

## AUTHOR QUERY FORM

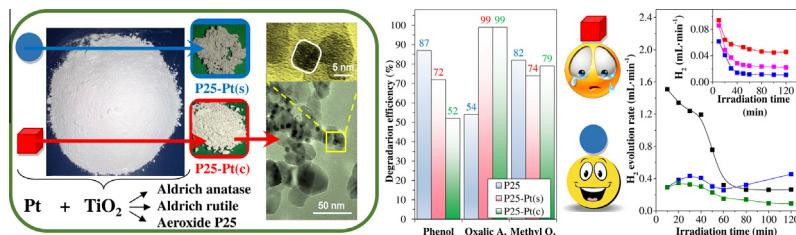
|                                                                                   |                                                           |                                                                                                                                                                                |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | <b>Journal: YJCAT</b><br><br><b>Article Number: 11686</b> | <b>Please e-mail your responses and any corrections to:</b><br><br><b>E-mail: <a href="mailto:corrections.esch@elsevier.sps.co.in">corrections.esch@elsevier.sps.co.in</a></b> |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof (e.g., by using on-screen annotation in the PDF file) or compile them in a separate list. Note: if you opt to annotate the file with software other than Adobe Reader then please also highlight the appropriate place in the PDF file. To ensure fast publication of your paper please return your corrections within 48 hours.

For correction or revision of any artwork, please consult <http://www.elsevier.com/artworkinstructions>.

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted by flags in the proof. Click on the 'Q' link to go to the location in the proof.


| Location in article                                                                                                                                                                                                                                                                                                                                                       | <b>Query / Remark: <a href="#">click on the Q link to go</a></b><br><b>Please insert your reply or correction at the corresponding line in the proof</b>                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <a href="#"><b>Q1</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please check title has been followed in 'JCAT 11686 edited.docx', and correct if necessary.                                                                                                                                                                                                                                           |
| <a href="#"><b>Q2</b></a>                                                                                                                                                                                                                                                                                                                                                 | Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact <a href="mailto:h.moorthy@elsevier.com">h.moorthy@elsevier.com</a> immediately prior to returning your corrections. |
| <a href="#"><b>Q3</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please confirm that given name(s) and surname(s) have been identified correctly.                                                                                                                                                                                                                                                      |
| <a href="#"><b>Q4</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please check the address for the corresponding author that has been added here, and correct if necessary.                                                                                                                                                                                                                             |
| <a href="#"><b>Q5</b></a>                                                                                                                                                                                                                                                                                                                                                 | The country names of the Grant Sponsors are provided below. Please check and correct if necessary.<br>'European Social Fund' - 'Belgium'.                                                                                                                                                                                             |
| <a href="#"><b>Q6</b></a>                                                                                                                                                                                                                                                                                                                                                 | One or more sponsor names may have been <u>edited</u> to a standard format that enables better searching and identification of your article. Please check and correct if necessary.                                                                                                                                                   |
| <a href="#"><b>Q7</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please provide the caption for supplementary material.                                                                                                                                                                                                                                                                                |
| <a href="#"><b>Q8</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please check the journal title in Ref. [24], and correct if necessary.                                                                                                                                                                                                                                                                |
| <a href="#"><b>Q9</b></a>                                                                                                                                                                                                                                                                                                                                                 | Please check the significance of underlined values in Table 1, and correct if necessary.                                                                                                                                                                                                                                              |
| <a href="#"><b>Q10</b></a>                                                                                                                                                                                                                                                                                                                                                | Please check edit made in Fig. 4 caption, and correct if necessary.                                                                                                                                                                                                                                                                   |
| <div style="border: 1px solid black; padding: 5px; margin-bottom: 10px;"> <b>Please check this box if you have no corrections to make to the PDF file</b> </div> <div style="border: 1px solid black; width: 20px; height: 20px; display: inline-block; vertical-align: middle; text-align: center; line-height: 20px; cursor: pointer;"> <input type="checkbox"/> </div> |                                                                                                                                                                                                                                                                                                                                       |

Thank you for your assistance.

## Graphical abstract

**Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of achieving high activity?**

pp xxx-xxx

G. Kovács, Sz. Fodor, A. Vulpoi, K. Schrantz, A. Dombi, K. Hernádi, V. Danciu, Zs. Pap <sup>\*</sup>, L. Baia

## Highlights

- The optical properties of P25 based composites are Pt-shape dependent.
- The phenol and methyl-orange degradation is shape and base catalyst dependent.
- Fine-tuning of the degradation intermediates is possible via Pt morphology.
- Kinetics of oxalic acid degradation was independent from the shape of Pt.
- The H<sub>2</sub> production was efficient in the case of spherical Pt with high index facets.



5  
6

3 **Q1** Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is  
4 **Q2** shape tailoring a guarantee of achieving high activity?

7 **Q3** G. Kovács<sup>a,b,c</sup>, Sz. Fodor<sup>a</sup>, A. Vulpoi<sup>a,d</sup>, K. Schrantz<sup>c,e,f</sup>, A. Dombi<sup>c</sup>, K. Hernádi<sup>c</sup>, V. Danciu<sup>b</sup>, Zs. Pap<sup>a,b,c,\*</sup>,  
8 L. Baia<sup>a,d</sup>

9 <sup>a</sup> Faculty of Physics, Babeş-Bolyai University, M. Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania

10 <sup>b</sup> Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Arany János 11, RO-400028 Cluj-Napoca, Romania

11 <sup>c</sup> Research Group of Environmental Chemistry, Institute of Chemistry, University of Szeged, Tisza Lajos krt. 103, HU-6720 Szeged, Hungary

12 <sup>d</sup> Institute for Interdisciplinary Research on Bio-Nano-Sciences, Treboniu Laurian 42, RO-400271 Cluj-Napoca, Romania

13 <sup>e</sup> Department of Inorganic and Analytical Chemistry, University of Szeged, 6720 Szeged, Dóm tér 7, Hungary

14 <sup>f</sup> EMPA, Swiss Federal Laboratories for Material Testing and Research, Laboratory for High Performance Ceramics, 8600 Dübendorf, Überlandstrasse 129, Switzerland

15 **ARTICLE INFO** **ABSTRACT**

20 **Article history:**

21 Received 2 December 2014

22 Revised 10 February 2015

23 Accepted 11 February 2015

24 Available online xxxx

25 **Keywords:**

26 Commercial TiO<sub>2</sub>–Pt nanocomposites

27 Platinum nanoparticles' shape controlling

28 Photodegradation intermediates

29 Photocatalysis

30 H<sub>2</sub> production

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1000

1001

1002

1003

1004

1005

1006

1007

<p

photocatalytic activity/H<sub>2</sub> production results and the shape of the Pt nanoparticles.

Phenol and phenolic compounds are commonly used in various industries, such as agriculture and pharmaceutical and food industries. Among expensive and less efficient wastewater treatment methods, TiO<sub>2</sub>-based heterogeneous photocatalysis can be used in a promising way to eliminate these kinds of organic compounds. An important aspect is the photodegradation of phenol itself (which was studied already in the early 1990s [36]), where various hydroxylated phenol compounds [37] can appear during the degradation process (such as pyrocatechol (PY), hydroquinone (HQ), and resorcinol (RES) [38]). These organic compounds, according to widely accepted safety protocols, are at the category 1 or 2 carcinogenic risk and toxicity levels [8,39]. Furthermore, these primary degradation products are more toxic than the phenol itself. Experiments performed on laboratory mice showed that hydroquinone is 2.3 times, while pyrocatechol is 1.4 times more toxic than the already mentioned phenol. The good news is that resorcinol is only 1.11 times less toxic. For the exact LD<sub>50</sub> values, Ref. [40] can be consulted.

The purpose of this study was to elucidate structural peculiarities via various investigation methods (diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), X-ray diffraction (XRD)) and to correlate them with the activity of the different types of commercial TiO<sub>2</sub> powders coupled with differently shaped Pt nanoparticles in terms of photodegradation, intermediates' evolution trends, and H<sub>2</sub> production. The research strategy is presented schematically in Fig. 1.

