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� The optical properties of P25 based composites are Pt-shape dependent. � The phenol and methyl-orange degradation is shape and base
catalyst dependent. � Fine-tuning of the degradation intermediates is possible via Pt morphology. � Kinetics of oxalic acid degradation was
independent from the shape of Pt. � The H2 production was efficient in the case of spherical Pt with high index facets.
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1. Introduction

Solar-light-driven hydrogen production and wastewater trea
ment (removal of organic pollutants such as phenolic compound
alcohols, and carboxylic acids) has gained significant attentio
owing to the simplicity of the concept.

The photocatalytic activity of different types of semiconducto
oxides has already been proved to be influenced by crystal struc
ture [1,2], size [3,4], shape [5], crystallinity grade [6], surface are
[7,8], and band-gap energy [9]. Intensive research is going on t
find (photo)catalytic materials with specific applicability more effi
cient and/or cheaper than the commercially available titanias, suc
as Hombikat UV-100 [10–12], Kronos vlp7000 [13,14], and th
well-known Evonik Aeroxide P25-TiO2. These promising materia
still possess some weaknesses such as limited photosensitivity i
the UV range and selective crystal phase activity [15–17]. In th
context the interaction and the differences and similaritie
between structural, surface, and morphological properties ca
affect activity in a crucial way.

http://dx.doi.org/10.1016/j.jcat.2015.02.008
0021-9517/� 2015 Elsevier Inc. All rights reserved.

⇑ Corresponding author at: Faculty of Physics, Babes�-Bolyai Universit
M. Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania.

E-mail address: pap.zsolt@phys.ubbcluj.ro (Zs. Pap).
Please cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spheric
achieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.201
es on commercial titanias: Is
igh activity?
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g more attention in the field of photocatalysis, exploration of the impact o
icles’ morphology on the activity of TiO2–Pt nanocomposites is inevitabl
t nanoparticles have been synthesized by chemical reduction, while Aldric
Aeroxide P25 were used as base photocatalysts. The nanocomposites wer
nd HRTEM to uncover morphological, optical, and structural peculiarities

sts. The importance of the Pt nanoparticles’ geometry was proven at thre
hotodegradation of three model pollutants: phenol, methyl orange, and oxal

ation intermediates’ evolution profile in the case of phenol degradation; an
uction.

� 2015 Elsevier Inc. All rights reserve

The contest to synthesize different-shaped noble meta
nanoparticles was already under way in various publications, usin
different metals, achieving a wide variety of fascinating nanostruc
ture geometries [18–22]. One of the most investigated noble me
als in ‘‘nanosculpturing,’’ besides Au and Ag, is Pt. Various method
have been reported for producing Pt nanoparticles with differen
shapes (e.g., cubes [23,24], tetrahedra [25,26], spheres [27], rod
[28], tubes [29]) for diverse (e.g., electrochemical [30], antibacter
ial [31], medical [32], and catalytic [33]) applications.

It is already known that platinum-modified TiO2 can enhanc
photocatalytic activity under solar/UV light because of the fas
transfer of the photogenerated electrons from the semiconducto
oxide to Pt nanoparticles, resulting in successful charge separatio
and a decrease in e�/h+ pair recombination [34]. Pt–TiO2 nanocom
posites not only present high photocatalytic activity for degrada
tion of various organic substrates, such as methanol, toluene, an
phenol/phenolic compounds [7], but also are efficient in th
reformation of ethanol to H2 under anaerobic conditions [35
Even if a relatively large number of publications deal with di
ferent-shaped Pt nanoparticles’ synthesis and with TiO2–Pt nanos
tructures’ (photo)activity, to the best knowledge of the author
none of the studies have focused on the correlations between th

able at ScienceDirect

f Catalysis

.e lsevier .com/locate / jcat
al Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of
5.02.008
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86 photocatalytic activity/H2 production results and the shape of the
87 Pt nanoparticles.
88 Phenol and phenolic compounds are commonly used in various
89 industries, such as agriculture and pharmaceutical and food indus-
90 tries. Among expensive and less efficient wastewater treatment
91 methods, TiO2-based heterogeneous photocatalysis can be used
92 in a promising way to eliminate these kinds of organic compounds.
93 An important aspect is the photodegradation of phenol itself
94 (which was studied already in the early 1990s [36]), where various
95 hydroxylated phenol compounds [37] can appear during the degra-
96 dation process (such as pyrocatechol (PY), hydroquinone (HQ), and
97 resorcinol (RES) [38]). These organic compounds, according to
98 widely accepted safety protocols, are at the category 1 or 2 carcino-
99 genic risk and toxicity levels [8,39]. Furthermore, these primary

100 degradation products are more toxic than the phenol itself.
101 Experiments performed on laboratory mice showed that hydro-
102 quinone is 2.3 times, while pyrocatechol is 1.4 times more toxic
103 then the already mentioned phenol. The good news is that resorci-
104 nol is only 1.11 times less toxic. For the exact LD50 values, Ref. [40]
105 can be consulted.
106 The purpose of this study was to elucidate structural peculiari-
107 ties via various investigation methods (diffuse reflectance spec-
108 troscopy (DRS), transmission electron microscopy (TEM), X-ray
109 diffraction (XRD)) and to correlate them with the activity of the dif-
110 ferent types of commercial TiO2 powders coupled with differently
111 shaped Pt nanoparticles in terms of photodegradation, inter-
112 mediates’ evolution trends, and H2 production. The research strat-
113 egy is presented schematically in Fig. 1.
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146stirred for 1 h to eliminate the by-products and the unreacted
147NaBH4. The obtained platinum sol was then used immediately for
148the impregnation of the chosen titanias.

