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Abstract. Word embeddings can encode semantic and syntactic features and have
achieved many recent successes in solving NLP tasks. Despite their successes,
it is not trivial to directly extract lexical information out of them. In this paper,
we propose a transformation of the embedding space to a more interpretable
one using the Hellinger distance. We additionally suggest a distribution-agnostic
approach using Kernel Density Estimation. A method is introduced to measure
the interpretability of the word embeddings. Our results suggest that Hellinger
based calculation gives a 1.35% improvement on average over the Bhattacharyya
distance in terms of interpretability and adapts better to unknown words.
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1 Introduction

There have been many successes in the field of NLP due to the application of word
embeddings [3]. There is a new forefront as well called contextual embeddings (e.g.,
BERT), which further increases the complexity of models to gain better performance.
[2] showed there is only a small performance increase on average regard to complexity,
but this performance varies on each employed task. Thus static embeddings still serve a
good ground for initial investigations about the interpretability.

Prior research by [[12] has investigated the issue of semantic encoding in word
embeddings by assuming that the coefficients across each dimensions of the embedding
space are distributed normally. This assumption may or may nor hold for a particular
embedding space (e.g. the normality assumption is unlikely to hold for sparse word
representations), hence we argue for the necessity of similar algorithms that operate
in an distribution-agnostic manner. We introduce such a model that allows the word
embedding coefficients to follow arbitrary distributions by relying on Kernel Density
Estimation (KDE). A further novelty of our work is that we propose the application of
the Hellinger distance — as opposed to the Bhattacharyya distance — which could be a
more suitable choice due to its bounded nature. We also make our source code publicly
availabl in order to foster the reproducibility of our experiments.
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2 Related Work

Word embeddings can capture the semantic and syntactic relationships among words [9].
[[15]] was one of the first providing a comparison of several word embedding methods
and showed that incorporating them into established NLP pipelines can also boost their
performance.

There are several ways to incorporate external knowledge into NLP models. Related
methods include the application of auto-encoders [[16], embedding information during
training [1] or after the training phase, called retrofitting [S]. One way to understand
the semantic encoding of a dimension in embedding spaces is to link them to human
interpretable features. [12] introduced the SEMCAT dataset and a method that relies on
the Bhattacharyya distance for doing so. Their proposed method can produce a more
interpretable space where each dimension encodes a predefined semantic category from
the SEMCAT dataset, which was tested on GloVe [[11] word embedding. There have been
various approaches to find these semantic categories. Such an approach is to construct
datasets in a way which involves human participants only [§]], or in a semi-automated
manner where the construction is based on statistics to make the connections between
the members of semantic categories and curated later by human participants [13]].

Our proposed approach relies on the application of the Hellinger distance, which has
already been used in NLP for constructing word embeddings [7]]. Note that the way we
rely on the Hellinger distance is different from prior work in that we use it for improving
the interpretability of some arbitrarily trained embedding, whereas in [7]] the Hellinger
distance served as the basis for constructing the embeddings.

3 Our Approach

In this paper we follow a process to produce interpretable word vectors which is similar
to [12]. Unlike [12]], who trained their own GloVe embeddings, in order to mitigate the
variability due to training, we are using the pre-trained GloVe with 6 billion token as our
embedding space with 300 dimensions. Furthermore the SEMCAT dataset is going to
serve as the definition of the semantic categories. Instead of GloVe and SEMCAT other
kinds of embeddings (e.g., fastText) and datasets incorporating semantic relations (e.g.,
the McRae dataset [8]]) can be integrated into our framework.

3.1 Information Encoding of Dimensions

The assumption of normality of the embedding dimensions is statistically a convenient,
however, empirically not necessarily a valid approach. As the normal distribution is
simple and well-understood, it is also frequently used in predictive models, however,
assuming normality could have its own flaws [[14]. The assumption of normality plays
an essential role in the method proposed by [[12], that we relax in this paper.