## 2. Experimental

### 2.1. Synthesis of the platinum nanoparticles

#### 2.1.1. Materials

Ethylene glycol (EG, 99.8%, anhydrous), AgNO<sub>3</sub> (ACS reagent grade, >99.0%), H<sub>2</sub>PtCl<sub>6</sub> (ACS reagent), polyvinyl pyrrolidone (PVP, Mw ≈ 40,000), ethanol (>99.8% reagent grade), acetone (>99.9%), trisodium citrate (ACS reagent grade, >99.0%), NaBH<sub>4</sub> (purum, >96%), and Aldrich anatase and Aldrich rutile reference photocatalysts were purchased from Sigma-Aldrich, while Aeroxide P25 was acquired from Evonik Industries and used without further purification.

#### 2.1.2. Synthesis of the polyhedral Pt nanoparticles

The synthesis of the polyhedral Pt nanoparticles was based on a polyol method already available in the literature [41,42]. In a typical synthesis process, 8 mL EG and 1 mL AgNO<sub>3</sub> (0.04 M) were added in a three-neck flask and heated at 160 °C in a hot-oil bath. Meanwhile, two other solutions were prepared at room temperature: a 2 mL 0.025 M solution of H<sub>2</sub>PtCl<sub>6</sub> (solution 1) and a 4 mL 0.375 M solution of PVP in EG (solution 2). These were added simultaneously to the reaction vessel as follows: 60 µL from solution 2 and 30 µL from solution 1 every 30 s. Afterward, the resultant mixture was refluxed at 160 °C for a further 25 min. After that, the product was centrifuged at 12,000 rpm for 15 min and washed four times with acetone and hexane. Finally, the obtained polyhedral Pt nanoparticles were redispersed in ethanol.

#### 2.1.3. Synthesis of the spherical Pt nanoparticles

Into a specific reaction vessel 43 mL of ultrapure water was measured, followed by the addition of a 6.3 mL 5 mM solution of trisodium citrate. After 30 min, a 550 µL 22.8 mM H<sub>2</sub>PtCl<sub>6</sub> solution was added and the mixture was stirred at room temperature for another 30 min. The last step in this synthesis was reduction by the addition of 1 mL 0.15 M NaBH<sub>4</sub>. The reaction mixture was

stirred for 1 h to eliminate the by-products and the unreacted NaBH<sub>4</sub>. The obtained platinum sol was then used immediately for the impregnation of the chosen titanias.

### 2.2. Synthesis of the TiO<sub>2</sub>-Pt nanocomposites

The chosen commercial titania (Aldrich anatase – AA, Aldrich rutile – AR, and Evonik Aeroxide P25-P25) (400 mg) was suspended in 400 mL ultrapure water and sonicated for 15 min. Then the necessary quantity of Pt suspension was added to the homogenized dispersion under vigorous stirring. The added suspensions' volume was calculated in such a way that the Pt nanoparticles' weight fraction in the final composites' mass would be 1 wt.% (in all the Pt-containing composite materials – no significant Pt loss was detected during the preparation procedure). After 5 min of ultrasonically assisted homogenization and 20 min of vigorous stirring, the resulted suspension was dried at 80 °C for 24 h, resulting in a light gray/gray material. These powders were washed with ultrapure water (4400 rpm, 10 min) and dried again at 80 °C for 24 h.

The nomenclature of the samples was defined as follows: abbreviation of the base photocatalyst – Pt(s or c), where the first section can be defined as AA, AR, or P25, while in the second "s" stands for spherical and "c" for cuboctahedral (the dominant shape among the polyhedral Pt nanoparticles).

## 2.3. Methods and instrumentation

### 2.3.1. Characterization methods

X-ray diffraction (XRD) measurements were performed on a Shimadzu 6000 diffractometer using Cu K $\alpha$  radiation ( $\lambda = 1.5406 \text{ \AA}$ ) equipped with a graphite monochromator. The anatase-rutile phase ratio in TiO<sub>2</sub> was evaluated by method used by Banfield [43], and the crystallites' average size was calculated using the Scherrer equation [44].

A JASCO-V650 spectrophotometer with an integration sphere (ILV-724) was used for measuring the DRS (diffuse reflectance spectroscopy) spectra of the samples ( $\lambda = 300$ –800 nm). The possible electron transitions were evaluated by plotting  $dR/d\lambda$  vs.  $\lambda$ , where  $R$  is the reflectance and  $\lambda$  is the wavelength [8,39,45], while the indirect band-gap of the photocatalysts was determined via the Kubelka-Munk method.

TEM/HRTEM images were obtained with a FEI Tecnai F20 field emission high-resolution transmission electron microscope operating at an accelerating voltage of 200 kV and equipped with an Eagle 4k CCD camera.

### 2.3.2. Assessment of the photocatalytic efficiencies

A photoreactor system with  $6 \times 6 \text{ W}$  fluorescent lamps ( $\lambda_{\text{max}} \approx 365 \text{ nm}$ , irradiation time = 2 h) was used to measure the photocatalytic activities. The photocatalyst suspension containing the pollutant (initial concentration of phenol  $c_0, \text{phenol} = 0.5 \text{ mM}$  or oxalic acid  $c_0, \text{oxalic acid} = 5 \text{ mM}$  or methyl orange (MO)  $c_0, \text{MO} = 125 \mu\text{M}$ ; catalyst concentration  $c_{\text{photocatalyst}} = 1.0 \text{ g L}^{-1}$ ; total volume of the suspension  $V_{\text{susp}} = 100 \text{ mL}$ ) was continuously purged with air to keep the dissolved oxygen concentration constant during the whole experiment. The concentration decrease of the chosen organic substrate (phenol and oxalic acid) and the phenol's primary degradation intermediates were followed using an Agilent 1100 series HPLC system (instrumental details can be found in Refs. [39,46], while details regarding the intermediate detection are detailed in Supporting information, Fig. S1). The concentration of MO was followed using a JASCO V-650 spectrophotometer at 513 nm. The assessed error of the photocatalytic tests (based on reproducibility experiments) was 2–5%, while in all cases

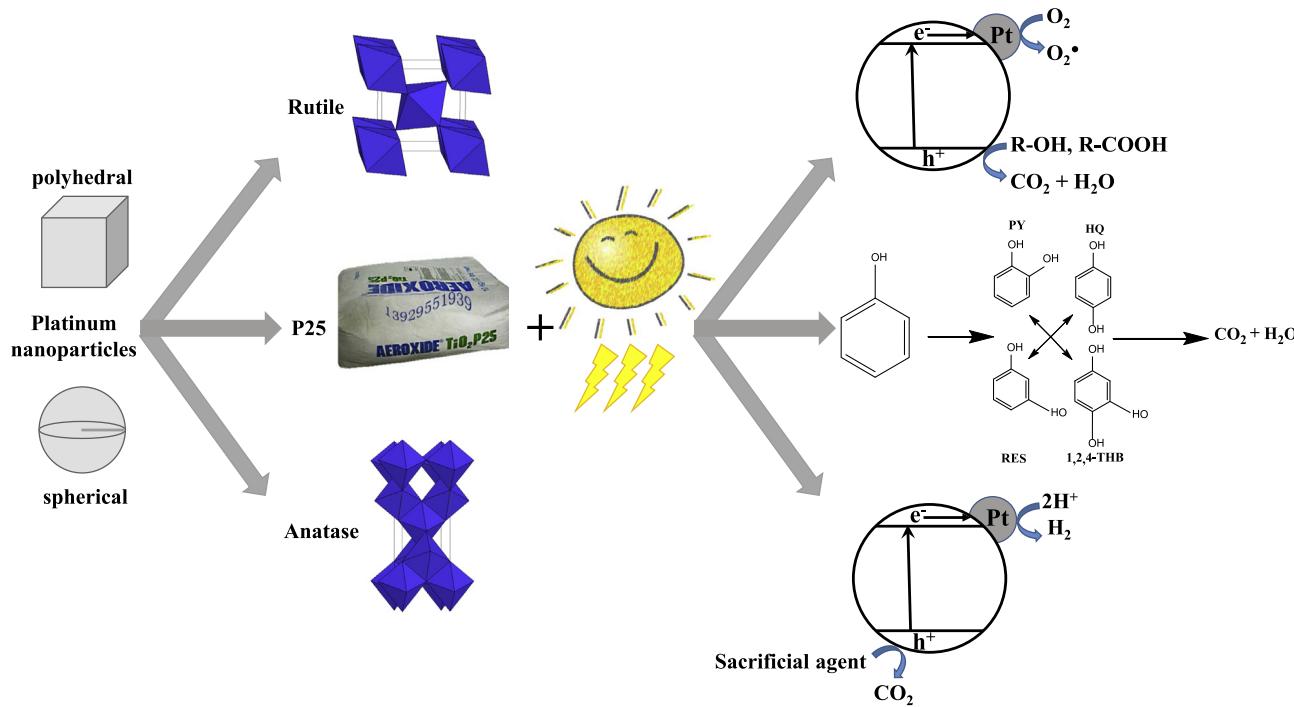



Fig. 1. Schematic diagram of the research methodology applied in the current investigations of the  $\text{TiO}_2$ -Pt nanocomposites.