1492.2. Synthesis of the TiO2–Pt nanocomposites

150The chosen commercial titania (Aldrich anatase – AA, Aldrich
151rutile – AR. and Evonik Aeroxide P25–P25) (400 mg) was sus-
152pended in 400 mL ultrapure water and sonicated for 15 min.
153Then the necessary quantity of Pt suspension was added to the
154homogenized dispersion under vigorous stirring. The added sus-
155pensions volume was calculated in such a way that the Pt nanopar-
156ticles’ weight fraction in the final composites’ mass would be
1571 wt.% (in all the Pt-containing composite materials – no signifi-
158cant Pt loss was detected during the preparation procedure).
159After 5 min of ultrasonically assisted homogenization and 20 min
160of vigorous stirring, the resulted suspension was dried at 80 �C
161for 24 h, resulting in a light gray/gray material. These powders
162were washed with ultrapure water (4400 rpm, 10 min) and dried
163again at 80 �C for 24 h.
164The nomenclature of the samples was defined as follows:
165abbreviation of the base photocatalyst – Pt(s or c), where the first
166section can be defined as AA, AR, or P25, while in the second ‘‘s’’
167stands for spherical and ‘‘c’’ for cuboctahedral (the dominant shape
168among the polyhedral Pt nanoparticles).

1692.3. Methods and instrumentation
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171

172Sh
173(k
174ta
175Ba
176us
177

178(IL
179tro
180ele
181

2 G. Kovács et al. / Journal of Catalysis xxx (2015) xxx–xxx

YJCAT 11686 No. of Pages 13, Model 5G

14 March 2015

Pl
ac
Experimental

. Synthesis of the platinum nanoparticles

.1. Materials
Ethylene glycol (EG, 99.8%, anhydrous), AgNO3 (ACS reagent

ade, P99.0%), H2PtCl6 (ACS reagent), polyvinyl pyrrolidone
VP, Mw � 40,000), ethanol (P99.8% reagent grade), acetone
99.9%), trisodium citrate (ACS reagent grade, P99.0%), NaBH4

urum, P96%), and Aldrich anatase and Aldrich rutile reference
otocatalysts were purchased from Sigma–Aldrich, while

roxide P25 was acquired from Evonik Industries and used with-

R
182in
183Ku
184

185em
186op
187an

1882.3
189
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191ph
192th
193or
194MO

195vo
196wi
197in
198se
199pr
200Ag
201fo
202de
203ce
204to
205(b
t further purification.

.2. Synthesis of the polyhedral Pt nanoparticles
The synthesis of the polyhedral Pt nanoparticles was based on a

lyol method already available in the literature [41,42]. In a typi-
l synthesis process, 8 mL EG and 1 mL AgNO3 (0.04 M) were
ded in a three-neck flask and heated at 160 �C in a hot-oil bath.
eanwhile, two other solutions were prepared at room tempera-
re: a 2 mL 0.025 M solution of H2PtCl6 (solution 1) and a 4 mL
75 M solution of PVP in EG (solution 2). These were added
ultaneously to the reaction vessel as follows: 60 lL from solu-

n 2 and 30 lL from solution 1 every 30 s. Afterward, the resul-
nt mixture was refluxed at 160 �C for a further 25 min. After
at the product was centrifuged at 12,000 rpm for 15 min and
shed four times with acetone and hexane. Finally, the obtained
lyhedral Pt nanoparticles were redispersed in ethanol.

.3. Synthesis of the spherical Pt nanoparticles
Into a specific reaction vessel 43 mL of ultrapure water was

easured, followed by the addition of a 6.3 mL 5 mM solution of
sodium citrate. After 30 min, a 550 lL 22.8 mM H2PtCl6 solution
s added and the mixture was stirred at room temperature for

other 30 min. The last step in this synthesis was reduction by
e addition of 1 mL 0.15 M NaBH4. The reaction mixture was
ease cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spherical Pt
hieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.2015.02.0
.1. Characterization methods
X-ray diffraction (XRD) measurements were performed on a

imadzu 6000 diffractometer using Cu Ka radiation
= 1.5406 Å) equipped with a graphite monochromator. The ana-
se-rutile phase ratio in TiO2 was evaluated by method used by
nfield [43], and the crystallites’ average size was calculated
ing the Scherrer equation [44].
A JASCO-V650 spectrophotometer with an integration sphere
V-724) was used for measuring the DRS (diffuse reflectance spec-
scopy) spectra of the samples (k = 300–800 nm). The possible
ctron transitions were evaluated by plotting dR/dk vs. k, where

is the reflectance and k is the wavelength [8,39,45], while the
direct band-gap of the photocatalysts was determined via the
belka–Munk method.
TEM/HRTEM images were obtained with a FEI Tecnai F20 field
ission high-resolution transmission electron microscope

erating at an accelerating voltage of 200 kV and equipped with
Eagle 4k CCD camera.

.2. Assessment of the photocatalytic efficiencies
A photoreactor system with 6 � 6 W fluorescent lamps (kmax -

365 nm, irradiation time = 2 h) was used to measure the
otocatalytic activities. The photocatalyst suspension containing
e pollutant (initial concentration of phenol c0, phenol = 0.5 mM

oxalic acid c0, oxalic acid = 5 mM or methyl orange (MO) c0,

= 125 lM; catalyst concentration cphotocatalyst = 1.0 g L�1; total
lume of the suspension Vsusp = 100 mL) was continuously purged
th air to keep the dissolved oxygen concentration constant dur-

g the whole experiment. The concentration decrease of the cho-
n organic substrate (phenol and oxalic acid) and the phenol’s
imary degradation intermediates were followed using an
ilent 1100 series HPLC system (instrumental details can be

und in Refs. [39,46], while details regarding the intermediate
tection are detailed in Supporting information, Fig. S1). The con-
ntration of MO was followed using a JASCO V-650 spectropho-
meter at 513 nm. The assessed error of the photocatalytic tests
ased on reproducibility experiments) was 2–5%, while in all cases
nanoparticles on commercial titanias: Is shape tailoring a guarantee of
08
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239s,
240y,
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242s.
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pplie
the adsorption phenomenon (at the used concentration values
was negligible (below 5%).

