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Inequalities for hyperconvex sets
Abstract: An r-hyperconvex body is a set in the d-dimensional Euclidean space Ed that is the intersection of
a family of closed balls of radius r. We prove the analogue of the classical Blaschke–Santaló inequality for
r-hyperconvex bodies, and we also establish a stability version of it. The other main result of the paper is an
r-hyperconvex version of the reverse isoperimetric inequality in the plane.
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1 Introduction and results
The concept of hyperconvexity may be considered as a generalization of the notion of convexity. Let r > 0 be
�xed, and let x, y be points in the d-dimensional Euclidean spaceEd. The closed r-spindle [x, y]r spanned by
x and y is de�ned as the intersection of all closed balls of radius r that contain both x and y, cf. for example
[5, De�nition 2.1 on page 203]. If the distance of x and y is larger than 2r, then [x, y]r = Ed. A set H ⊆ Ed

is called r-hyperconvex if it contains [x, y]r for every pair of points x, y ∈ H. For instance, convex bodies of
constant width r are prominent examples of r-hyperconvex sets, cf. [8; 13].

In his 1935 paper, Mayer [21] introduced the term ‘Überkonvexität’ for this type of convexity in the plane.
Following the early literature of the subject, we decided to use the English translation of Mayer’s term. How-
ever, we note that other expressions such as ‘spindle convex’ and ‘r-convex’ have also been used for these
sets.

Recently, there has been much renewed interest in r-hyperconvex sets. For details on properties of r-
hyperconvex sets, further references and a history of the subject we refer, for example, to Bezdek et al. [5],
Bezdek [2; 4], Fejes Tóth and Fodor [14], Lángi et al. [18], and Kupitz et al. [17].

It is a characteristic property of closed convex sets that they are intersections of closed half-spaces. It is
known (see e.g. [5, Corollary 3.5 on page 205]) that closed r-hyperconvex sets can be represented as intersec-
tions of closed balls of radius r. We use this important property of r-hyperconvex sets throughout the paper.
With a slight abuse of notation, if one considers closed balls of radius ∞ as closed half-spaces of Ed, then
the closed∞-convex sets are exactly the closed convex sets of Ed. However, we exclude∞ from the possible
values of r in this paper. Occasionally, we will refer to the classical notion of convexity as linear convexity in
the text when we want to emphasize its di�erence from hyperconvexity.

Note that the only unbounded r-hyperconvex set is the whole space Ed, and the only r-hyperconvex sets
with no interior points are the one-point sets. We restrict our attention to compact r-hyperconvex sets, which
we call r-hyperconvex bodies. For technical reasons, the one-point sets are also considered as r-hyperconvex
bodies. We use the term r-hyperconvex disc for a 2-dimensional r-hyperconvex body.

We denote the Euclidean scalar product in Ed by ⟨⋅, ⋅⟩, the (Euclidean) distance of two points x, y ∈ Ed

by d(x, y), the d-dimensional volume (Lebesgue measure) of a compact set H ⊂ Ed by vol(H). In the case
that d = 2, we also use the notation area(H) for the area of the compact set H in E2. Let the d-dimensional
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2 | Fodor, Kurusa and Vígh, Inequalities for hyperconvex sets

closed unit ball centred at the origin o be denoted by Bd, its boundary by bd Bd = Sd−1, and κd = vol(Bd).
The interior of a set A is denoted by int A.

The notion of polar duality plays an essential role in the theory of convex bodies. Let K ⊂ Ed be a convex
body with z ∈ int K. The polar of K with respect to z is de�ned as

Kz = {x ∈ Ed : ⟨x − z, y − z⟩ ≤ 1 for all y ∈ K}.

It is clear that Kz is also a convex body with z ∈ int Kz, and (Kz)z = K. The latter explains the use of the term
‘duality’. For basic properties of polar duality we refer to [25, Section 1.6]. Clearly, Kz depends on the position
of z ∈ int K.

Santaló proved in [24] that for every convex body K, there exists a unique point s ∈ int K such that
vol(Ks) ≤ vol(Kz) for all z ∈ int K. This unique point s is called the Santaló point of K. For a convex body
K, the quantity vol(K) vol(Ks) is usually called the volume product of K. The Blaschke–Santaló inequality
(see Blaschke [7], Santaló [24], Saint-Raymond [23], Petty [22])

vol(K) vol(Ks) ≤ κ2d

provides the sharp upper bound κ2d on the volume product for any convex body K inEd. Equality holds in the
Blaschke–Santaló inequality if and only if K is an ellipsoid. On the other hand, it was conjectured by Mahler
[20] that the minimum of the volume product is reached by simplices among general convex bodies and by
cubes among centrally symmetric convex bodies. Although there are some important partial results in this
direction, Mahler’s conjecture in its full generality is still unproven. For a discussion and further references
on the history of the Blaschke–Santaló inequality and the Mahler conjecture, we refer to the survey paper by
Lutwak [19] and to the paper by Böröczky [9].