If we try to express the information gain from a dimension regarding some con-
cept, we can do so by measuring the distance between the concept’s and dimension’s
distribution. In order to investigate the semantic distribution of semantic categories
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Fig. 1: The flowchart of the generation of the interpretable space Z. £ refers to the input
word embeddings, whereas VWp denotes the matrix describing the semantic distribution
of the embedding. Wp constructed from the distances of distributions of semantic
category (from SEMCAT) - dimension pairs.

across all dimensions, we define Wp € R‘f{‘)xld, with |d| and |c| denoting the number of

dimensions of the embedding space and the number of semantic categories, respectively.

In this paper, we rely on two metrics, Bhattacharyya and Hellinger distances. The
suggestion of Hellinger distance is an important step, as it is more sensitive to small
distributional differences when the fidelity (overlap) of the two distributions is close to 1,
which can be utilized in case of dense embeddings. Furthermore it is bounded on interval
[0, 1], which could be beneficial for sparse embeddings where the fidelity has a higher
chance of being close to 0 (causing the Bhattacharrya distance to approach infinity).

First we separate the ¢th dimension’s coefficients into category (P; ;) and out-of-
category (Q; ;) vectors. A coefficient belongs to the P; ; vector if the associated word
to that coefficient is an element of the jth semantic category, and it belongs to the Q; ;
otherwise. It is going to be denoted for P and () for short.

By assuming that P and () are normally distributed, we can derive the closed form
definitions for the Bhattacharyya and Hellinger distances as included in Eqn. (T) and (2)),
respectively. In the below formulas ¢ and o denote the mean and standard deviation of
the respective distributions.

Lfi(on, o L ( (o = 1)
DB(PvQ):41n<4<03+U§+2 +1 W (H
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By discarding the assumption that P and () are distributed normally, the more general
formulas are included in Eqn. (3) and (@) for the Bhattacharyya and Hellinger distances

Ds(p.q) = —In / Vr@a@) dz G) Dy(p,q) = |1- / Vo@a(@) dz @)

with the integrand being the Bhattacharyya coefficient, also called fidelity. In order to
calculate the fidelity, we can apply Kernel Density Estimation (KDE) [6] for turning
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the empirical distributions of coefficients P and () into continuous (and not necessarily
normally distributed) probability density functions p and gq.

By calculating either the closed or the continuous form of distances, we can calculate
Whp(i,j) = D(P; ;, Qi ;), where D is any of the above defined distances.

3.2 Interpretable Word Vector Generation

We normalize Wp so, that each semantic category vector in YWWarp sum up to 1 (¢1 norm).
This step is important because otherwise the dominance of certain semantic categories
could cause an undesired bias. Additionally, Wyrsp(i,7) = sgn(A; ;) )Wap (4, ),
where A; j = pp, . — jg; ; and sgn is the signum function. This form of sign correction
is useful as a dimension can encode a semantic category in negative or positive direction
and we have to keep the mapping of the words in each dimension.

We standardize the input word embeddings in a way that each dimension has zero
mean and unit variance. We denote the standardized embeddings as s and obtain the
interpretable space of embeddings 7 as the product of £s and Wirsp.

3.3 Word Retrieval Test

In order to measure the semantic quality of Z, we used 60% of the words from each se-
mantic category for training and 40% for validation. By using the training words, we are

calculating the distance matrix VWp using either one of the Bhattacharyya or the Hellinger

distance. We select the largest k weights (k € {15, 18, 30, 37,62, 75, 125, 150, 250, 300})
for each category and replace the other weights with 0 (Wg). We are doing that, so

we can inspect the strongest encoding dimensions generalization ability. Then in the

calculation pipeline (Figure we are going to use Wg instead of Wp, and we continue

the rest of the calculations as it was defined earlier, by that we are going to obtain

the interpretable space Zs. We are going to rely on the validation set and see whether

the words of a semantic category are seen among the top n, 3n or 5n words in the

corresponding dimension in Zg, where n is the number of the test words varying across

the semantic categories. The final accuracy is the weighted mean of the accuracy of

the dimensions, where the weight is the number of words in each category for the

corresponding dimension.