206 the adsorption phenomenon (at the used concentration values)  
207 was negligible (below 5%).

208 To quantify the intermediates' evolution efficiently, the inter-  
209 mediate evolution index (IEI) was introduced, which was calcu-  
210 lated, using the following formula, where  $F_{\text{int}}$  is the empirical  
211 intermediate concentration evolution function and  $C_{\text{phendef}}$  is the  
212 quantity of phenol degraded in the case of the less well performing  
213 catalyst. Therefore, a low IEI value means that the degradation  
214 intermediate does not accumulate in the reaction system [8,39]:

$$217 \text{IEI} = \int_0^{C_{\text{p\_hendef}}} F_{\text{int}} dC$$

### 218 2.3.3. Photocatalytic hydrogen production

219 The hydrogen production experiments were executed in a Pyrex  
220 glass photoreactor thermostated at 25 °C and surrounded by ten  
221 15 W low-pressure mercury lamps ( $\lambda_{\text{max}} \approx 365$  nm). The suspen-  
222 sion's concentration was 1.0 g L<sup>-1</sup> and the applied sacrificial agent  
223 was oxalic acid (50 mM). During the photocatalytic runs the suspen-  
224 sion was continuously purged with N<sub>2</sub> (50 mL min<sup>-1</sup>) to avoid  
225 the presence of O<sub>2</sub>. The H<sub>2</sub> gas evolved was determined with a  
226 Hewlett-Packard 5890 gas chromatograph equipped with a thermal  
227 conductivity detector. On the basis of the H<sub>2</sub> concentrations  
228 determined by GC from the flow rate of the N<sub>2</sub>, the rate of H<sub>2</sub> evo-  
229 lution ( $r$ ) at the time of the sampling has been determined. The  
230 total amount of hydrogen produced was estimated by integrating  
231 the area under the hydrogen evolution curve using Origin 9 soft-  
232 ware. The duration of the experiment was 2 h.

## 233 3. Results and discussion

### 234 3.1. Commercial titanias used – the research strategy

235 In the present work three well-known commercial titanias were  
236 chosen: Aldrich anatase (AA), Aldrich rutile (AR), and Evonik  
237 Aeroxide P25 (P25). They have been studied in detail during the  
238 past 20–30 years and nearly all their major properties have been

239 uncovered (including surface quality, crystallinity-related issues,  
240 and synergism of anatase and rutile phases [47]). Consequently,  
241 they are ideal supports (without unknown parameters) for  
242 investigating the effect of different-shaped platinum nanoparticles.  
243 The research possibilities further exploited in the present work are  
244 as follows:

- 245 • Anatase vs. rutile-both AA and AR are made from pure anatase  
246 and rutile, while their average crystallite size is in the same  
247 range
  - 248 • differentiate the effect of the titania crystal phase when  
249 depositing specifically shaped Pt nanoparticles;
  - 250 • emphasize the importance of the Pt shape if it is deposited at  
251 the surface of the same crystal phase (either on AA or on AR);
  - 252 • native mixture of crystal phases (meaning that the two crys-  
253 tal phases are obtained during the same synthesis process) –  
254 P25.
- 255 • Small vs. large crystallites – while P25 shows an average crys-  
256 tallite size of 25–30 nm, both AA and AR contain nanocrystals  
257 between 150 and 300 nm
  - 258 • electron-transfer-related issues between Pt and titania  
259 nanocrystals;
  - 260 • electron-transfer-related issues if different-shaped Pt  
261 nanocrystals are deposited.

### 265 3.2. $\text{TiO}_2$ -Pt composites: why different-shaped platinum 266 nanoparticles?

267 Based on the above-mentioned strategy, polyhedral (domi-  
268 nantly cuboctahedral) and spherical particle geometries were cho-  
269 sen to illuminate the importance of the shape of platinum  
270 nanocrystals for the photocatalytic activity of  $\text{TiO}_2$ -Pt  
271 nanocomposites.

272 In other research fields such as electrocatalysis, there is already  
273 significant work regarding the influence of the crystal shape of the  
274 noble metals. Tian et al. have [48] already shown that in electro-  
275 oxidation processes the shape of the Pt nanoparticles is crucial,

due to the number of the so-called stepped atoms, which can be found at the high-indexed crystal facets ((730), (411), etc.) and are responsible for the enhanced electrocatalytic activity [49]. Thus, the motivation of the present work is to illuminate the same aspects for the photocatalytic processes.

### 3.3. *TiO<sub>2</sub>-Pt nanocomposites: characterization*

The base photocatalysts' crystal phase composition, crystal size, and specific surface area values are summarized in Table 1. The parameters obtained from the measurements coincide with the ones given by the manufacturer or with those published in the literature [50,51] (Fig. 2). By depositing platinum on the surface of these materials, no structural changes were observed, as expected. The next step in the characterization of these materials was to literally study the morphology of these nanocomposites.

First the morphology of the polyhedral platinum nanoparticles was examined by HRTEM while the lattice fringes were evaluated based on Refs. [41,52]. The obtained micrographs are presented in Fig. 3. As expected, the dominant shape of the nanocrystallites was cuboctahedral/octahedral – 72% (a relatively small percentage of tetrahedral – 5% – and some undefined polyhedral particles – 23% – were also noticed).<sup>1</sup> The interplanar distances were evaluated by FFT. The size distribution of these platinum nanocrystallites (both spherical and polyhedral ones) was homogeneous, most of them having a size of 4–6 nm (85%), as illustrated in Fig. 3.

The deposition of the platinum nanoparticles at the surfaces of the commercial titanias was also successful, as shown by Fig. 3. While in the case of P25 it was quite easy to obtain high-quality images of the deposition of platinum nanoparticles, the situation was dire in the case of AA and AR due to their large crystal size (200–300 nm). This is why only P25-related TEM micrographs were presented.

### 3.4. *The TiO<sub>2</sub>-Pt nanocomposites: optical properties*

One of the first aspects that need investigation for materials with photocatalytic potential is their optical properties. The first, simplest approach was to examine the obtained nanocomposites' color. One may expect that the color of the composite materials should not change at all when the nanocrystals' shape is varied, because in each case we have the same material (the same optical "property set" should be observable) with the same composition.

However, as can be clearly seen in Fig. 4, just by changing the shape of the platinum nanoparticles, while using the same base catalyst (P25), an interesting change occurred in the investigated nanocomposites' color (intense creamy gray for sample P25-Pt(c), conventional gray for P25-Pt(s)). These observations indicate that a more detailed study of the optical properties of these materials was inevitable.