To quantify the intermediates’ evolution efficiently, the inter
mediate evolution index (IEI) was introduced, which was calcu
lated, using the following formula, where Fint is the empirica

Fig. 1. Schematic diagram of the research methodology a
intermediate concentration evolution function and Cphendef is the
g
n

x
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271nanocomposites.
272In other research fields such as electrocatalysis, there is already
quantity of phenol degraded in the case of the less well performin
catalyst. Therefore a low IEI value means that the degradatio
intermediate does not accumulate in the reaction system [8,39]:

IEI ¼
Z Cp hendef

0
FintdC

2.3.3. Photocatalytic hydrogen production
The hydrogen production experiments were executed in a Pyre

glass photoreactor thermostated at 25 �C and surrounded by te
15 W low-pressure mercury lamps (kmax � 365 nm). The suspen
sion’s concentration was 1.0 g L�1 and the applied sacrificial agen
was oxalic acid (50 mM). During the photocatalytic runs the sus
pension was continuously purged with N2 (50 mL min�1) to avoi
the presence of O2. The H2 gas evolved was determined with
Hewlett-Packard 5890 gas chromatograph equipped with a ther
mal conductivity detector. On the basis of the H2 concentration
determined by GC from the flow rate of the N2, the rate of H2 evo
lution (r) at the time of the sampling has been determined. Th
total amount of hydrogen produced was estimated by integratin
the area under the hydrogen evolution curve using Origin 9 sof
ware. The duration of the experiment was 2 h.

3. Results and discussion

3.1. Commercial titanias used – the research strategy

In the present work three well-known commercial titanias wer

chosen: Aldrich anatase (AA), Aldrich rutile (AR), and Evonik
Aeroxide P25 (P25). They have been studied in detail during the
past 20–30 years and nearly all their major properties have been

Please cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spheric
achieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.201
uncovered (including surface quality, crystallinity-related issue
and synergism of anatase and rutile phases [47]). Consequentl
they are ideal supports (without unknown parameters) fo
investigating the effect of different-shaped platinum nanoparticle
The research possibilities further exploited in the present work ar
as follows:

� Anatase vs. rutile-both AA and AR are made from pure anatas
and rutile, while their average crystallite size is in the sam
range
� differentiate the effect of the titania crystal phase whe

depositing specifically shaped Pt nanoparticles;
� emphasize the importance of the Pt shape if it is deposited a

the surface of the same crystal phase (either on AA or on AR
� native mixture of crystal phases (meaning that the two crys

tal phases are obtained during the same synthesis process)
P25.

� Small vs. large crystallites – while P25 shows an average crys
tallite size of 25–30 nm, both AA and AR contain nanocrysta
between 150 and 300 nm
� electron-transfer-related issues between Pt and titani

nanocrystals;
� electron-transfer-related issues if different-shaped P

nanocrystals are deposited.

3.2. TiO2–Pt composites: why different-shaped platinum
nanoparticles?

Based on the above-mentioned strategy, polyhedral (dom
nantly cuboctahedral) and spherical particle geometries were cho
sen to illuminate the importance of the shape of platinum
nanocrystals for the photocatalytic activity of TiO –P

d in the current investigations of the TiO2–Pt nanocomposites.
273significant work regarding the influence of the crystal shape of the
274noble metals. Tian et al. have [48] already shown that in electro-
275oxidation processes the shape of the Pt nanoparticles is crucial,

al Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of
5.02.008
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276 due to the number of the so-called stepped atoms, which can be
277 found at the high-indexed crystal facets ((730), (411), etc.) and
278 are responsible for the enhanced electrocatalytic activity [49].
279 Thus, the motivation of the present work is to illuminate the same
280 aspects for the photocatalytic processes.

281 3.3. TiO2–Pt nanocomposites: characterization

282 The base photocatalysts’ crystal phase composition, crystal size,
283 and specific surface area values are summarized in Table 1. The
284 parameters obtained from the measurements coincide with the
285 ones given by the manufacturer or with those published in the
286 literature [50,51] (Fig. 2). By depositing platinum on the surface
287 of these materials, no structural changes were observed, as
288 expected. The next step in the characterization of these materials
289 was to literally study the morphology of these nanocomposites.
290 First the morphology of the polyhedral platinum nanoparticles
291 was examined by HRTEM while the lattice fringes were evaluated
292 based on Refs. [41,52]. The obtained micrographs are presented in
293 Fig. 3. As expected, the dominant shape of the nanocrystallites was
294 cuboctahedral/octahedral – 72% (a relatively small percentage of
295 tetrahedral – 5% – and some undefined polyhedral particles –
296 23% – were also noticed).1 The interplanar distances were evaluated
297 by FFT. The size distribution of these platinum nanocrystallites (both
298 spherical and polyhedral ones) was homogeneous, most of them
299 having a size of 4–6 nm (85%), as illustrated in Fig. 3.
300 The deposition of the platinum nanoparticles at the surfaces of
301 the commercial titanias was also successful, as shown by Fig. 3.
302 While in the case of P25 it was quite easy to obtain high-quality
303 images of the deposition of platinum nanoparticles, the situation
304 was dire in the case of AA and AR due to their large crystal size
305 (200–300 nm). This is why only P25-related TEM micrographs
306 were presented.
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334taking place within an electronic band system in which the band
335gap has the same value, without being influenced by the presence
336of platinum. Although their band gaps may not differ, the color
337change of the material is obvious from the rest of the DRS spectra.
338The situation slightly changed in the case of AR-based samples. By
339depositing Pt onto the surface of AR, the band-gap energy values
340are slightly changed from 2.96 to 2.91 and 2.82 eV (AR-Pt(s) and
341AR-Pt(c) composites). The mentioned changes are also faintly visi-
342ble in the first derivative spectra.
343The investigations in the cases of AA- and AR-based composites
344already suggest that in the case of P25 (where both anatase and
345rutile are present in a well-defined ratio) a mixture of the effects
346should be observable. As expected, the presence of Pt modified
347the optical properties of P25 significantly. The bare catalyst exhi-
348bits two electron transition bands in the first derivative DRS spec-
349tra, one assigned to anatase and the other to rutile (Fig. 5b). As
350polyhedral nanoparticles are deposited (P25-Pt(c)) at the surface
351of
352ta
353pa
354ru
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356of
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Pl
ac
. The TiO2–Pt nanocomposites: optical properties

