%) mixture and it was found that cellulose
was practically insoluble in both media (0.7% in water and 1.02% in the mixture, respectively).
According to the literature data cellulose is insoluble in water, partially soluble in ethanol [51]
and thus the 90/10 v/v% water/ethanol mixture is suitable for dissolution of the MMC and PVA

but not able to dissolve the cellulose particles.
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After the hydrophobization of the PVA, the surface roughness of the thin films was adjusted by
the incoroporation of cellulose microparticles. In the SEM images the initial, smooth (0 wt.%
cellulose) hydrophilic PVA thin film and the hydrophilic and hydrophobic cellulose roughened
thin films of different cellulose concentrations (60 and 90 wt%.) are presented at different
magnifications (Fig. 5.). It can be observed that the initial, hydrophilic PVA thin film without
cellulose content has a smooth surface, whereas in the case of the hydrophilic and
superhydrophobic thin films, with the increasing — 60 and 90 wt%. — cellulose loading the

surface roughness gradually increases.

Cellulose roughened
Smooth PVA Cellulose roughened Cellulose roughened (90 wt.%)
(0 wt.% cellulose) (60 wt.%) PVA (90 wt.%) PVA superhydrophobic
BTS-PVA
. i

500 um
100 pum N

Figure 5. SEM images of the prepared smooth (0 wt.% cellulose), cellulose roughened (60 and
90 wt.%) hydrophilic PVA and cellulose roughened (90 wt.%) superhydrophobic BTS-PVA
films.

The increase of the surface roughness with the increasing cellulose content observed in the SEM
images was also confirmed by profilometry measurements (Fig. 6.). The Ra value measured on
the initial hydrophilic, smooth (0 wt.% cellulose) PVA thin film was only 0.016+£0.007 pm
(Fig. 6a.), while the Ra values measured on the hydrophilic films with 60 and 90 wt.% cellulose
were 12.15+0.47 (Fig. 6b.) and 31.57+4.77 um (Fig. 6¢.), respectively. The Ra value obtained
in the case of cellulose roughened (90 wt.%) superhydrophobic BTS-PVA thin film was
26.64+1.20 um (Fig. 6d.). It is worth to note that 15.61 % decrease in surface roughness was
observed in the case of hydrophobic BTS-PVA (~26.64 um) compared to the hydrophilic PVA
(~31.57 um) system at equal concentration of cellulose (90%) component incorporated. This is

presumably because of the hydrophobic nature of both BTS-PVA and cellulose. Cellulose is a
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water insoluble hydrophobic biopolymer and as a result, its compatibility with a hydrophilic
(PVA) matrix is not as high as that with a hydrophobic (BTS-PVA) polymer. Thus, the
incorporation of cellulose particles into hydrophilic PVA matrix resulted in a coarser, more

inhomogeneous structure, which also caused rougher surface.

J() R.= 0.016+0.007 um
1(b) R,= 12.15%0.47 um

(e R,= 31.57+4.77 ym

6.64+7.20 um

Roughness data (um)
offset 250 um
—>

-
(=2
[=]
[=]

Distance (um)

Figure 6. Measured profilometer data of the smooth (0 wt.% cellulose) hydrophilic PVA (a),
cellulose roughened (60 wt.%) hydrophilic PVA (b), cellulose roughened (90 wt.%) hydrophilic
PVA (c) and cellulose roughened (90 wt.%) superhydrophobic BTS-PVA (d) films with the
profilometrically determined microscale surface roughness values (Ra).

The surface roughness values determined with profilometry measurements display the same
trend which was observed in the SEM images: with the increasing cellulose concentration the
surfaces roughness significantly increases.

In Fig. S1 it was presented that the initial PVA and BTS hydrophobized PVA samples show
different solubility in water and in 90/10 v/v% water/ethanol mixture. The hydrophobization of
the PVA obviously decreased its water solubility but in water/ethanol mixture the BTS-PVA
could be still dissolved. The preparation of the films occurred at 60 °C and at this temperature
the faster evaporation of the ethanol and thus the enrichment of the water probably primarily
caused the phase separation of the hydrophobic BTS-PVA rather than the hydrophilic PVA.
This phase separation presumably caused inhomogeneities in the films but it is also worth to
note that the porous structure and rough surface with high Ra values (Fig. 6.) were primarily
caused by the incorporation of the cellulose particles rather than the phase separation of the

PVA polymers.
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The thickness of the PVA thin films having different surface roughness was measured with an
Elcometer 224 type digital profile gauge. The obtained film thickness values varied between
60.8+£5.5 and 206.6+10.2 um, depending on their cellulose content (Table 1.).