Recently, Böröczky [9] established a stability version of the Blaschke–Santaló inequality. Note that the
volume product of a convex body is invariant with respect to nonsingular a�ne transformations. Thus it is
natural to measure the distance of two convex bodies by the Banach–Mazur distance when dealing with the
volume product. LetGL(d) denote the group of nonsingular linear transformations ofℝd. The Banach–Mazur
distance of two convex bodies K1, K2 ⊂ Ed is de�ned as

δBM(K1, K2) = min{λ ≥ 1 : K1 − x ⊆ M(K2 − y) ⊆ λ(K1 − x) for M ∈ GL(d), x, y ∈ Ed}.

Theorem (Böröczky [9], Theorem 1.1). If K is a convex body in Ed, d ≥ 3, and s is the Santaló point of K, and

vol(K) vol(Ks) > (1 − ε)κ2d

for ε ∈ (0, 1/2), then for some constant ã0, depending only on the dimension d, it holds that

δBM(K, Bd) < 1 + ã0ε
1
6d | log ε|

1
6 .

A notion similar to the polar duality of convex sets can be introduced for r-hyperconvex sets following
Kupitz et al. [17] and M. Bezdek [6]: the r-hyperconvex dual Hr of a set H ⊆ Ed consists of the centres of
those closed balls of radius r that contain H. In Section 2 we have collected a number of simple properties of
r-hyperconvex duality.

Let S ⊂ Ed be an r-hyperconvex body. Note that the dual Sr does not depend on the choice of the coordi-
nate system. We de�ne the r-hyperconvex volume product of S as

P(S) := vol(S) vol(Sr), (1)

and observe immediately that
P(

r
2
Bd) = vol2( r2

Bd). (2)

As P(rBd) = 0, there is no interesting r-hyperconvex version of the Mahler conjecture. However, the r-
hyperconvex version of the Blaschke–Santaló inequality can be formulated in the following way.
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Theorem 1.1. If S ⊂ Ed is an r-hyperconvex body, then

P(S) ≤ P(
r
2
Bd). (3)

Equality holds if and only if S = r/2 ⋅ Bd + z for some z ∈ Ed.

We establish also a stability version of inequality (3) as follows.

Theorem 1.2. Let r > 0, then there exist constants cd,r > 0 and εd,r ∈ (0, 12 ) depending only on d and r, and a
monotonically decreasing positive real function µ(ε) with µ(ε) → 0 as ε → 0 such that an r-hyperconvex body
S ⊂ Ed satis�es

P(S) ≥ (1 − ε)P( r2
Bd) (4)

for some ε ∈ [0, εd,r] if and only if there exists a vector z ∈ Ed such that

δH(S,
r
2
Bd + z) ≤ cd,rµ(ε),

where δH( ⋅ , ⋅ ) denotes the Hausdor� distance of compact sets.

In Section 4 we prove an r-hyperconvex analogue of the reverse isoperimetric inequality of Ball [1] in
the plane. The r-hyperconvex analogue of the reverse isoperimetric problem in the plane is concerned with
�nding the r-hyperconvex discs of a given perimeter that minimize the area. To the best of our knowledge,
this problem was raised by K. Bezdek [3] who communicated it to one of the authors in 2010. K. Bezdek [3]
conjectured that among r-hyperconvex bodies of a given surface area, the r-spindle is the unique body that
has minimal volume. In our next result, we verify this conjecture in the plane.

Theorem 1.3. The r-spindle has minimal area among r-hyperconvex discs of equal perimeter.

Theorem 1.3 is proved in Section 4. We note that our argument does not yield that the r-spindle is the
only minimal area r-hyperconvex disc among the r-hyperconvex discs of equal perimeter. Since the unique
minimizer of the area is not known,we could not formulate a precise stability statement for the r-hyperconvex
reverse isoperimetric problem. However, we have proved with a long and delicate calculation that if the area
of an r-hyperconvex triangle is su�ciently close to an r-spindle of the same perimeter, then it is also close to
an r-spindle in the Hausdor� metric. Since it is only a partial result, this proof is not included in this paper.
However, based on this fact, we formulate the following even stronger conjecture.

Conjecture. If the volume of an r-hyperconvex body S is su�ciently close to that of an r-spindle S� of the same
surface area, then S is close to S� in the Hausdor� metric of compact sets.