To get quantified information about the optical peculiarities of these materials, the DRS and the first-order derivative DRS spectra were recorded (Fig. 5a) and the band-gap values calculated (Table 1). The AA-based composites were examined in the first step, to gain critical information when only a single crystalline phase of titania was present in the composite. As Pt nanoparticles are deposited onto the surface of AA, the band-gap value remains constant. This can be even more precisely observed in the first derivative spectra; the peak located at 375 nm (3.3 eV) in the case of AA does not shift at all in the platinum-containing composites (AA-Pt(s), AA-Pt(c)). This means that the possible electron transitions between the valence band and the conduction band are

<sup>1</sup> The shape distribution was estimated based on 10 TEM images – 150 particles acquired from 10 randomly selected spots on the used copper grid.

taking place within an electronic band system in which the band gap has the same value, without being influenced by the presence of platinum. Although their band gaps may not differ, the color change of the material is obvious from the rest of the DRS spectra. The situation slightly changed in the case of AR-based samples. By depositing Pt onto the surface of AR, the band-gap energy values are slightly changed from 2.96 to 2.91 and 2.82 eV (AR-Pt(s) and AR-Pt(c) composites). The mentioned changes are also faintly visible in the first derivative spectra.

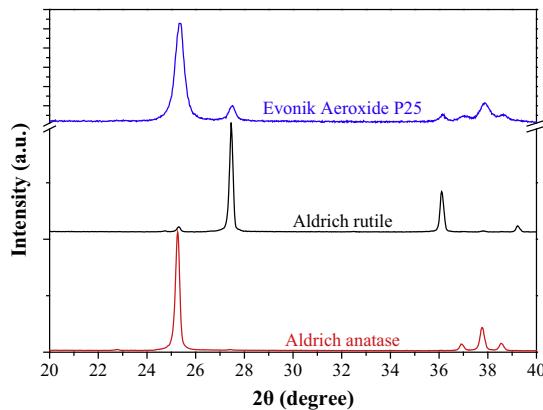
The investigations in the cases of AA- and AR-based composites already suggest that in the case of P25 (where both anatase and rutile are present in a well-defined ratio) a mixture of the effects should be observable. As expected, the presence of Pt modified the optical properties of P25 significantly. The bare catalyst exhibits two electron transition bands in the first derivative DRS spectra, one assigned to anatase and the other to rutile (Fig. 5b). As polyhedral nanoparticles are deposited (P25-Pt(c)) at the surface of the material, the ratio of the two bands changes in favor of anatase, while the peak positions do not vary. If the deposited Pt nanoparticles are spherical (P25-Pt(s)), then the ratio of the anatase/rutile bands is even more balanced toward the anatase phase. This means that in the case of P25-based composites the presence of Pt denies/inhibits electron transitions within the rutile particles. If this is true, then an activity decrease should be observable for nonadsorbing pollutant degradation, such as phenol.

### 3.5. *The photocatalytic activity of the obtained nanocomposites*

#### 3.5.1. *The photodegradation of phenol*

Some hints regarding the possible importance of the Pt crystal geometry are already given by the interesting changes observed in the optical properties of the composite materials (see Fig. 6).<sup>2</sup>

In the first instance the P25-based composites' activity was evaluated. It is known that this commercial powder is a versatile and quite efficient photocatalytic material, which can be seen also in the present case by achieving 87% of phenol decomposition in 2 h. As platinum nanoparticles were deposited on P25, the activity decreased significantly (achieving 72 and 52% of degraded phenol for samples P25-Pt(s) and P25-Pt(c)). This activity drop in the case of P25-based composites could have several causes. One could be the efficiency of the electron transfer processes. One hint regarding this was already given by the optical properties of the P25-based composites. It was shown that when Pt nanoparticles were deposited, the electron transition band (in the first derivative DRS spectra) corresponding to the rutile phase diminishes significantly, suggesting that a fraction of the electron transitions are "lost"/not happening at all. There is also a significant difference in phenol degradation yield (72% for P25-Pt(s) vs. 52% for P25-Pt(c)) between the two Pt-containing composites, and a further change can be noticed in the ratio of the anatase and rutile electron transition bands in favor of anatase in the case of composite P25-Pt(c). The latter phenomenon raises the possibility of a special interaction between rutile and Pt nanopolyhedra, which may be clarified in the section regarding AR based composites.


Pure AA itself proved to be quite active in the degradation of phenol, although the manifested degradation yield is inferior to that of P25 (63% vs. 87%). Based on the behavior of P25, it was expected that after platinum deposition the activity would further decrease, but surprisingly this was not the case. Both spherical and polyhedral Pt nanoparticles enhanced with a factor of 1.5 the

<sup>2</sup> Please note that the photocatalytic performance will be discussed based on the photocatalytic efficiency given in the percentage of phenol removed. This was chosen because in some of the cases the kinetics of the degradation changes abruptly; thus a clear evaluation of the activity based on reaction rates would be uninformative (just for comparison, the values are given in Table 1).

**Table 1**Main structural properties and photocatalytic performance of the obtained  $\text{TiO}_2$ -Pt nanocomposites.

| Sample    | Crystal phase composition (wt.%) |         |     | Band gap (eV) | Degradation rate/yield (mmol $\times$ min $^{-1}$ $\times$ dm $^{-3}$ )/ (%) |                            |                          | $\text{H}_2$ (mL) <sup>a</sup> | IEI values ( $\times 10^{-6}$ ) for phenol |      |     |     |
|-----------|----------------------------------|---------|-----|---------------|------------------------------------------------------------------------------|----------------------------|--------------------------|--------------------------------|--------------------------------------------|------|-----|-----|
|           | Anatase                          | Rutile  | Pt  |               | Phenol                                                                       | Oxalic acid                | Methyl orange            |                                | HQ                                         | PY   | RES | THB |
| AA        | 100/>150                         | –       | –   | 3.26          | $3.24 \times 10^{-3}/63$                                                     | –                          | $1.15 \times 10^{-3}/76$ | 0.0                            | 5180                                       | 6300 | –   | 80  |
| AA-Pt(c)  | 99/>150                          | –       | 1/5 | 3.20          | $7.17 \times 10^{-3}/91$                                                     | –                          | $1.03 \times 10^{-3}/78$ | 2.2                            | 4590                                       | 5653 | –   | 126 |
| AA-Pt(s)  | 99/>150                          | –       | 1/5 | 3.18          | $7.89 \times 10^{-3}/99$                                                     | –                          | $0.71 \times 10^{-3}/34$ | 40.7                           | 295                                        | 530  | 590 | –   |
| AR        | t. a.                            | 99/≥150 | –   | 2.96          | $5.59 \times 10^{-3}/41$                                                     | –                          | $0.58 \times 10^{-3}/50$ | 0.0                            | 5300                                       | 5465 | –   | 104 |
| AR-Pt(c)  | t. a.                            | 98/≥150 | 1/5 | 2.91          | $6.26 \times 10^{-3}/46$                                                     | –                          | $0.23 \times 10^{-3}/25$ | 3.8                            | 2726                                       | 2580 | 92  | 37  |
| AR-Pt(s)  | t. a.                            | 98/≥150 | 1/5 | 2.82          | $8.54 \times 10^{-3}/83$                                                     | –                          | $1.36 \times 10^{-3}/68$ | 22.8                           | 600                                        | 200  | 104 | –   |
| P25       | 89/25                            | 11      | –   | 3.11          | $9.28 \times 10^{-3}/87$                                                     | $28.8 \times 10^{-3}/54$   | $1.25 \times 10^{-3}/82$ | 0.0                            | 3247                                       | 1420 | 215 | 65  |
| P25-Pt(c) | 88.5/25                          | 10.5/40 | 1/5 | 2.95          | $3.14 \times 10^{-3}/52$                                                     | $117.4 \times 10^{-3}/100$ | $1.33 \times 10^{-3}/74$ | 6.2                            | 2780                                       | 1263 | 114 | 407 |
| P25-Pt(s) | 88.5/25                          | 10.5/40 | 1/5 | 2.66          | $5.75 \times 10^{-3}/72$                                                     | $124.4 \times 10^{-3}/100$ | $2.17 \times 10^{-3}/79$ | 78.3                           | 8230                                       | 4051 | –   | 550 |