One of the first aspects that need investigation for materials
th photocatalytic potential is their optical properties. The first,

plest approach was to examine the obtained nanocomposites’
lor. One may expect that the color of the composite materials
ould not change at all when the nanocrystals’ shape is varied,
cause in each case we have the same material (the same optical
roperty set’’ should be observable) with the same composition.
However, as can be clearly seen in Fig. 4, just by changing the

ape of the platinum nanoparticles, while using the same base
talyst (P25), an interesting change occurred in the investigated
nocomposites’ color (intense creamy gray for sample P25-Pt(c),
nventional gray for P25-Pt(s)). These observations indicate that

ore detailed study of the optical properties of these materials
s inevitable.
To get quantified information about the optical peculiarities of

ese materials, the DRS and the first-order derivative DRS spectra
re recorded (Fig. 5a) and the band-gap values calculated

able 1). The AA-based composites were examined in the first
p, to gain critical information when only a single crystalline
ase of titania was present in the composite. As Pt nanoparticles

e deposited onto the surface of AA, the band-gap value remains
nstant. This can be even more precisely observed in the first
rivative spectra; the peak located at 375 nm (3.3 eV) in the case
AA does not shift at all in the platinum-containing composites
A-Pt(s), AA-Pt(c)). This means that the possible electron transi-
ns between the valence band and the conduction band are

The shape distribution was estimated based on 10 TEM images – 150 particles
uired from 10 randomly selected spots on the used copper grid.
ease cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spherical Pt
hieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.2015.02.0
the material, the ratio of the two bands changes in favor of ana-
se, while the peak positions do not vary. If the deposited Pt nano-
rticles are spherical (P25-Pt(s)), then the ratio of the anatase/
tile bands is even more balanced toward the anatase phase.
is means that in the case of P25-based composites the presence
Pt denies/inhibits electron transitions within the rutile particles.
nadsorbing pollutant degradation, such as phenol.

. The photocatalytic activity of the obtained nanocomposites

.1. The photodegradation of phenol
Some hints regarding the possible importance of the Pt crystal

ometry are already given by the interesting changes observed
the optical properties of the composite materials (see Fig. 6).2

In the first instance the P25-based composites’ activity was
aluated. It is known that this commercial powder is a versatile
d quite efficient photocatalytic material, which can be seen also
the present case by achieving 87% of phenol decomposition in
. As platinum nanoparticles were deposited on P25, the activity

creased significantly (achieving 72 and 52% of degraded phenol
r samples P25-Pt(s) and P25-Pt(c)). This activity drop in the case
P25-based composites could have several causes. One could be

e efficiency of the electron transfer processes. One hint regarding
is was already given by the optical properties of the P25-based
mposites. It was shown that when Pt nanoparticles were depos-
d, the electron transition band (in the first derivative DRS spec-
) corresponding to the rutile phase diminishes significantly,

ggesting that a fraction of the electron transitions are ‘‘lost’’/
t happening at all. There is also a significant difference in phenol
gradation yield (72% for P25-Pt(s) vs. 52% for P25-Pt(c)) between
e two Pt-containing composites, and a further change can be
ticed in the ratio of the anatase and rutile electron transition
nds in favor of anatase in the case of composite P25-Pt(c). The
ter phenomenon raises the possibility of a special interaction
tween rutile and Pt nanopolyhedra, which may be clarified in
e section regarding AR based composites.
Pure AA itself proved to be quite active in the degradation of
enol, although the manifested degradation yield is inferior to
at of P25 (63% vs. 87%). Based on the behavior of P25, it was
pected that after platinum deposition the activity would further
crease, but surprisingly this was not the case. Both spherical and
lyhedral Pt nanoparticles enhanced with a factor of 1.5 the

Please note that the photocatalytic performance will be discussed based on the
otocatalytic efficiency given in the percentage of phenol removed. This was chosen
ause in some of the cases the kinetics of the degradation changes abruptly; thus a

ar evaluation of the activity based on reaction rates would be uninformative (just
comparison, the values are given in Table 1).
nanoparticles on commercial titanias: Is shape tailoring a guarantee of
08
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392 activity of AA, attaining an amazing 99% (AA-Pt(s)) and 91% (AA-
393 Pt(c)) phenol decomposition efficiency, which was equal/superior
394 to the performance of bare P25. The optical reason for the observed
395 activity enhancement can be totally ruled out, because the band
396 gap of the AA-based materials does not change at all and the first
397 derivative DRS spectra do not show any shifts in the electron tran-
398 sition energy ranges. The reason for the observed phenomenon
399 could be the number of contacts between the composite compo-
400 nents. Because AA crystals are relatively large (>150 nm) compared
401 to P25 (25–40 nm), the effective number of Pt nanoparticles that
402 could realize physical contact with an AA particle is very large.
403 Consequently, the charge carriers generated could live longer
404 because of the more efficient charge separation process (photogen-
405 erated electrons ? more Pt nanoparticles). A similar enhancement
406 mechanism was also proposed in our recent publication concern-
407 ing AA/carbon nanotube composites [53].
408 The AR itself is a poor photocatalyst, showing only 41% phenol
409 decomposition efficiency. By the deposition of polyhedral Pt nano-
410 particles (sample AR-Pt(c)), the situation remains nearly
411 unchanged (41% and 46% removal efficiency). However, when the
412 Pt nanocrystals were spherical, the activity jumped to 83% degra-
413 dation efficiency. The surprising results obtained in the case of
414 AR uncover important aspects of the functioning of these materials.
415 Namely, it was already known that depositing spherical Pt on the
416 surface of rutile enhances the photocatalytic activity [54], by the
417 same principle as for AA (discussed previously) or for the reasons
418 invoked by other authors, such as efficient light utilization above
419

420 a
421 s.