2 Some general properties of r-hyperconvex duality
It follows from the de�nition that the intersection of r-hyperconvex sets is r-hyperconvex. Let S be an r-
hyperconvex body, let x ∈ bd S and let u ∈ Sd−1 be an outer unit normal vector to S at x. It is known that
S ⊆ rBd + x − ru (see e.g. [5, Corollary 3.4 on page 204]), and we say that the ball rBd + x − ru supports S
at x (see [5, De�nition 3.3 on page 205]). The following de�nition appears in several papers in some form, for
example in [5], [6] and [17].

Let H ⊆ Ed be a point set. We de�ne the r-hyperconvex dual Hr of H as

Hr = {y ∈ Ed | H ⊆ rBd + y}. (5)

Reformulating this as Hr = {y ∈ Ed | d(x, y) ≤ r for every x ∈ H} yields for any set H ⊆ Ed that

Hr = ⋂x∈H(rBd + x). (6)

It is immediate from (6) that for any set H the dual Hr is always an r-hyperconvex body (or it is empty).
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In the following theorem we summarize certain basic properties of r-hyperconvex duality. We note that
Parts (i)–(v) are known (see e.g. [5], [6], [17]). These properties (especially the �rst one) justify the use of
the word ‘dual’ in view of the corresponding properties of classical polar duality of (linearly) convex bodies;
compareTheorems 1.6.1 and 1.6.2 onpages 33–34 in [25]. For a setH ⊆ Ed, let convr H denote the r-hyperconvex
hull of H, which is de�ned as the intersection of all r-hyperconvex sets that contain H.

Theorem 2.1. For arbitrary sets H, H1, H2 ⊆ Ed, and for any r-hyperconvex bodies S, S1 and S2 in Ed we have
the following:

(i) Srr = S,
(ii) H1 ⊆ H2 implies Hr1 ⊇ Hr2,
(iii) (H1 ∪ H2)r = Hr1 ∩ H

r
2,

(iv) Hr = (convr H)r = (convr H)r,
(v) (S1 ∩ S2)r = convr(Sr1 ∪ S

r
2).

Furthermore, if S1 ∪ S2 is r-hyperconvex, then Sr1 ∪ S
r
2 is also r-hyperconvex.

Proof. Part (i) is seen as follows: Srr = ⋂y∈Sr (rBd + y) = ⋂y:S⊆rBd+y(rBd + y) = S. The proofs of (ii)–(v) are
completely analogous to those of the corresponding statements in linear convexity; for details see e.g. [25,
Section 1.6].

It remains to prove the last statement of Theorem 2.1. We claim that if S1 ∪ S2 is r-hyperconvex, then
Sr1 ∪ S

r
2 = (S1 ∩ S2)r. The relation Sr1 ∪ S

r
2 ⊆ (S1 ∩ S2)r is evident. We need to prove that Sr1 ∪ S

r
2 ⊇ (S1 ∩ S2)r.

For a set A ⊆ Ed, let Ac denote the complement of A. Suppose, on the contrary, that there exists a point
y ∈ (Sr1 ∪ S

r
2)
c for which y ∉ ((S1 ∩ S2)r)c, and seek a contradiction.

I

x1 x2

o

y

z ∈ S1 ∩ S2z1
z2

> r > r

≤ rr
r

Figure 1. The plane spanned by y, x1 and x2

Since y ∉ Sr1∪ S
r
2, there exist x1 ∈ S1 with d(x1, y) > r and x2 ∈ S2 with d(x2, y) > r. From the assumption

that y ∉ ((S1 ∩ S2)r)c it follows that x1 ∉ S2 and x2 ∉ S1. We may clearly assume that the points y, x1 and
x2 are not collinear and thus they span a 2-dimensional a�ne subspace L. We represented L in Figure 1 such
that the line through x1 and x2 is horizontal and y is in the upper half-plane. As S1 ∪ S2 is r-hyperconvex, so
is (S1 ∪ S2) ∩ L. Thus we may join x1 and x2 with a shorter circular arc I of radius r and centre o such that y
and I lie in di�erent half-planes of L determined by the line through x1 and x2, as shown in Figure 1.

By continuity, there exists a point z ∈ S1 ∩ S2 on the arc I with d(y, z) ≤ r. Furthermore, there is a point
z1 on the the arc between x1 and z with d(y, z1) = r, and there is another point z2 on the arc between z and
x2 such that d(y, z2) = r. (Note that z1 or z2 (or both) may coincide with z.) Since it is assumed that y and I
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are in di�erent half-planes of L determined by the line through x1 and x2, the point y has to coincide with o,
which is a contradiction. This �nishes the proof of Theorem 1. 2

The support function of a nonempty closed convex set K ⊂ Ed is de�ned as hK(x) := supy∈K⟨x, y⟩ for
x ∈ Ed. For basic properties of the support function we refer to [25, Section 1.7].