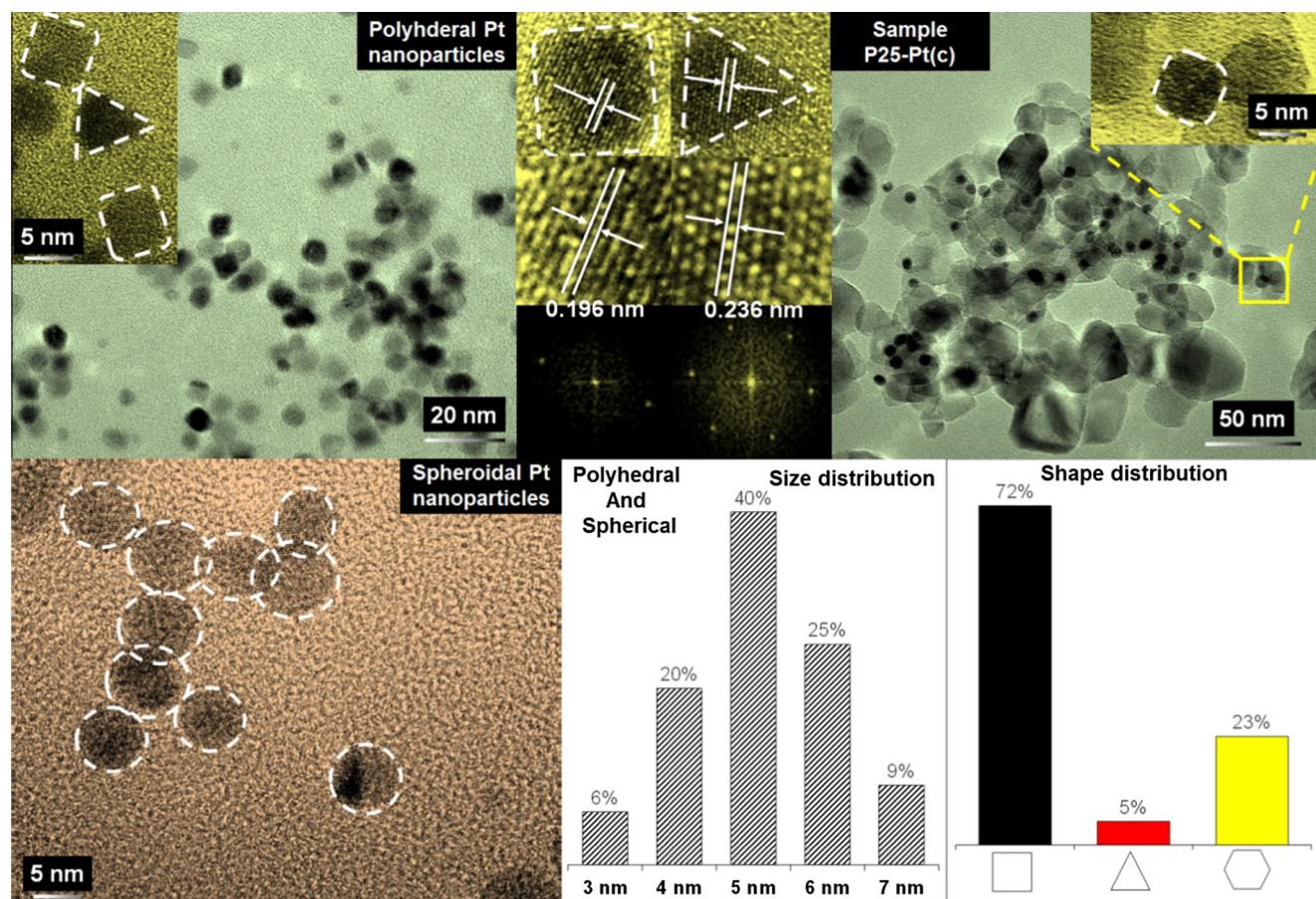
<sup>a</sup> The total amount of hydrogen produced during the 2 h irradiation (calculated at standard conditions – 25 °C and atmospheric pressure).



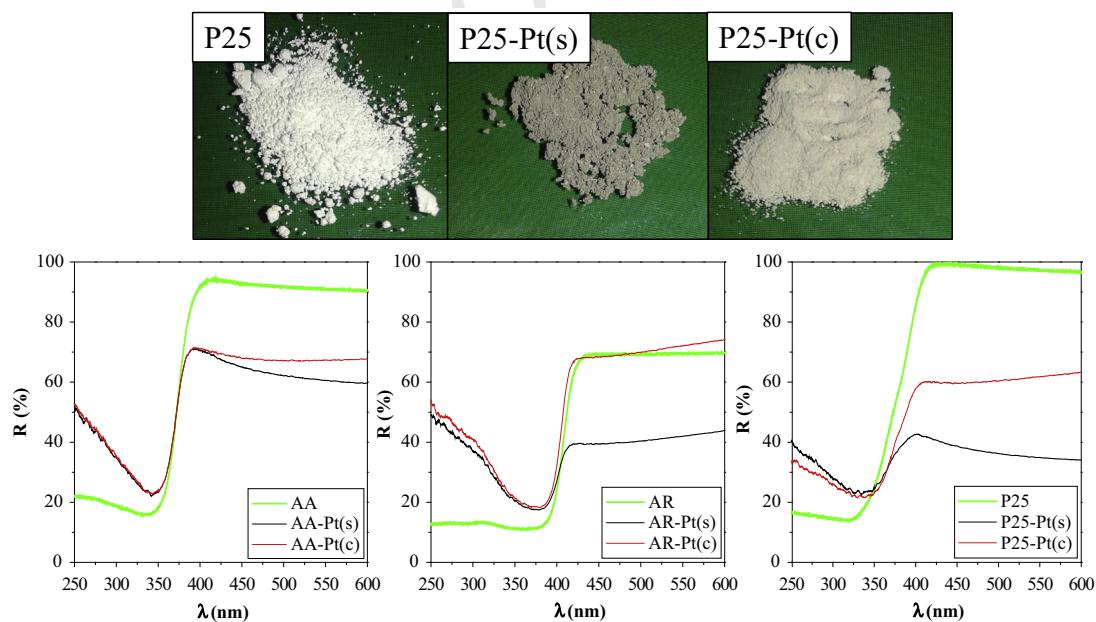
**Fig. 2.** XRD patterns of the three commercial titanias used as base photocatalysts throughout the current research.

activity of AA, attaining an amazing 99% (AA-Pt(s)) and 91% (AA-Pt(c)) phenol decomposition efficiency, which was equal/superior to the performance of bare P25. The optical reason for the observed activity enhancement can be totally ruled out, because the band gap of the AA-based materials does not change at all and the first derivative DRS spectra do not show any shifts in the electron transition energy ranges. The reason for the observed phenomenon could be the number of contacts between the composite components. Because AA crystals are relatively large (>150 nm) compared to P25 (25–40 nm), the effective number of Pt nanoparticles that could realize physical contact with an AA particle is very large. Consequently, the charge carriers generated could live longer because of the more efficient charge separation process (photogenerated electrons → more Pt nanoparticles). A similar enhancement mechanism was also proposed in our recent publication concerning AA/carbon nanotube composites [53].

The AR itself is a poor photocatalyst, showing only 41% phenol decomposition efficiency. By the deposition of polyhedral Pt nanoparticles (sample AR-Pt(c)), the situation remains nearly unchanged (41% and 46% removal efficiency). However, when the Pt nanocrystals were spherical, the activity jumped to 83% degradation efficiency. The surprising results obtained in the case of AR uncover important aspects of the functioning of these materials. Namely, it was already known that depositing spherical Pt on the surface of rutile enhances the photocatalytic activity [54], by the same principle as for AA (discussed previously) or for the reasons invoked by other authors, such as efficient light utilization above 400 nm [54]. However, polyhedral Pt nanoparticles do not show any effect on the activity of AR. This could be possible only if a charge transfer barrier existed between the two types of particles.


More precisely, Pt cuboctahedral possess (100) crystallographic planes, which are the least effective facets in electron transfer processes, while spherical Pt particles possess also a large number of high-index crystal facets, along with (100) [49]. This observation also supports the fact that in the case of P25-Pt(c) composite the rutile electron transition band's ratio shrinks considerably.