The above presented results show that the incorporation of cellulose particles into the PVA
matrix provided rough surface for the thin films. CT measurements were also performed in
order to study the inner structure of the thin films. In Fig. S2. the representative 3D micro-CT
images of flat (cellulose free) PVA (A) and 60% cellulose containing PVA (B) are presented.
The difference is obviously: while the flat PVA film exhibited a dense and continuous layer
(porosity: 0.7%), the 60 wt.% containing PVA film showed porous structure with a porosity of
64.9%). The porosity of the thin films were determined in all cases (Table 1.). The obtained
results show that increasing cellulose content continuously increase the porosity of the thin
films. However, it is also worth to note that the porous inner structure and rough surface of the
hydrophobized films make the layers suitable for trapping air into the pores and in this way the
water penetration is inhibited (Fig. S5) and thus the drug release can be prolonged (Fig. 9 and
10.).

In the following step, the effect of surface roughness on the wetting properties of the hydrophilic
PVA and BTS hydrophobized PVA thin films with different cellulose loading was examined.
According to the results presented above, adding cellulose to the polymer significantly affects
the morphological properties, and thus the wettability of the film surfaces, which was confirmed
by contact angle measurements (Fig. 7. and Fig. 8.). Fig. 7. shows the change in the contact
angle values as a function of cellulose concentration of the thin films. In the case of the
hydrophilic PVA thin films, the measured ® values decreased (from ® = 60.3° to ® = 0°) with
the increasing cellulose content (0-95 wt.%), the films became more and more

(super)hydrophilic.
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Figure 7. The measured static water contact angles (®w) of the cellulose roughened
hydrophilic PVA and 1% BTS hydrophobized PVA films.

For the BTS hydrophobized PVA thin films, it was found out that the increase of cellulose
concentration, thus the increase of the surface roughness enhances the superhydrophobicity of
the thin films (from ® = 97.4° to ® = 168.2°). Thus, it can be seen that the roughness increases
the wettability of wettable surfaces and decreases the unwettability of the unwettable ones.

The wettability of the smooth (0 wt.% cellulose) hydrophilic PVA and cellulose roughened (90
wt.%) superhydrophobic BTS-PVA thin films was also studied with dynamic contact angle
measurements, the results of which are presented as a function of the drop volume in Fig. 8.
The advancing (®agv) and receding (@rec) contact angles and the calculated y°t values were
determined according to Drehlich’s protocol [41]. In the case of the cellulose roughened (90
wt.%) superhydrophobic BTS-PVA thin film, the measured advancing contact angle (®adv)
values decreased from 160.2° to 159.2° as the drop volume was increased. However, with the
decrease of the drop volume the receding (®rec) contact angle values were significantly
decreasing, from 159.2° to 75.5° (large contact angle hysteresis: A® = 84.7°). This value is

considerably lower than that obtained during the static contact angle measurement (® = 165.3°).
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Figure 8. Evolution of advancing (®adv) and receding (®re) Water contact angles (®w) as a
function of water droplet volume (Vwater) for the smooth (0 wt.% cellulose) hydrophilic PVA
film and cellulose roughened (90 wt.%) superhydrophobic BTS-PVA layer (T=25 °C £ 0.5
°C). The calculated surface free energy (y£°t) values are added for both cases. The pictures of
the liquid droplet on the hybrid layers are also shown.

The large contact angle hysteresis implies that the drop placed onto the cellulose roughened (90
wt.%) superhydrophobic BTS-PVA thin film is in the Wenzel state which may be caused by
the wetting of the grooves on the cellulose roughened surface. The advancing (®ady) contact
angle values measured on the smooth (0 wt.% cellulose) hydrophilic PVA thin film slightly
decreased with the increasing drop volume (from 78.5° to 74.9°), while the receding (Orec)
contact angle values were on a declining trend (from 74.9° to 28.4°) in this case, as well. The
calculated yt°t values were 39.2+1.37 and 1.7+0.67 mJ/m? for the smooth (0 wt.% cellulose)
hydrophilic PVA and cellulose roughened (90 wt.%) superhydrophobic (90 wt.% cellulose)
BTS-PVA thin films, respectively. Thus, it can be concluded that it is possible to prepare lotus-
like superhydrophobic biopolymer thin films by roughening and functionalization of initial
PVA.

The values of the total surface free energy (y£°%) and its polar (yf) and dispersive (y2)
components were also determined in the case of smooth (initial) P\VA and the 60 wt.% cellulose
containing hydrophilic and superhydrophobic samples according to Owens-Wendt-Kaelble

equation (Figure S3). Since PVA is a relatively hydrophilic biopolymer, it has a relatively high
17



yEet value (39.7 + 4.3 mJ/m?) mainly with yF contribution (25.4 + 3.2 mJ/m?). Increasing the
cellulose loading (and thus the roughness), the y£°t and y£ values were further increased to
52.6 + 6.8 mJ/m?and 41.4 + 3.9 mJ/m? (60 wt.% cellulose content). However, in the case of
roughened and hydrophobized layer the y£°¢ value drastically decreased to 1.9 + 0.45 mJ/m?

and its high yPcontent (1.7 = 0.29 mJ/m?) also indicates the hydrophobic surface characteristic.