Note that a supporting hyperplane of an r-hyperconvex body S has exactly one contact point with S. For
u ∈ Sd−1, let x(u) denote the unique point of bd S at which u is an outer unit normal vector. In the case that
S is of constant width, x(u) and x(−u) are called opposite points in the literature [8, page 135].

Let rBd + y be a supporting ball of S at x(u). Then, by de�nition, y ∈ Sr and (6) implies that Sr ⊆ rBd + x.
This fact can be summarized in the following well-known statement (see e.g. [8, Section 63]).

Proposition 2.2. For any u ∈ Sd−1 and any r-hyperconvex body S, we have hS(u) + hSr (−u) = r.

Proposition 2.2 has a useful consequence, namely that

S + (−Sr) = rBd + x (7)

for some x ∈ Ed.
We note that (7) shows that if S is an r-hyperconvex body, then it is aMinkowski summand of the ball rBd.

In fact, using Theorem 3.2.2 in [25] one obtains that for a convex body S the following are equivalent: (i) S is
an r-hyperconvex body, (ii) S is a Minkowski summand of rBd, (iii) S slides freely in rBd (cf. page 143 in [25]).
For more information on Minkowski summands of convex bodies we refer to Sections 3.1 and 3.2 of [25].

If for a set H it holds that H = Hr, then we say that H is self-dual with radius r. A self-dual r-hyperconvex
body S ⊂ Ed with radius r is equal to the intersection of all closed balls of radius r whose centre is contained
in S. Eggleston [13] called this the spherical intersection property of S. He proved in [13] that a convex body has
constant width r if and only if it has the spherical intersection property, that is, it is self-dual with radius r.
We state a somewhat similar result that is a direct consequence of Proposition 2.2.

Lemma 2.3. Let S be an r-hyperconvex body and ε ≥ 0. If δH(S, −Sr + y) ≤ ε for some y ∈ Ed, then

δH(S,
r
2
Bd + z) ≤

ε
2

for some z ∈ Ed.

Proof. From (7) we have hS(u) + h−Sr (u) = r + ⟨u, x⟩ for some x, and by [25, Theorem 1.8.11] we know that
δH(S, −Sr + y) = supu∈Sd−1 |hS(u) − h−Sr+y(u)|. Thus the condition of the lemma implies

!!!!!!hS(u) − (
r
2
+ ⟨u, x + y

2 ⟩)
!!!!!! ≤

ε
2

for every u ∈ Sd−1, which proves the lemma with z = (x + y)/2. 2

The quermassintegralsWi(⋅)with i = 0, . . . , d are important geometric quantities associatedwith convex
bodies; for the precise de�nition and basic properties of quermassintegrals see e.g. [25, Section 4.2]. Even
thoughwewill not need them in the proof of Theorems 1.1, 1.2 and 1.3, we note that combining Proposition 2.2
with a result of Chakerian [10] (see also [11, Formula (6.7) on page 66]) one can express the quermassintegrals
Wi(Sr) with i = 0, . . . , d of Sr in terms of those of the r-hyperconvex body S as follows:

Wi(Sr) =
d−i
∑
j=0

(−1)j(d − i
j )Wd−j(S)rd−i−j .

Let K ⊂ Ed be a convex body with C2 boundary and strictly positive Gaussian curvature. Let r1(K, u) ≤
r2(K, u) ≤ ⋅ ⋅ ⋅ ≤ rd−1(K, u) denote the principal radii of curvature of bd K at x. In the case that K is of constant
width w, it is known (see [8, page 136]) that for i = 1, 2, . . . , d − 1 it holds that

ri(K, u) + rd−i(K, −u) = w.

Using Proposition 2.2, one can obtain a similar formula for r-hyperconvex bodies as follows:

ri(S, u) + rd−i(Sr , −u) = r.
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3 Proofs of Theorem 1.1 and Theorem 1.2
For the proof we need the classical Brunn–Minkowski inequality that states that if C, D ⊂ Ed are compact
convex sets, then

vol1/d(C + D) ≥ vol1/d(C) + vol1/d(D).

If C and D are both proper (full-dimensional), then equality holds if and only if C and D are (positive) homo-
thetic copies; see [25, Theorem 6.1.1, page 309].