**3.5.1.1. Degradation intermediates.** The degradation intermediates of a specific organic pollutant can be a quite important factor when a photocatalyst reaches the doorstep of applicability. As already discussed in our recent papers, the fine tuning of the structure of a photocatalyst can lead to a major change in the ratio of the different degradation intermediates [8,39]. This also could be true if the shape of the platinum nanoparticles were changed in  $\text{TiO}_2$ -Pt composites. Unfortunately, the less toxic primary degradation intermediate, resorcinol, was scarcely present during the degradation series, as phenol is attacked by the OH radical in *ortho* and *para* positions (Table 1). That is why 1,3,4-trihydroxybenzene was also present in a relatively small amount (Table 1). The following paragraphs will share details regarding HQ and PY (see Fig. 7).


The first observation that can be made is of the general influence of the Pt nanoparticles' presence. As these nanoparticles appeared on the surfaces of the commercial semiconductors, the registered IEI number decreased significantly (in some cases even an 18-fold decrease was observed for AA vs. AA-Pt(s); see Table 1). This means that the presence of Pt is beneficial from this point of view, because the toxic intermediates cannot accumulate [40]. The beneficial effect of platinum was valid only in the case of AA- and AR-based composite materials. In the case of P25 the IEI numbers increased significantly (~2.5-fold increase in the case of HQ and PY, composite P25-Pt(s); see Table 1), with a significant concomitant activity decrease (Table 1).

There are also important differences between the different-shaped Pt-containing nanocomposites. In the case of AA and AR, the presence of spherical Pt nanoparticles was more beneficial, considering the IEI number. However, the situation changed in the case of P25, where the recorded IEI number registered was much higher for P25-Pt(s) than for P25-Pt(c) (Table 1).

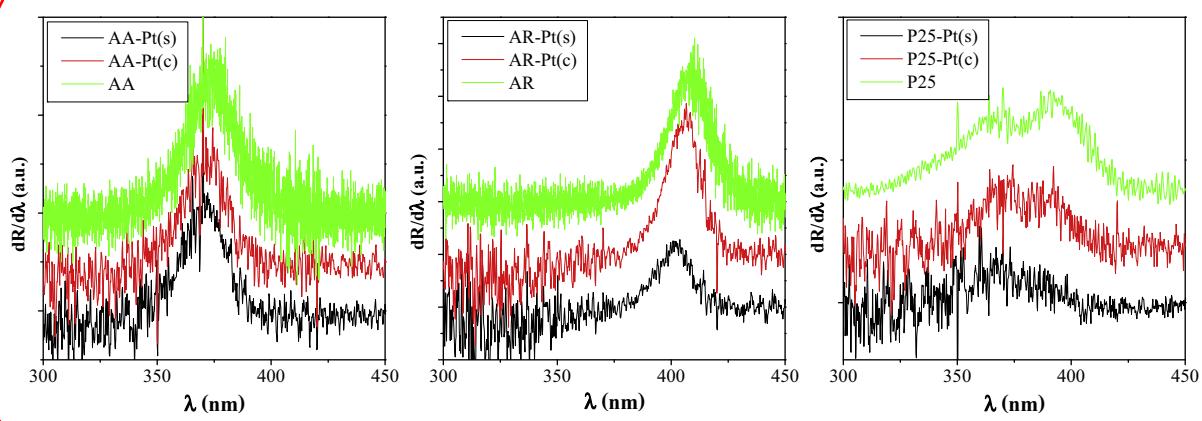
The results listed suggest two different conclusions. The first is referring to the pure crystalline phases of semiconductors, such as AA and AR; the presence of Pt diminishes the IEI number and in any case sphere-shaped Pt nanoparticles are the most efficient in this respect. The second was that, when smaller semiconductor nanoparticles are used and they are a mixture of two crystal phases (Evonik Aeroxide P25), the situation turns around. Consequently, the facts listed here opened up numerous research possibilities including the investigation of the Pt shape-crystal phase composition-crystal size relation triangle.



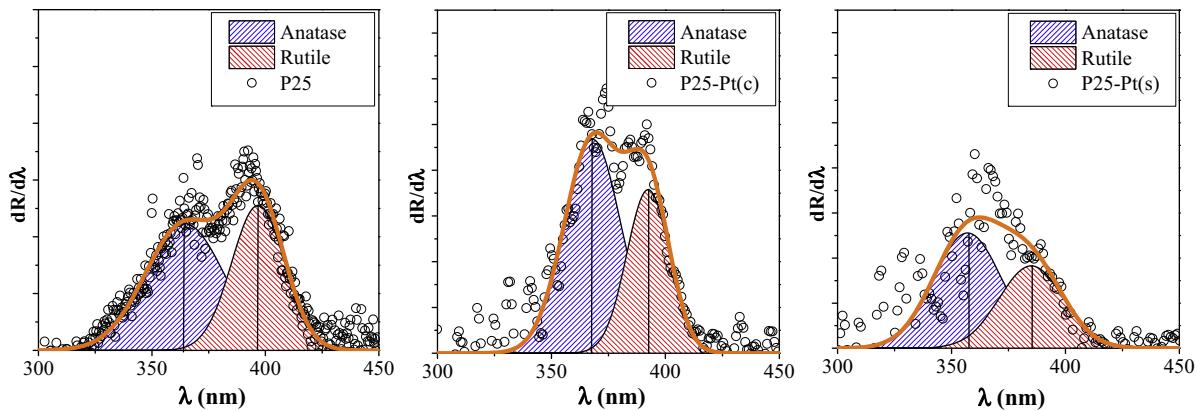
**Fig. 3.** TEM/HRTEM micrographs of the spherical and polyhedral Pt nanoparticles. TEM/HRTEM images of sample P25-Pt(c). The bar graphs show the size and shape distributions of the individual platinum nanoparticles. The zone axes were [001] and [111] (octahedral and tetrahedral particles).



**Fig. 4.** Photographs of samples P25, P25-Pt(s) and P25-Pt(c) and the DRS spectra of the studied composite materials.


Q10

### 3.5.2. The photodegradation of methyl orange (MO)


For the evaluation of the results obtained from the MO degradation, the research methodology used in the case of phenol was also

applied. The main research target was to observe the shape and base catalyst dependence of the degradation efficiencies. In the literature the degradation of MO is very well known, also with

(a) The first derivative DRS spectra of the composites made from the combination of P25, AA and AR with spherical Pt and polyhedral Pt nanoparticles.