422More precisely, Pt cuboctahedral possess (100) crystallographic
423planes, which are the least effective facets in electron transfer pro-
424cesses, while spherical Pt particles possess also a large number of
425high-index crystal facets, along with (100) [49]. This observation
426also supports the fact that in the case of P25-Pt(c) composite the
427rutile electron transition band’s ratio shrinks considerably.

4283.5.1.1. Degradation intermediates. The degradation intermediates
429of a specific organic pollutant can be a quite important factor when
430a photocatalyst reaches the doorstep of applicability. As already
431discussed in our recent papers, the fine tuning of the structure of
432a photocatalyst can lead to a major change in the ratio of the differ-
433ent degradation intermediates [8,39]. This also could be true if the
434shape of the platinum nanoparticles were changed in TiO2–Pt com-
435posites. Unfortunately, the less toxic primary degradation inter-
436mediate, resorcinol, was scarcely present during the degradation
437series, as phenol is attacked by the OH radical in ortho and para
438positions (Table 1). That is why 1,3,4-trihydroxybenzene was also
439present in a relatively small amount (Table 1). The following para-
440graphs will share details regarding HQ and PY (see Fig. 7).
441The first observation that can be made is of the general influ-
442ence of the Pt nanoparticles’ presence. As these nanoparticles
443appeared on the surfaces of the commercial semiconductors, the
444registered IEI number decreased significantly (in some cases even
445an 18-fold decrease was observed for AA vs. AA-Pt(s); see
446Table 1). This means that the presence of Pt is beneficial from this
447point of view, because the toxic intermediates cannot accumulate
448[40]. The beneficial effect of platinum was valid only in the case
449of AA- and AR-based composite materials. In the case of P25 the
450IEI numbers increased significantly (�2.5-fold increase in the case
451of HQ and PY, composite P25-Pt(s); see Table 1), with a significant
452concomitant activity decrease (Table 1).
453There are also important differences between the different-
454shaped Pt-containing nanocomposites. In the case of AA and AR,
455the presence of spherical Pt nanoparticles was more beneficial,
456considering the IEI number. However, the situation changed in
457the case of P25, where the recorded IEI number registered was
458much higher for P25-Pt(s) than for P25-Pt(c) (Table 1).
459The results listed suggest two different conclusions. The first is
460referring to the pure crystalline phases of semiconductors, such as
461AA and AR; the presence of Pt diminishes the IEI number and in any
462case sphere-shaped Pt nanoparticles are the most efficient in this
463respect. The second was that, when smaller semiconductor nano-
464particles are used and they are a mixture of two crystal phases
465y,
466s
467i-
468

Table 1
Main structural properties and photocatalytic performance of the obtained TiO2-Pt nanocomposites.

Sample Crystal phase composition

(wt.%)/crystal size (nm)

Band gap (eV) Degradation rate/yield (mmol �min�1 � dm�3)/ (%) H2 (mL)a IEI values (�10�6) for phenol

Anatase Rutile Pt Phenol Oxalic acid Methyl orange HQ PY RES THB

AA 100/>150 – – 3.26 3.24 � 10�3/63 – 1.15 � 10�3/76 0.0 5180 6300 – 80
AA-Pt(c) 99/>150 – 1/5 3.20 7.17 � 10�3/91 – 1.03 � 10�3/78 2.2 4590 5653 – 126

AA-Pt(s) 99/>150 – 1/5 3.18 7.89 � 10�3/99 – 0.71 � 10�3/34 40.7 295 530 590 –

AR t. a. 99/P150 – 2.96 5.59 � 10�3/41 – 0.58 � 10�3/50 0.0 5300 5465 – 104

AR-Pt(c) t. a. 98/P150 1/5 2.91 6.26 � 10�3/46 – 0.23 � 10�3/25 3.8 2726 2580 92 37

AR-Pt(s) t. a. 98/P150 1/5 2.82 8.54 � 10�3/83 – 1.36 � 10�3/68 22.8 600 200 104 –

P25 89/25 11 – 3.11 9.28 � 10�3/87 28.8 � 10�3/54 1.25 � 10�3/82 0.0 3247 1420 215 65
P25-Pt(c) 88.5/25 10.5/40 1/5 2.95 3.14 � 10�3/52 117.4 � 10�3/100 1.33 � 10�3/74 6.2 2780 1263 114 407