Proof of Theorem 1.1. Using Proposition 2.2 one obtains vol(rBd) = vol(S + (−Sr)), from which the Brunn–
Minkowski inequality and the inequality between the arithmetic and geometric means yield

vol1/d(rBd) = vol1/d(S + (−Sr)) ≥ vol1/d(S) + vol1/d(−Sr) ≥ 2√vol1/d(S) ⋅ vol1/d(−Sr). (8)

This implies that vol2(rBd) ≥ 22d vol(S) ⋅ vol(Sr), hence P( r2B
d) ≥ P(S). In this argument equality holds if

and only if S and −Sr are positive homothetic copies of each other having the same volume vol(r/2 ⋅ Bd). This
means that S and −Sr are congruent, and hence Lemma 2.3 yields with ε = 0 that S = r/2 ⋅ Bd + x for some
x ∈ Ed. 2

For the proof of Theorem 1.2 we need the following stronger version of the inequality between the arith-
metic and geometric means (only for two terms). Let a ≥ b be two positive numbers and write λ = a/b − 1.
Then

a + b
2

≥ √ab +
bλ2

32
if 0 ≤ λ ≤ 8, and (9)

a + b
2

≥
a
2

=
a
3
+
a
6

= √a ⋅
a
9
+
a
6

≥ √ab +
a
6

if 8 ≤ λ. (10)

Inequality (9) can be veri�ed by a straightforward direct calculation which we leave to the reader.
In order to prove Theorem 1.2, we use the stability version of the Brunn–Minkowski inequality proved by

Groemer [15, Theorem 3 on page 367]; see also [16, pages 134–135]. We do not state Groemer’s theorem in its
most general form, we only formulate the following consequence of it which we use in our proof.

Let K1 and K2 be proper convex bodies in Ed and let ϱ > 0 be a real number with diam(Ki) ≤ ϱ vol1/d(Ki)
for i = 1, 2, where diam( ⋅ ) denotes the diameter of a set. LetM denote the maximum and m the minimum of
vol1/d(K1) and vol1/d(K2). Furthermore, let K�

1 and K�
2 be homothetic copies of K1 and K2, respectively, that

share the same centroid and have unit volume. Then it holds that

vol1/d(K1 + K22 ) ≥
1
2
vol1/d(K1) +

1
2
vol1/d(K2) + ωδd+1H (K�

1, K
�
2), (11)

where
ω =

m
2d+2

(
d(3 + 2−13)

31/d
(
2M
m

+ 2)ϱ)
−d−1

. (12)

Proof of Theorem 1.2. Since the ‘if’ part of the statement is evident, we only prove the ‘only if’ part. Without
loss of generality, we may assume that vol(S) ≥ vol(Sr). Then using (2) we obtain from (4) and (3) that

vol(S) ≥ √P(S) ≥ (1 − ε) vol ( r2
Bd), (13)

vol(Sr) ≤ √P(S) ≤ vol ( r2
Bd). (14)

Let a = vol1/d(S) and b = vol1/d(Sr) = vol1/d(−Sr).
Assume that λ ≥ 8. Similarly as before, inequality (10) yields

vol1/d ( r2
Bd) =

vol1/d(rBd)
2

=
vol1/d(S + (−Sr))

2
≥
vol1/d(S) + vol1/d(−Sr)

2

≥ √ab +
a
6

≥ √(P(S))1/d + vol1/d(S)
6

.
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Raising both sides to the power 2d, then using (2) and (4), we obtain

P(
r
2
Bd) ≥ P(S) + vol2(S)

62d
≥ (1 − ε)P( r2

Bd) + vol2(S)
62d

,

which can be reformulated by (2) and (13) as

62dε ≥ vol2(S)
P( r2Bd)

≥ (1 − ε)2.

Therefore there is an εd,r ∈ (0, 1/2) such that the above inequality cannot hold for any ε ∈ (0, εd,r).
From now on we assume that ε ∈ (0, εd,r), whence we have λ ∈ (0, 8).
First we show that the volume of Sr is close to that of S. From the condition on λ we get b ≥ a/9, thus

vol(Sr) = bd ≥
ad

9d
≥
1 − ε
9d

vol( r2
Bd).

Inequality (9) yields that

vol1/d( r2
Bd) =

vol1/d(rBd)
2

=
vol1/d(S + (−Sr))

2
≥
vol1/d(S) + vol1/d(−Sr)

2

≥ √ab +
bλ2

32
≥ √(P(S))1/d + (1 − ε)1/d

9
⋅
vol1/d( r2B

d)λ2

32
.