(b) The deconvolution of the P25 based composites first derivative DRS spectra

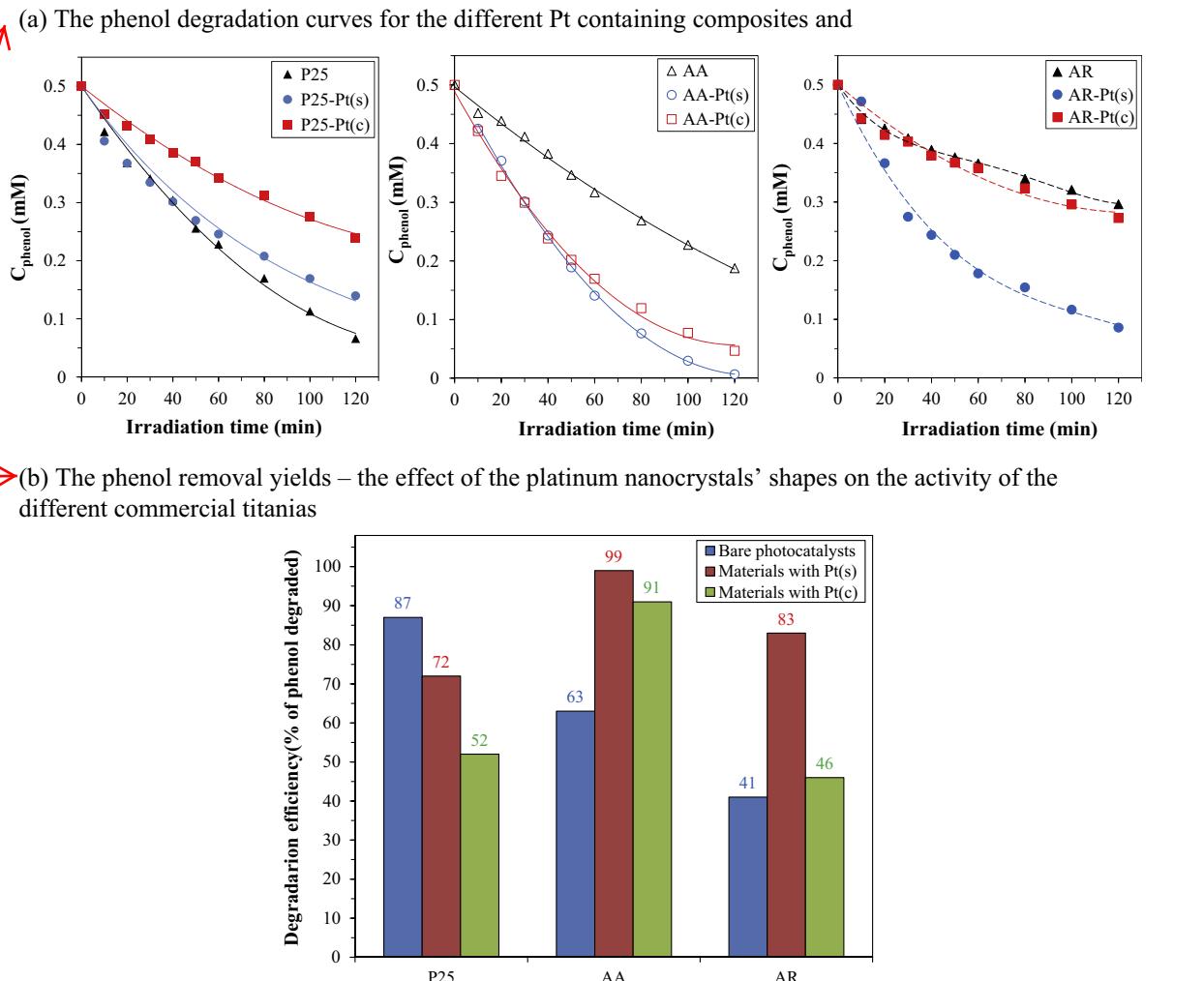


**Fig. 5.** (a) The first derivative DRS spectra of the composites made from the combination of P25, AA, and AR with spherical and polyhedral Pt nanoparticles. (b) The deconvolution of the P25-based composites' first derivative DRS spectra.

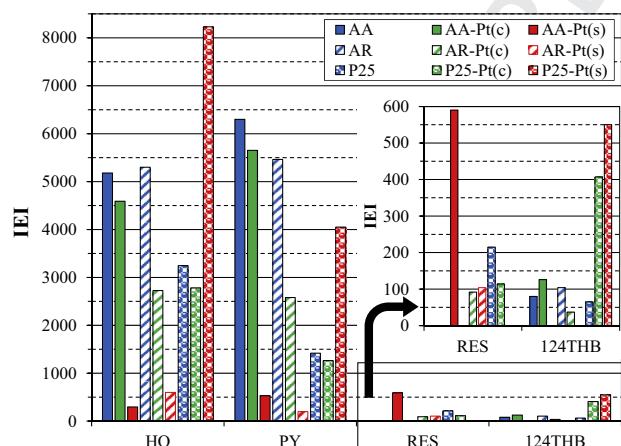
semiconductor oxide/Pt nanocomposites [55–57]. In these cases the papers point out the superior efficiency of platinum-containing nanocomposites.

When P25 is the base photocatalyst, there are quite small differences in the values of the MO conversion (between 75% and 80%). The most efficient was bare P25 (similarly to the degradation of phenol), followed by P25-Pt(c) and P25-Pt(s) in the means of conversion, although considering the initial reaction rates the most effective composite was P25-Pt(s).

In the case of AA-based composite materials, the sample AA-Pt(s) was the least effective (Table 1), while AA-Pt(c) achieved nearly the same reaction rate and degradation yield as the base photocatalyst AA (Table 1). These results are opposed to the conclusions drawn in the case of the phenol degradation experiments. This suggests that in the present case the large number of Pt-TiO<sub>2</sub> contacts are not sufficient to promote/enhance the photocatalytic activity. Consequently, besides the shape and the contact number as important factors, other parameters should be considered (surface complexation, mediated photodegradation, dynamic competition with intermediates for the photocatalyst's surface), which are currently under investigation and do not constitute the subject of the present paper.


In the case of AR-based composite photocatalysts, the analogy with phenol degradation is clearly visible. The AR-Pt(c) composite was less efficient than the base photocatalyst, while the composite containing spherical Pt nanoparticles (AR-Pt(s)) was more efficient than AR (Fig. 8 and Table 1).

As can be seen also in the case of MO, the shape of the Pt nanoparticles played an important role in defining the composite materials' activity. This observation emphasizes that the case of phenol degradation, where the noble metal shape can tailor the activity of a photocatalyst toward a given substrate, is not singular or exceptional.


### 3.5.3. Substrate dependence of the shape influence using a single type of base catalyst (P25)

As already discussed, it can be seen that both the shape of the platinum nanoparticles and the nature of the base catalyst are critical in every respect. Two different substrates have been investigated (MO and phenol), but both of them are poor at adsorbing pollutants. However, to get a complete picture regarding the activity spectrum of the shape-tailored composites, a well-known well absorbing organic substrate should be chosen, such as oxalic acid, which we have used successfully in other recent work [46,50]. In the present case P25 was chosen because it is the commercial photocatalyst that is used most frequently in photocatalysis-related publications [47].

In Fig. 9 it can be seen that degrading phenol with Pt-modified P25 leads to inhibition of the photocatalytic activity from 87% to 72% of degraded phenol (as discussed in Section 3.5). Also, by using polyhedral (cuboctahedral) nanoparticles, the activity was decreased further to 52% of degraded phenol, as discussed in the appropriate section of the paper. Interestingly, in the case of MO (despite the fact that it is a poorly adsorbing substrate), the Pt



**Fig. 6.** (a) The phenol degradation curves for the different Pt-containing composites. (b) The phenol removal yields: Effects of the platinum nanocrystals' shapes on the activity of the different commercial titanias.



**Fig. 7.** The degradation intermediates' presence evaluated in terms of the IEI value.

nanoparticles did not inhibit the P25's activity significantly. Moreover, in this case the polyhedral Pt nanoparticles performed slightly better than the Pt nanospheres (79% vs. 74% of degraded MO).

The Pt-containing P25 nanocomposites degraded the whole amount of oxalic acid available. As the oxalic acid molecules are

quite easily adsorbed onto the surface of the photocatalyst, they have the opportunity to react with the photogenerated holes (further enhancing the charge separation [58]). This means that the rate-determining step is on the hole side of the phenomenon, which is independent of the shape of the platinum. Also, no difference was observed in the orientation of the degradation curves, meaning that the kinetics of the oxalic acid degradation is also independent of the platinum nanocrystals' shape.

However, oxalic acid can be used as a sacrificial agent during photocatalytic hydrogen generation experiments [59], in which the rate-determining step could be the hydrogen reduction process. This can be a shape-dependent reaction, as it is very well known that electron transfer processes on different-shaped platinum nanoparticles occur differently [48].

### 3.5.4. Photocatalytic $H_2$ production efficiency

As already shown in the previous section, the shape of the platinum nanoparticles is crucial for the photocatalytic activity, influencing the different types of commercial titanias in different ways. Consequently, it was expected that a similar effect should be observable in the case of photocatalytic hydrogen production.