P25-Pt(s) 88.5/25 10.5/40 1/5 2.66 5.75 � 10�3/72 124.4 � 10�3/100 2.17 � 10�3/79 78.3 8230 4051 – 550

a The total amount of hydrogen produced during the 2 h irradiation (calculated at standard conditions – 25 �C and atmospheric pressure).
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Fig. 2. XRD patterns of the three commercial titanias used as base photocatalysts
throughout the current research.
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400 nm [54]. However, polyhedral Pt nanoparticles do not show
any effect on the activity of AR. This could be possible only if
charge transfer barrier existed between the two types of particle
Please cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spheric
achieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.201
(Evonik Aeroxide P25), the situation turns around. Consequentl
the facts listed here opened up numerous research possibilitie
including the investigation of the Pt shape-crystal phase compos
tion–crystal size relation triangle.
al Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of
5.02.008
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Fig. 3. TEM/HRTEM micrographs of the spherical and polyhedral Pt nanoparticles. TEM/HRTEM images of sample P25-Pt(c). The bar graphs show the size and shape
distributions of the individual platinum nanoparticles. The zone axes were [001] and [111] (octahedral and tetrahedral particles).
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Pl
ac
.2. The photodegradation of methyl orange (MO)
For the evaluation of the results obtained from the MO degrada-
n, the research methodology used in the case of phenol was also
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Fig. 4. Photographs of samples P25, P25-Pt(s) and P25-Pt(c)
ease cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spherical Pt
hieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.2015.02.0
plied. The main research target was to observe the shape and
se catalyst dependence of the degradation efficiencies. In the
erature the degradation of MO is very well known, also with
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the DRS spectra of the studied composite materials.
nanoparticles on commercial titanias: Is shape tailoring a guarantee of
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475 semiconductor oxide/Pt nanocomposites [55–57]. In these cases
476 the papers point out the superior efficiency of platinum-containing
477 nanocomposites.
478 When P25 is the base photocatalyst, there are quite small differ-
479 ences in the values of the MO conversion (between 75% and 80%).
480 The most efficient was bare P25 (similarly to the degradation of
481 phenol), followed by P25-Pt(c) and P25-Pt(s) in the means of con-
482 version, although considering the initial reaction rates the most
483 effective composite was P25-Pt(s).
484 In the case of AA-based composite materials, the sample AA-
485 Pt(s) was the least effective (Table 1), while AA-Pt(c) achieved
486 nearly the same reaction rate and degradation yield as the base
487 photocatalyst AA (Table 1). These results are opposed to the con-
488 clusions drawn in the case of the phenol degradation experiments.
489 This suggests that in the present case the large number of Pt–TiO2

490 contacts are not sufficient to promote/enhance the photocatalytic
491 activity. Consequently, besides the shape and the contact number
492 as important factors, other parameters should be considered (sur-
493 face complexation, mediated photodegradation, dynamic com-
494 petition with intermediates for the photocatalyst’s surface),
495 which are currently under investigation and do not constitute
496

497 y
498 e
499 e
500 t
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502As can be seen also in the case of MO, the shape of the Pt nano-
503particles played an important role in defining the composite mate-
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(b) The deconvolution of the P25 based composites first derivative DRS spectra 
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Fig. 5. (a) The first derivative DRS spectra of the composites made from the combination of P25, AA, and AR with spherical and polyhedral Pt nanoparticles. (b) The
deconvolution of the P25-based composites’ first derivative DRS spectra.
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the subject of the present paper.
In the case of AR-based composite photocatalysts, the analog

with phenol degradation is clearly visible. The AR-Pt(c) composit
was less efficient than the base photocatalyst, while the composit
containing spherical Pt nanoparticles (AR-Pt(s)) was more efficien
than AR (Fig. 8 and Table 1).
Please cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spheric
achieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.201
rials’ activity. This observation emphasizes that the case of pheno
degradation, where the noble metal shape can tailor the activity o
a photocatalyst toward a given substrate, is not singular o
exceptional.

3.5.3. Substrate dependence of the shape influence using a single typ
of base catalyst (P25)

As already discussed, it can be seen that both the shape of th
platinum nanoparticles and the nature of the base catalyst ar
critical in every respect. Two different substrates have been inves
tigated (MO and phenol), but both of them are poor at adsorbin
pollutants. However, to get a complete picture regarding the activ
ity spectrum of the shape-tailored composites, a well-known we
absorbing organic substrate should be chosen, such as oxalic acid
which we have used successfully in other recent work [46,50]. I
the present case P25 was chosen because it is the commercia
photocatalyst that is used most frequently in photocatalysis-re
lated publications [47].

In Fig. 9 it can be seen that degrading phenol with Pt-modifie
P25 leads to inhibition of the photocatalytic activity from 87% t
72% of degraded phenol (as discussed in Section 3.5). Also, by usin
polyhedral (cuboctahedral) nanoparticles, the activity wa
decreased further to 52% of degraded phenol, as discussed in th
appropriate section of the paper. Interestingly, in the case of M
(despite the fact that it is a poorly adsorbing substrate), the P
al Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of
5.02.008
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(a) The phenol degradation curves for the different Pt containing composites and  

(b) The phenol removal yields – the effect of the platinum nanocrystals’ shapes on the activity of the 
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noparticles did not inhibit the P25’s activity significantly.
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oreover, in this case the polyhedral Pt nanoparticles performed
ghtly better than the Pt nanospheres (79% vs. 74% of degraded
O).
The Pt-containing P25 nanocomposites degraded the whole
ount of oxalic acid available. As the oxalic acid molecules are

be

ca
effi
co

ease cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spherical Pt
hieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.2015.02.0
ite easily adsorbed onto the surface of the photocatalyst, they
ve the opportunity to react with the photogenerated holes (fur-
er enhancing the charge separation [58]). This means that the
te-determining step is on the hole side of the phenomenon,

ich is independent of the shape of the platinum. Also, no differ-
ce was observed in the orientation of the degradation curves,
eaning that the kinetics of the oxalic acid degradation is also
dependent of the platinum nanocrystals’ shape.

However, oxalic acid can be used as a sacrificial agent during
otocatalytic hydrogen generation experiments [59], in which
e rate-determining step could be the hydrogen reduction pro-
ss. This can be a shape-dependent reaction, as it is very well
553

554
um nanoparticles occur differently [48].