Raising both sides to the power 2d we obtain P( r2B
d) − P(S) ≥ ã1λ4d, where ã1 is a strictly positive constant

depending only on d and r. Thus according to (4) we have

εP( r2
Bd) ≥ P(

r
2
Bd) − P(S) ≥ ã1λ4d .

Since P( r2B
d) is bounded from above, we get λ ≤ ã2ε1/4d, where ã2 is a constant depending on d and r. As

bλ + b = a, this gives
vol1/d(S) − vol1/d(Sr) ≤ ã3ε1/4d . (15)

for some positive constant ã3 that depends on d and r only.
Equations (13) and (14) with (15) give

vol1/d(S) − vol1/d( r2
Bd) ≤ vol1/d(S) − vol1/d(Sr) ≤ ã3ε1/4d and

vol1/d( r2
Bd) − vol1/d(S) ≤ ε1/d vol1/d( r2

Bd) ≤ ε1/4d vol1/d( r2
Bd).

Thus, using (15), we can choose a positive constant ã4 that depends only on d and r and satis�es

max{
!!!!!!vol

1/d(S) − vol1/d( r2
Bd)

!!!!!!,
!!!!!!vol

1/d(Sr) − vol1/d( r2
Bd)

!!!!!!} ≤ ã4ε1/4d . (16)

Having established (16), now we are ready to complete the proof using (11). Let Ŝ and − ̂Sr be (positive) homo-
thetic copies of S and −Sr, respectively, that share a common centroid and have unit volume. Applying (11) to
S and −Sr, we get

vol1/d( r2
Bd) ≥

1
2
vol1/d(S) + 1

2
vol1/d(−Sr) + ωδd+1H (Ŝ, − ̂Sr),

where ω is de�ned in (12).
Inequality (16) implies that there exists v0 > 0 with the property that vol(−Sr) ≥ v0 for all S that satisfy

the conditions of Theorem 1.2. Thus m is bounded away from 0, and M/m is bounded from above (as usual,
the constants depend on r and d). Moreover, there exists a ρ > 0 with ϱ < ρ for every S that satis�es the
conditions of Theorem 1.2. Thus, it follows from (12) that there exists an ω0 > 0, that depends only on d and
r, such that ω > ω0.

Finally, comparing this to (16) leads to

ã4ε1/4d ≥ vol1/d( r2
Bd) − 1

2
vol1/d(S) − 1

2
vol1/d(−Sr) ≥ ω0δd+1H (Ŝ, − ̂Sr).

This implies the statement of Theorem 1.2 by Lemma 2.3. 2
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4 Proof of Theorem 1.3
Authors’ note. We note that the following proof of Theorem 1.3, and especially the proof of Lemma 4.1, is very
similar to the one presented in Section 4 of Csikós, Lángi and Naszódi [12] on pages 125–126. We have learned
of this similarity only after the manuscript had been accepted for publication.

Clearly, it is su�cient to prove Theorem 1.3 in the case that r = 1. We recall that the intersection of a �nite
number of closed unit radius circular discs is called a (convex) disc-polygon. The notion of side and vertex are
self-explanatory, for more details we refer to [6, De�nition 1.1]. First, we prove Theorem 1.3 for disc-triangles.

Let xyz be a disc-triangle with vertices x, y and z, and with edge-lengths (central angles) α, β and ã, and
let xyz△ be the corresponding Euclidean triangle with vertices x, y and z, and (Euclidean) edge-lengths a, b
and c, as shown in Figure 2. We will show that if one keeps x and y �xed andmoves z such that the perimeter
of xyz remains constant, then area(xyz) becomes minimal precisely when xyz degenerates into a spindle.
We will prove this fact using a combination of elementary geometry and basic calculus. Although the proof
does not contain any deep tools, it is quite intricate.

y
x

z

c
b a

ã

β

α

Figure 2. The disc-triangle xyz with edge-lenghts α, β and ã, where α + β + ã = κ is the perimeter.

Denote the perimeter of xyz by κ = α + β + ã. Let µ = (α + β)/2 = (κ − ã)/2, and let ξ be such that
α = µ + ξ and β = µ − ξ . Clearly, the variable ξ parametrizes the vertex z andmakes area(xyz) a function of ξ .
By symmetry, we may assume that α ≥ β, so it is enough to consider ξ ∈ [0, ã/2]. Then we have

area(xyz) = α − sin α
2

+
β − sin β

2
+
ã− sin ã

2
+ area(xyz△). (17)

For the edges of xyz△ we have a = 2 sin α
2 , b = 2 sin β

2 and c = 2 sin ã
2 , whence the half perimeter is s =

a+b+c
2 = sin α

2 + sin β
2 + sin ã

2 . Heron’s formula yields

area(xyz△) = √s(s − a)(s − b)(s − c) = √( − sin2
ã
2
+ ( sin α2

+ sin β
2)

2
)( sin2

ã
2
− ( sin α2

− sin β
2)

2
).