3.3. Drug release experiments

In the previous sections it was shown how the different cellulose loadings affect the surface
morphology and thus the wetting properties of the PVA thin films. In the following step, it was
examined how this composition-controlled wetting property affects the release behaviour of the
MMC loaded biopolymer thin films.

The release profiles of MMC released from the smooth (0 wt.% cellulose) and 59.85 wt.%
cellulose roughened hydrophilic PVA, and from the smooth (0 wt.% cellulose) and 59.85 wt.%
cellulose roughened superhydrophobic BTS-PVA thin films with different wettability are
shown in Fig. 9. Each biopolymer based thin film contained the same amount of MMC drug
(0.25wt.%). To investigate the in vitro release behaviour of the free MMC, a control experiment
was also conducted. Prior to the experiment, the free drug was enclosed in a cellulose
membrane, then its release behaviour was studied in a stirred solution of PBS (pH = 7.4) at 37
°C. It was observed that after 1.5-2 h release time the fast, initial release rate of MMC (¢)
gradually started to decrease. Namely, in the fast initial phase, 67.04% of the enclosed MMC
was released from the cellulose membrane, whereas after 8 h only 79.61% of the initial drug
load got released in the PBS medium. This is because of the moderate water solubility of the
crystalline MMC. However, incorporation of the drug into the smooth (0 wt.% cellulose)
hydrophilic PVA led to the increased release rate of MMC from the smooth PVA thin layers.
The early phase of the drug dissolution from the smooth (0 wt.% cellulose) hydrophilic PVA
thin films (m) consisted of a quick, initial release during which almost all amount of loaded drug
(98.05%) was released (1 h). Roughening the surface of the hydrophilic PVA thin film with
cellulose particles (59.85 wt.% cellulose) (#) increased its wettability and facilitated the drug
release from the biopolymer thin film: 98.08% of MMC was released in 0.5 h. In contrast, the
hydrophobization of the thin films of different composition decreased the drug release rate. The
smooth (0 wt.% cellulose) hydrophobic MMC/BTS-PVA thin film (e) released 99.93% of the
incorporated drug load in 8 h, compared to the release rate of the smooth (0 wt.% cellulose)
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hydrophilic biopolymer layers of the same composition (MMC/PVA). In the case of the
cellulose roughened (59.85 wt.% cellulose) superhydrophobic MMC/BTS-PVA thin film (A,
the MMC release rate was even slower compared to the hydrophobic MMC/BTS-PVA thin film
with smooth surface. Under 8 h release time, only 49.15% of the initial drug load was released
from the film, whereas the smooth (0 wt.% cellulose) hydrophobic MMC/BTS-PVA layer
released almost the whole amount of drug load (99.93%) for the same time. Fig. 10. shows the
calculated appearent drug relase rate constant values (initial slopes of the curves, k’) as a
function of contact angles measured on the different surfaces.
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Figure 9. The percentage release profile of MMC molecules from the smooth (0 wt.% cellulose)
hydrophilic PVA (m) and hydrophobic (e) BTS modified PVA films, 59.85 wt.% cellulose
roughened hydrophilic (¢#) and superhydrophobic BTS-PVA films ( A) as well as the release of
bare MMC (¢) at pH=7.4 under physiological condition (0.9 wt.% NaCl content, 37 °C). The
dashed lines are guide to eyes.

The dotted grey line represents the k’ value (=1.21x10°® mM/s) of the pure MMC. As it can be
seen, incorporation of the MMC into the smooth (0 wt.% cellulose) hydrophilic (®=
60.3+0.83°) or cellulose roughened (59.85 wt.% cellulose) superhydrophilic (®=0°) PVA films
significantly increased the drug dissolution rate constants (2.07x10° and 6.1x10° mM/s,