.4. Photocatalytic H2 production efficiency
As already shown in the previous section, the shape of the plat-

um nanoparticles is crucial for the photocatalytic activity, influ-
cing the different types of commercial titanias in different
ys. Consequently, it was expected that a similar effect should
observable in the case of photocatalytic hydrogen production.
Indeed, as is shown in Fig. 10, the composites containing spheri-
555l Pt nanoparticles (P25-Pt(s), AA-Pt(s), AR-Pt(s)) were much more
556cient in photocatalytic hydrogen production then the
557rresponding polyhedral platinum-containing composites (P25-

nanoparticles on commercial titanias: Is shape tailoring a guarantee of
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Pt(c), AA-Pt(c) , AR-Pt(c)), while in the case of bare commercial tita
nias no H2 evolution was detected, as expected. A large activity di
ference was also visible in the amount of H2 produced (Table 1
during the experimental run (2 h): 22.8–78 mL3 of H2 (composite
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The reasons for the obtained H2 production efficiency value
were multifold:

� P25-based composites. Although an activity decrease wa
observed in the case of phenol degradation, the fact that pheno
is a poorly adsorbing substrate should be also taken into con
sideration, while oxalic acid adsorbs quite efficiently onto th
surface of P25 [46,60]. The adsorption of oxalic acid overcom
pensates for the loss originated from the electron transfer pro
cess in the case of spherical Pt particles (P25-Pt(s)), but it is no
sufficient to overcome the charge transfer barrier raised by th
polyhedral particles (P25-Ptg).
� AA-based composites. With a relatively small surface area, oxal

acid adsorption is limited [50]; thus at first sight an insignifi
cant H2 production yield was expected. However, due to th

3 Calculated under standard conditions – 25 �C and atmospheric pressure.
4 Calculated under standard conditions – 25 �C and atmospheric pressure.
Please cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spheric
achieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.201
large number of available charges on the surface of AA-Pt(s),
fair amount of H2 is produced. In the case of AA-Pt(c)5 th
already mentioned charge barrier blocks the whole process.
� AR-based composites. The situation was similar to the one dis

cussed in the photocatalytic degradation of phenol, namely tha
in the case of Pt(c) there are the less reactive (100) facets, whil
spherical Pt particles possesses also very reactive high-inde
crystal planes. It should be noted that in the case of AR oxal
acid adsorption is nearly nonexistent due to the large crysta
size (similar to AA).

3.6. Activity, structure, and morphology – the relationship between
them

In the previous sections the authors listed several observation
regarding the morphology dependence of photocatalytic activit
and H2 production. In some cases, preliminary explanations wer
provided in order to give initial insight on the phenomenology o
the process. In order to clarify the details, structure–morpho
ogy–activity correlations are discussed below.
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Fig. 10. The hydrogen evolution rates calculated under standard conditions �25
and atmospheric pressure for the studied nanocomposites.

5 This effect is somewhat confusing, because the presence of polyhedral Pt on th
surface of AA was beneficial. The issue needs further investigation.
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596 3.6.1. The correlation between Pt(s) and TiO2 vs. Pt(c) and TiO2 –
597 insights on the generally higher activity of TiO2–Pt(s) composites for
598 phenol degradation
599 One of the reasons for the generally lower activity of Pt(c)- vs.
600 Pt(s)-containing composites was the nature of the contact between
601 the commercial titania and the Pt nanoparticles. As the Pt
602 cuboctahedral contain a significant number of low-indexed facets,
603 such as (001), (010), and (100), electron transfer is inhibited com-
604 pared to that on the spherical particles that contain a large number
605 of high-indexed facets, which facilitate electron transfer [48]. It
606 was already shown that without shape control, the contact
607 between a metal and a semiconductor is realized with several crys-
608 tal facets of the metal (some of them are high-indexed ones) [61].
609 However, the contact between a shape-tailored noble metal nano-
610 particle and base catalyst should differ significantly, as shown in
611 Fig. 11. It can be seen that these Pt cuboctahedral particles can con-
612 nect to the TiO2 only through their specific crystallographic planes
613 available (in the indicated example Pt (001) is one of the intercon-
614 necting facet). This observation demonstrates that when electron
615 transfer occurs from TiO2 to Pt(c), the electron has to pass through
616 on
617 ex
618 po

619 3.6
620 ac
621

622 ac
623 (A
624 wa
625 ph
626 po
627

628 se
629 lar
630 P2
631 pa
632 na
633

634 (to
635 de

636 AR

637 qT

638and 0.01 g Pt. The equation to evaluate the number of TiO2 or
639Pt is
640

Np ¼
3mp

4pqp
dp

2

� �3 ; ð1Þ
642642

643(details regarding this equation can be found in Supporting infor-
644mation), where Np is the number of particles, mp is the total mass
645of the particles, and q is the density of the chosen material, while
646dp is the diameter of a single nanocrystal. The ratio of the nanocrys-
647tals can be estimated by calculating the ratio between Np, Pt and Np,

648TiO2. The following overall particle ratio numbers were obtained:
649

650(i) In the case of AA- and AR-based composites: 1 TiO2 nanopar-
651ticle – 7 Pt nanoparticles.
652(ii) In the case of P25 based composites: 10 TiO2 nanoparticles –
6534 Pt nanoparticles.
654

655The above listed two points mean that the photogenerated elec-
656trons at the surfaces of AA and AR can be easily conducted away by
657th
658as
659sin
660do
661tim
662effi
663ob
664po

6653.6
666tai
667

668

669
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671

672

673
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678

679
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TiO2

Fig. 11. Schematic representation and HRTEM evidence of the contact between Pt and TiO2. The 0.236 nm lattice fringes correspond to the interplanar distance of rutile TiO2

(001), while the 0.196 lattice fringes are equal to the interplanar distance of Pt (200).
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Pl
ac
e of the mentioned facets that inhibit electron transfer. This
plains the generally lower activity of the Pt(c)-containing com-
sites vs. the Pt(s)-containing ones.