Since sin α + sin β = 2 sin µ cos ξ , sin α
2 + sin β

2 = 2 sin µ
2 cos

ξ
2 and sin α

2 − sin β
2 = 2 sin ξ

2 cos
µ
2 , equation (17)

and the above formula imply

area(xyz) = µ − sin µ cos ξ +
ã− sin ã

2
+ area(xyz△),

area(xyz△) = √(4 sin2 µ2
cos2 ξ

2
− sin2

ã
2)(

sin2
ã
2
− 4 sin2 ξ

2
cos2 µ

2)
. (18)

To reduce clutter in the calculations below, we introduce the functions Â(ξ) = area(xyz) and A(ξ) =
area(xyz△).

Lemma 4.1. We have dÂ(ξ)
dξ ≤ 0 for 0 ≤ ξ < ã/2, and dÂ(ξ)

dξ = 0 if and only if ξ = 0.
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Proof. Di�erentiation of Â(ξ) with respect to ξ yields

dÂ(ξ)
dξ

= sin µ sin ξ + 1
2A(ξ)(

− 4 sin2 µ
2
cos ξ

2
sin ξ

2(
sin2

ã
2
− 4 sin2 ξ

2
cos2 µ

2)

− 4 sin ξ
2
cos ξ

2
cos2 µ

2(
4 sin2 µ

2
cos2 ξ

2
− sin2

ã
2))

= sin µ sin ξ − sin ξ
A(ξ) (

sin2 µ
2(

sin2
ã
2
− 4 sin2 ξ

2
cos2 µ

2)
+ cos2 µ

2(
4 sin2 µ

2
cos2 ξ

2
− sin2

ã
2))

= sin µ sin ξ − sin ξ
A(ξ) (

sin2 µ( cos2 ξ2
− sin2 ξ

2)
− sin2

ã
2(

cos2 µ
2
− sin2 µ

2))

=
sin ξ sin µ
A(ξ) (A(ξ) − sin µ cos ξ + sin2

ã
2
cot µ).

Thus dÂ(ξ)
dξ ≤ 0 if and only if

A(ξ) ≤ sin µ cos ξ − sin2
ã
2
cot µ, (19)

because ξ ∈ [0, ã
2 ] ⊆ [0, π2 ] and µ ∈ [0, π).

To verify (19), we �rst prove that its right-hand side is positive, and then we only have to show that

A2(ξ) − (sin µ cos ξ − sin2
ã
2
cot µ)

2
≤ 0. (20)

Observe that the right-hand side of (19) is positive if and and only if

sin2 µ cos ξ − sin2
ã
2
cos µ > 0.

If cos µ < 0, this is obvious, because ξ ∈ [0, ã
2 ] ⊆ [0, π2 ]. If cos µ ≥ 0, then using sin2 ã

2 − 4 sin2 µ
2 cos

2 ξ
2 =

s(c − s) < 0 we obtain that

sin2 µ cos ξ − sin2
ã
2
cos µ > sin2 µ cos ξ − 4 sin2 µ

2
cos2 ξ

2
cos µ = 4 sin2 µ

2(
cos2 µ

2
cos ξ − cos2 ξ

2
cos µ)

= 4 sin2 µ
2(

sin2 µ
2
cos2 ξ

2
− sin2 ξ

2
cos2 µ

2)
= 4 sin2 µ

2
sin µ + ξ

2
sin µ − ξ

2
> 0.

Thus the right-hand side of (19) is indeed positive.
To prove (20), we �rst compute from (18) that

A2(ξ) = (4 sin2 µ2
cos2 ξ

2
− sin2

ã
2)(

sin2
ã
2
− 4 sin2 ξ

2
cos2 µ

2)

= ((4 sin2 µ2
− sin2

ã
2)

− 4 sin2 µ
2
sin2 ξ

2)(
sin2

ã
2
− 4 sin2 ξ

2
cos2 µ

2)

= 4 sin2 µ
2(

sin2
ã
2
− 4 sin2 ξ

2
cos2 µ

2)
− sin2

ã
2(

sin2
ã
2
− 4 sin2 ξ

2
cos2 µ

2)