respectively). This is because of the lower crystallinity of the drug in PVA polymer matrix
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which was also evidenced via XRD measurements (Fig. 11.). In the case of the MMC loaded
smooth (0 wt.% cellulose) hydrophilic PVVA sample the less sharper peaks indicated the partial
amorphization of the drug in the polymer matrix which resulted in higher solubility and higher
dissolution rate [30]. However, integrating MMC into the smooth (0 wt.% cellulose)
hydrophobic (®= 97.4+1.44°) and cellulose roughened (59.85 wt.%) superhydrophobic (©=
165.3+1.36°) BTS-PVA samples significantly reduced the k’ values (8x107" and 5x10® mM/s,
respectively) (Fig. 10.). The above presented lower crystallinity and partial amorphization of
the MMC in the polymer matrix were also verified via EDX measurements (Fig. S4). The
nitrogen content of the MMC drug provides features for visualization of drug in the PVA based
thin films. Without polymer matrix the bare MMC molecules formed well-developed micron-
sized needle-like crystals during the precipitation/crystallization process (Fig. S4 A.). However,
the SEM images and EDX represantations also show that in the presence of initial PVA (Fig.
S4 B.) and cellulose containing hydrophobized PVA (Fig. S4 C.) well-defined spherical MMC
micoparticles are formed. The corresponding XRD pattern of the MMC loaded samples shows
lower intensity than the bare, uncoated MMC which corresponds to the lower crystallinity of
the drug (Fig. 11). The lower crystallinity is advantageous, because the solubility of the drug
molecules depends on the formation of intermolecular hydrogen bonds between the solvent and
the solute molecules. The crystalline form is more stable than the amorphous form and has a
lower energy at the molecular level with stronger bonding (mostly ionic bonds) between
molecules that requires higher energy to break [26]. So, higher solubility means higher
dissolution rate and better bioavailability.

Assuming that the MMC loaded cellulose roughened (59.85 wt.% cellulose) superhydrophobic
BTS-PVA thin films display similar release behaviour in vivo, it could open a new pathway to
design and develop antifibrotic drug delivery systems which are capable of targeted and/or
prolonged MMC release. The release profiles of the released MMC from the thin films were
affected in a great way by the film composition in every case. As the result of the
hydrophobization of the cellulose roughened (59.85 wt.% cellulose) thin films, the rate of the
MMC release significantly decreased.

In order to convince that really the surface wetting is the determining factor for the different
release rates the wetting properties on the superhydrophobic layer (with 60% cellulose content)
were studied as a function of time (Fig. S5). The presented contact angles measured over a long
period of time indicate that after 3 h the film still shows superhydrophobic character because
the measured values were above 150°. In Fig. S4 C. and Fig. 11. it was presented that in the

polymer matrix the MMC forms microparticles with lower crystallinity, but even so the drug
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release rate was significantly lower in the case of the superhydrophobic film (Fig. 9. and 10.).
This is obviously due to the strong water repellency and low water adhesion of the film.
Moreover, upon immersion of the sample in water, an obvious mirror-like phenomenon could
be observed (see graphical abstract when the superhydrophobic layer was immersed in aqueous
medium) [52], which was mainly caused by the entrapped pocket of air at the sample surface-

water interface.

Thus, it can be concluded that the incorporation of MMC into the polymer matrix resulted in
lower drug crystallinity and partial amorphization and thus the drug release was faster from the
well-wetting hydrophilic films compared to the pure MMC. However, in the case of the
superhydrophobic film the drug release rate was significantly lower (Fig. 9. and 10.). This is

obviously due to the strong water repellency and low water adhesion of the film.
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Figure 10. The effect of surface wetting properties on the the calculated appearent drug relase
rate constant values (k’).
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Figure 11. XRD patterns of the bare MMC drug microcrystals (a), the 10 wt.% MMC
containing PVA thin film (b) and the smooth (0 wt.% cellulose) hydrophilic PVA thin film (c).

4. Conclusion

PVA based thin films were synthetised with systematically varied surface hydrophobicity and
roughness and it was presented that the surface wetting was finely adjustable by these
parameters from superhydrophilicity (®=0°) to superhydrophobicity (©=165.3°; yf°t =
1.7+0.67 mJ/m?). The successful silylation (hydrophobization) reaction of PVA by BTS
molecules was confirmed by FTIR measurements. According to the results the ~19%
hydrophobization degree of the initial PVA is sufficient to prepare thin films even with
superhydrophobic character. The surface wetting was increased by the incorporation of
cellulose microparticles into the smooth PVA films. As a result, the surface roughness increased
from 0.016+0.007 pm (initial smooth PVA film) to 31.57+4.77 um (90 wt.% cellulose
containing hydrophilic PVA) and to 26.64+1.20 pum (90 wt.% cellulose containing hydrophobic
PVA). Due to the non-wetting properties of the superhydrophobic BTS-PVA film, a trapped air
layer forms on the surface of water-repellent materials in agueous environment hindering water
penetration. Consequently, because of the excellent isolation effect from the trapped surface air
layer, the dissolution of the encapsulated MMC drug was strongly inhibited. The results showed
that the drug release rate constant values (k’) of antifibrotic MMC are well controllable by the

surface wetting properties of the PV A thin films within a relatively wide dissolution range (from
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k’=6.1x10"° mM/s (superhydrophilic PVA film with 60 wt.% cellulose content) to k’=5x10%
mM/s (superhydrophobic BTS-PVA film with 60 wt.% cellulose content). We propose that the
presented biocompatible thin films loaded with antifibrotic MMC with obvious surface wetting
driven release can be useful in the area of head and neck surgeries to prevent scar tissue

formation.
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