3.4 Measuring Interpretability

To measure the interpretability of the model, we are going to use a functionally-grounded
evaluation method [4], which means it does not involve humans in the process of
quantification. Furthermore we use continuous values to express the level of inter-
pretability [[L0]. The metric we rely on is an adaptation of the one proposed in [12].
We desire to have a metric that is independent from the dimensionality of the embed-
ding space, so models with different number of dimensions can be easily compared.
_ 180V (A xny)| 5) 15— = SOV Axm)l o
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Fig.2: Values from Table [1| with n test words in word retrieval test in Figure [2a] and
Tablewith 60% of the categories used in Figure

In the same way we defined the interpretability score for the positive (3)) and negative
() directions. In both equations i represents the dimension (i € {1,2,3,...,|d|}) and j
the semantic categories (j € {1,2,3,..., |c|}). S; represents the set of words belonging
to the jth semantic category, n; the number of words in that semantic category. V" and
V.~ gives us the top and bottom words selected by the magnitude of their coordinate
respectively in the ith dimension. A X n; is the number words selected from the top and
bottom words, hence A € N is the relaxation coefficient, as it controls how strict we
measure the interpretability. As the interpretability of a dimension-category pair, we take
the maximum of the positive and negative direction, i.e. 1.S; ; = max {I S;,L 5o IS j} .

Once we have the overall interpretability (I.5; ;), we are going to calculate the
categorical interpretability Eqn. (7). We thought that it is a too optimistic method
to decide the interpretability level based on the maximum value in each selection.
It is apparent from IS; = max; I.S; ;, taking the max for every dimension would
overestimate the true interpretability, because it would take the best-case scenario.
Instead, we calculate Eqn. @, where we have a condition on the selected 7 which is
defined by Eqn. (8). We are going to select from the given interpretability scores provided
by I.S; ; (where j is fixed) the ith value where 4 is the maximum in the jth concept in
Whp (4, §). This condition Eqn. (8) ensures that we are going to obtain the interpretability
score from the dimensions where the semantic category is encoded. This method is more
suitable to obtain the interpretability scores, because it is relying on the distribution
of the semantic categories, instead of the interpretability score from each dimension.

18, =1I8;: j x 100 (7 i} = argmax Wo (i, j). (8)
Finally, to get the overall interpretability of the embedding space, we have to calculate
the average of the interpretability scores across the semantic categories, where C' is the

number of categories.
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4 Results

We load the most frequent 50,000 words from the pre-trained embeddings similar to
[[12] and tested for their normality using the Bonferroni corrected Kolmogorov-Smirnov
test for multiple comparisons. Our test showed that 183 of the dimensions are normally
distributed (p > 0.05). [[12] reported more dimensions to behave normally, which could
be explained by the fact that the authors trained their own GloVe embeddings. We deem
this as an indication for the need towards the kind of distribution agnostic approaches
we propose by relying on KDE. During the application of KDE, we utilized a Gaussian
kernel and a bandwidth of 0.2 throughout all experiments.

4.1 Accuracy and Interpretability

Table[T]and Table 2| contains the quantitative performance of the embeddings from two
complementary angles, i.e. their accuracy and interpretability. These results are better to
be observed jointly (Fig. [2) since it is possible to have a high score for interpretability
but a low value for accuracy suggests that the original embedding has a high variance
regarding to the probed semantic categories. Fig. 2a]illustrates a small sample of the
results where we can observe that a word’s semantic information is encoded in few
dimensions, since relying on a reduced number of coefficients from WWp achieves similar
performance to the application of all the coefficients. Our results tend to have close
values, which can be caused by the high number of normally distributed dimensions.
The results show that the proposed method is at least as good as [12]]’s method, but it
can be applied to any embedding space without restrictions.

5 Conclusions

The proposed method can transform any non-contextual embedding into an interpretable
one, which can be used to analyze the semantic distribution which can have a potential
application in knowledge base completion.

We suggested the usage of Hellinger distance, which shows better results in terms of
interpretability when we have more words per semantic categories. Furthermore, easier
to analyze the Hellinger distance due to its bounded nature. By relying on KDE, our
proposed method can be applied even in cases when the normality for the coefficients of
the dimensions is not necessarily met. This allows our approach a broader range of input
embeddings to be applicable over (e.g., sparse embeddings).