− 4 sin2 µ
2
sin2 ξ

2
sin2

ã
2
+ 4 sin2 µ

2
sin2 ξ

2
4 sin2 ξ

2
cos2 µ

2

= 4 sin2 µ
2
sin2

ã
2
− 4 sin2 µ sin2 ξ

2
− sin4

ã
2
+ 4 sin2

ã
2
sin2 ξ

2
cos2 µ

2
− 4 sin2 µ

2
sin2 ξ

2
sin2

ã
2

+ 4 sin2 µ sin4 ξ
2

= 4 sin2 µ sin4 ξ
2
− 4 sin2 ξ

2(
sin2 µ − sin2

ã
2
cos2 µ

2
+ sin2 µ

2
sin2

ã
2)

+ 4 sin2 µ
2
sin2

ã
2
− sin4

ã
2

= 4 sin2 µ sin4 ξ
2
− 4 sin2 ξ

2(
sin2 µ − sin2

ã
2
cos µ) + 4 sin2 µ

2
sin2

ã
2
− sin4

ã
2
.
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Substituting this into the left-hand side of (20), we obtain

A2(ξ) − ( sin µ cos ξ − sin2
ã
2
cot µ)

2

= 4 sin2 µ sin4 ξ
2
− 4 sin2 ξ

2(
sin2 µ − sin2

ã
2
cos µ) + 4 sin2 µ

2
sin2

ã
2
− sin4

ã
2

− sin2 µ cos2 ξ − sin4
ã
2
cot2 µ + 2 sin µ cos ξ sin2

ã
2
cot µ

= 4 sin2 µ sin4 ξ
2
− 4 sin2 ξ

2(
sin2 µ − sin2

ã
2
cos µ) + 4 sin2 µ

2
sin2

ã
2
− sin4

ã
2

− sin2 µ(1 − 2 sin2 ξ
2)

2
− sin4

ã
2
cot2 µ + 2 sin µ(1 − 2 sin2 ξ

2)
sin2

ã
2
cot µ

= −4 sin2 ξ
2(

sin2 µ − sin2
ã
2
cos µ) + 4 sin2 µ

2
sin2

ã
2
− sin4

ã
2
− sin2 µ + 4 sin2 µ sin2 ξ

2

− sin4
ã
2
cot2 µ + 2 sin µ sin2

ã
2
cot µ − 4 sin2 ξ

2
sin2

ã
2
cos µ

= 4 sin2 µ
2
sin2

ã
2
− sin4

ã
2
− sin2 µ − sin4

ã
2
cot2 µ + 2 sin2

ã
2
cos µ

= sin2
ã
2(

4 sin2 µ
2
+ 2 cos µ) − sin4

ã
2(

1 + cot2 µ) − sin2 µ

= sin2
ã
2(

4 sin2 µ
2
+ 2(1 − 2 sin2 µ

2))
− sin4

ã
2

1
sin2 µ

− sin2 µ

= −(sin2 µ − sin2
ã
2 )

2/sin2 µ.

This is clearly non-positive, hence (20) is proved.
If dÂ(ξ)dξ = 0, then by the �rst formula of this proof, either ξ = 0 or µ = 0 or sin2 µ = sin2(ã/2) by our last

formula. As 2µ = α + β, we can exclude the second case. If sin µ = sin(ã/2) then µ = ã/2, hence α + β = ã,
whichmeans that z is on the re�ection of the arc xy (side of xyz) to the straight line xy, i.e. xyz is not a proper
disc-triangle but a spindle. This �nishes the proof of Lemma 4.1. 2

Nowwe proceed from disc-triangles to general disc-polygons with an arbitrary number of sides. Let D be
a disc-polygon with vertices x1, x2, . . . , xn (n ≥ 4). Assume that the vertices are labeled in a cyclic order on
the boundary of D such that the side xn−2xn−1 is not shorter than the side xn−1xn. We apply Lemma 4.1 to the
disc-triangle xn−2xn−1xn in such a way that xn−1 plays the role of the vertex z. We continuously move xn−1 as
described in Lemma 4.1 while all other vertices of D remain �xed and the perimeter of D also remains �xed.

xn−1

xn

x1

xn−2

x�n−1

The extreme position of xn−1 is when it is incident with the extension of the arc of the side xnx1. Denote
this new point by x�n−1. By Lemma 4.1, area(xn−2x�n−1xn) < area(xn−2xn−1xn). The points x1, . . . , x�n−1, xn
determine a new disc-polygon D� with fewer vertices than D (xn is no longer a vertex), the same perimeter,
and with area(D�) < area(D).
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Since a general hyperconvex disc may be approximated by disc n-gons arbitrarily well with respect to
Hausdor� distance, a simple continuity argument �nishes the proof of Theorem 1.3 for general hyperconvex
discs.
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