.2. The contact number as determining factor in the photocatalytic
tivity – AA- and AR- vs. P25-based composites
A major issue that was raised in this paper was the inferior

tivity of bare AA and AR compared to their platinized versions
A-Pt(c), AA-Pt(s), AR-Pt(c), and AR-Pt(s)). An intriguing question
s also the reversed situation in the case of P25, where the bare
otocatalyst was more active than Pt-containing P25-based com-
sites in the case of phenol degradation.
Although, in each of the composite materials, the Pt content was

t/determined to be 1 wt.%, the TiO2 crystal size is significantly
ger in AA and AR (nanocrystals, with d > 150 nm) compared to
5 (d = 25–40 nm). This means that the same amount of Pt nano-
rticles is distributed differently among the AA, AR, and P25
nocrystals.
For this reason, the following approaches were considered
facilitate the mathematical background of the estimation) to

termine the ratio of the TiO2 and Pt nanocrystals: dAA or

= 150 nm, dP25 = 30 nm, TiO2 geometry – spherical, dPt = 5 nm,
iO2 = 4.23 g�cm�3, qPt = 21.45 g cm�3, amount of TiO2 0.99 g
ease cite this article in press as: G. Kovács et al., Polyhedral Pt vs. spherical Pt
hieving high activity?, J. Catal. (2015), http://dx.doi.org/10.1016/j.jcat.2015.02.0
e 7 Pt particles available, while this advantage cannot be
sumed in the case of P25, where each third TiO2 particle has a
gle available Pt nanocrystal. Additionally, at larger crystal size
mains, the average electron conductance of TiO2 can be several
es higher [62], suggesting that the electrons can also be more
ciently transported through the entire TiO2 nanoparticle. This

servation reinforces even more the efficient charge transfer
ssibilities in the AA- and AR-based composites.

.3. The nature of the chosen pollutant: in which case is the shape
loring important?

Phenol In the case of this pollutant the adsorption on the titania
surface is minimal [63]. Hence, the generated OH radicals are
responsible for the degradation process (also shown by the
large number of hydroxylated degradation intermediates). The
most probable factors responsible for the degradation of this
compound were already discussed in the previous two sections.
Oxalic acid This organic compound behaves differently than
phenol. It can adsorb to the surface of the titania extremely
well, which is why the chosen concentration for oxalic acid
was 10 times higher (at lower concentration the adsorption
can be a competitive process to photodegradation and the
two cannot easily be distinguished) [64].
nanoparticles on commercial titanias: Is shape tailoring a guarantee of
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As oxalic acid is a hole scavenger, the electrons are efficientl
separated. Since the electron flux is significantly higher than i
the case of phenol (due to the holes trapped by the oxalic acid
the higher potential gradient between the Pt and TiO2 nanopart
cles overcomes the energetic barrier provided by the low-indexe
crystallographic planes of Pt. Hence, the P25-Pt(s) and P25-Pt(c
are extremely efficient, and both of them show higher degradatio
rates than the bare P25. In this case the morphology of the Pt doe
not play any role.

3.6.4. Unclear aspects: signs regarding new experimental horizons

Methyl orange degradation Phenol and oxalic acid are relativel
simple pollutants, with predictable behavior. However, MO
a more sophisticated molecule; hence several factors can inter
vene in the achieved degradation efficiency, such as selectiv
adsorption of the intermediates (this is highly possible, as sev
eral functional groups are present in the molecule: azo group
sulfonate, amine group). Thus, the observed efficiency order o
the composites cannot be directly related just to the geometr

Shap

Spherical

Op

P25

Elect

Low index facets

•OH

Interm
(IE

O
d

MO 
degradation

p

Fig. 12. A schematic overvie
of the Pt nanoparticles. However, it shows once again that
shape-tailoring-driven activity tuning is more complicated than
it looks at first sight.

722-
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H2 production Although oxalic acid is the sacrificial agent, whic
was degraded with the same efficiency by Pt(s)- and Pt(c)-con
taining composites, the shape dependence reappears. Th
amount of oxalic acid degraded during the process was simila
in each case, while no other products were detected besides H
in the gas phase. This suggests again that shape-tailored activit
tuning is not simple at all, and each of the two issues raised i
the present section is worth a separate investigation in detail

4. Conclusions

The present work shows a systematic overview (Fig. 12) con
cerning the importance of the shape of the Pt nanocrystals i
photocatalytic applications. It was shown that just by switchin
the shape of Pt from spherical to polyhedral, the optical propertie
of the composite materials can be influenced drastically. In som
cases, even specific electron transition bands can be diminished
as in the case of sample P25-Pt(c).

Furthermore, the activity was also dependent on the shape o
the Pt nanocrystals. In the case of P25 the Pt (both shapes) cause
electron transfer problems, while in the case of AA an enhance

ntrol of Pt

Polyhedral

l impact

A AR

 transitions

High index facets

eneration

iate profiles
umbers)

lic acid
adation

H2
uction

Phenol 
degradation

f the impact of Pt shape tailoring.
723ment was observed (both Pt shapes), due to the large number of
724Schottky contacts. Additionally, in AR-based composites, the

al Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of
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725 presence of the (100) crystal plane of Pt (in AR-Pt(c)) blocked the
726 beneficial effect of Pt itself (of charge separation), while remaining
727 uninfluential on the photocatalytic activity finally registered.
728 When high-indexed crystal planes appear for Pt (AR-Pt(s)), the
729 enhancement is again readily observable.
730 The latter issue was also valid for photocatalytic H2 production
731 experiments. All the composite materials that possessed spherical
732 Pt nanoparticles were much more efficient then their correspond-
733 ing composites with polyhedral Pt.
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