The proposed modification on interpretability calculation, opened another dimension
of freedom. It let us compare the interpretability of word embeddings with different
dimensionality. So for every embedding space, the compression of semantic categories
can be observed and the modification gives us a better look at the encoding of semantic
categories, because we probe the category words from dimensions where they are deemed
to be most likely encoded.
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k15 18 30 37 62 75 125 150 250 300
n
Closed form of Bhattacharyya 13.18 13.85 14.84 14.67 15.61 16.05 15.58 15.66 15.69 15.64
Closed form of Hellinger 13.44 13.27 14.46 14.85 15.55 15.34 15.84 15.75 15.99 16.13
Bhattacharyya KDE 12.54 12.86 14.06 14.29 15.23 15.58 16.05 16.08 16.10 16.13
Hellinger KDE 13.09 13.71 14.55 15.14 15.43 15.75 16.04 16.04 15.96 16.16
3n
Closed form of Bhattacharyya 25.76 27.25 29.53 30.61 32.92 33.71 34.15 34.30 33.39 33.18
Closed form of Hellinger 25.35 26.87 29.74 30.73 32.36 33.77 34.03 34.56 34.82 34.73
Bhattacharyya KDE 24.76 26.20 29.06 29.82 31.72 32.16 33.59 33.48 33.63 33.57
Hellinger KDE 25.32 27.39 29.88 30.38 32.54 33.27 34.27 34.38 34.50 34.41
5n
Closed form of Bhattacharyya 34.53 36.43 39.65 40.56 43.24 43.51 44.21 45.03 44.68 44.30
Closed form of Hellinger 33.92 36.05 39.15 40.41 42.87 43.30 44.59 44.15 45.00 44.94
Bhattacharyya KDE 33.07 34.41 37.90 39.15 42.55 43.01 44.30 44.68 45.18 45.27
Hellinger KDE 34.10 35.79 39.33 40.21 42.87 43.39 44.73 44.65 45.00 45.12
Table 1: Performance of the model on word category retrieval test for the top
n,3n and bn where n is the number of test words varying across the categories.
k(e {15,18,30, 37,62, 75,125, 150, 250, 300}) is the number of top weight kept from
Whp in each category. The method was discussed in Section @]

A1 2 3 4 5 6 7 8 9 10
100% of the words
GloVe 2.82 4.84 6.83 8.72 10.37 12.08 13.34 14.55 15.79 16.87
Closed form of Bhattacharyya. 35.34 48.84 56.47 61.35 65.01 68.21 70.81 72.42 73.88 75.45
Closed form of Hellinger 36.32 49.94 57.64 62.75 66.72 69.52 72.08 74.09 75.54 76.72
Bhattacharyya KDE 35.47 49.05 56.69 61.60 65.35 68.37 70.57 72.53 74.02 75.31
Hellinger KDE 36.24 49.49 57.35 62.73 66.63 69.56 71.92 74.04 75.42 76.78
80% of the words
GloVe 1.85 342 491 6.33 7.69 9.00 10.21 11.34 12.20 13.07
Closed form of Bhattacharyya 23.96 36.99 45.70 51.66 55.37 59.13 61.96 64.50 66.40 67.91
Closed form of Hellinger 24.36 38.36 47.18 53.32 57.49 61.09 63.35 65.89 67.91 69.48
Bhattacharyya KDE 25.08 39.04 46.80 52.70 57.10 60.73 63.18 65.26 67.16 68.62
Hellinger KDE 24.57 38.34 47.16 53.09 57.22 60.54 63.38 65.70 67.82 69.38
60% of the words
GloVe 1.05 1.87 2.62 3.71 471 5.67 659 7.47 820 9.08
Closed form of Bhattacharyya 12.44 22.76 30.72 36.61 41.38 45.00 47.89 50.64 52.78 55.02
Closed form of Hellinger 13.12 24.36 33.14 39.24 43.66 47.25 50.76 53.42 55.69 57.57
Bhattacharyya KDE 15.01 26.44 34.92 40.22 44.66 48.10 51.01 53.45 55.87 57.56
Hellinger KDE 13.37 24.36 32.74 39.51 43.94 47.36 50.65 53.30 55.82 57.95
Table 2: Interpretability scores for the interpretable space Z with different A parameter
values (A = 1 the most strict and A = 10 the most relaxed) using different distances. The
r € {100, 80,60} percentage of the words kept from the semantic categories relative to
category centers
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