Indeed, as is shown in Fig. 10, the composites containing spherical Pt nanoparticles (P25-Pt(s), AA-Pt(s), AR-Pt(s)) were much more efficient in photocatalytic hydrogen production than the corresponding polyhedral platinum-containing composites (P25-

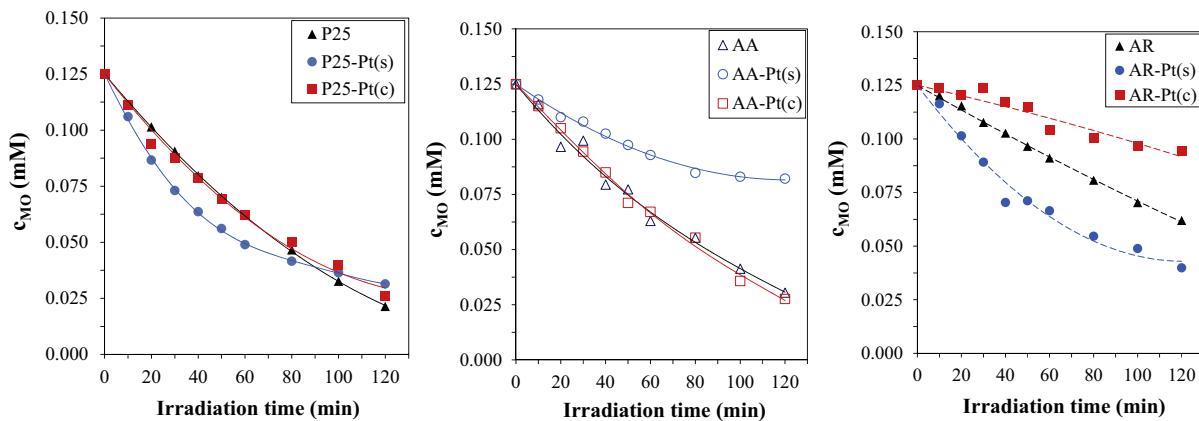



Fig. 8. The MO degradation curves for the different Pt-containing composites.

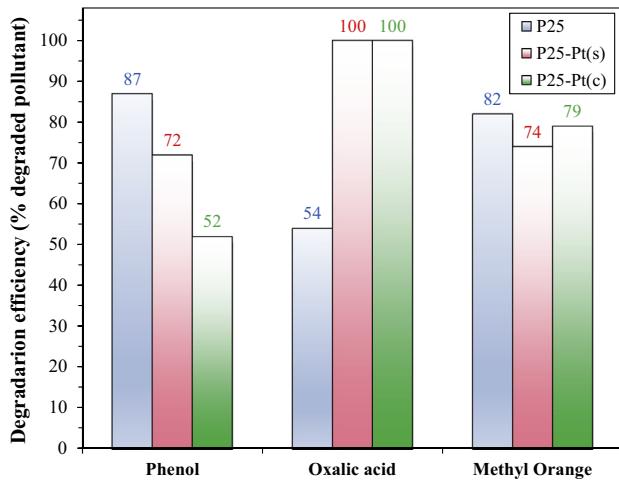
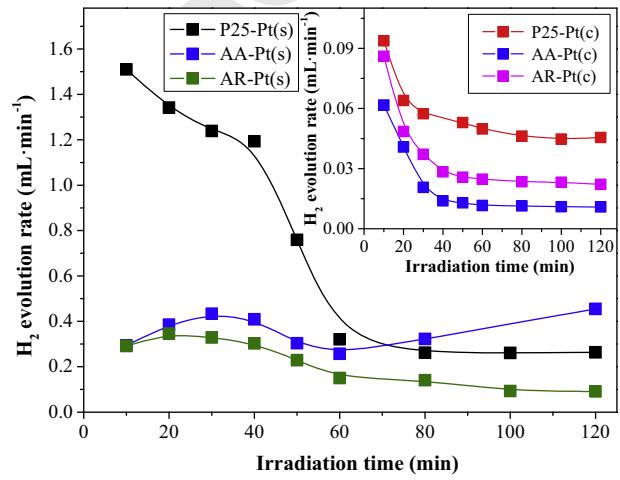




Fig. 9. Comparison of the degradation yields achieved for different substrates by P25 and P25-based composites.

Fig. 10. The hydrogen evolution rates calculated under standard conditions  $-25^{\circ}\text{C}$  and atmospheric pressure for the studied nanocomposites.

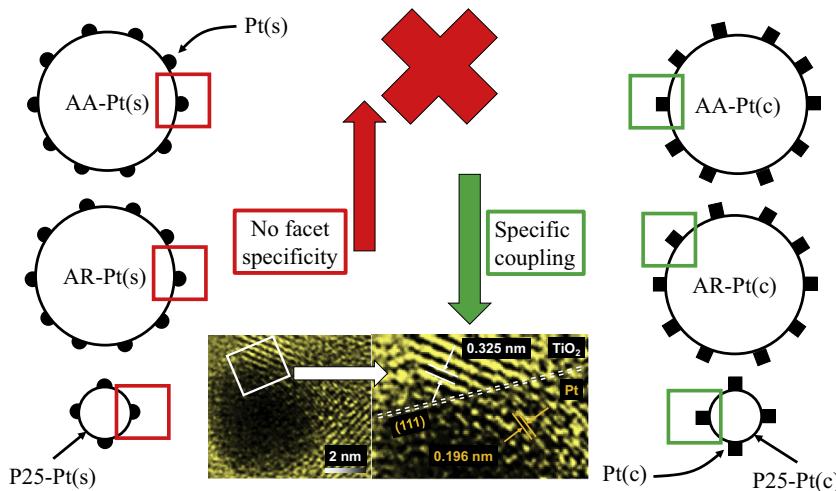
Pt(c), AA-Pt(c), AR-Pt(c)), while in the case of bare commercial titanias no  $\text{H}_2$  evolution was detected, as expected. A large activity difference was also visible in the amount of  $\text{H}_2$  produced (Table 1) during the experimental run (2 h): 22.8–78  $\text{mL}^3$  of  $\text{H}_2$  (composites with Pt(s)) vs. 2.2–6.2  $\text{mL}^4$  of  $\text{H}_2$  (composites with Pt(c)).

The reasons for the obtained  $\text{H}_2$  production efficiency values were multifold:

- **P25-based composites.** Although an activity decrease was observed in the case of phenol degradation, the fact that phenol is a poorly adsorbing substrate should be also taken into consideration, while oxalic acid adsorbs quite efficiently onto the surface of P25 [46,60]. The adsorption of oxalic acid overcompensates for the loss originated from the electron transfer process in the case of spherical Pt particles (P25-Pt(s)), but it is not sufficient to overcome the charge transfer barrier raised by the polyhedral particles (P25-Pt(c)).
- **AA-based composites.** With a relatively small surface area, oxalic acid adsorption is limited [50]; thus at first sight an insignificant  $\text{H}_2$  production yield was expected. However, due to the

large number of available charges on the surface of AA-Pt(s), a fair amount of  $\text{H}_2$  is produced. In the case of AA-Pt(c)<sup>5</sup> the already mentioned charge barrier blocks the whole process.

- **AR-based composites.** The situation was similar to the one discussed in the photocatalytic degradation of phenol, namely that in the case of Pt(c) there are the less reactive (100) facets, while spherical Pt particles possess also very reactive high-index crystal planes. It should be noted that in the case of AR oxalic acid adsorption is nearly nonexistent due to the large crystal size (similar to AA).


### 3.6. Activity, structure, and morphology – the relationship between them

In the previous sections the authors listed several observations regarding the morphology dependence of photocatalytic activity and  $\text{H}_2$  production. In some cases, preliminary explanations were provided in order to give initial insight on the phenomenology of the process. In order to clarify the details, structure-morphology-activity correlations are discussed below.

<sup>3</sup> Calculated under standard conditions  $-25^{\circ}\text{C}$  and atmospheric pressure.

<sup>4</sup> Calculated under standard conditions  $-25^{\circ}\text{C}$  and atmospheric pressure.

<sup>5</sup> This effect is somewhat confusing, because the presence of polyhedral Pt on the surface of AA was beneficial. The issue needs further investigation.



**Fig. 11.** Schematic representation and HRTEM evidence of the contact between Pt and TiO<sub>2</sub>. The 0.236 nm lattice fringes correspond to the interplanar distance of rutile TiO<sub>2</sub> (001), while the 0.196 lattice fringes are equal to the interplanar distance of Pt (200).

### 596 3.6.1. The correlation between Pt(s) and TiO<sub>2</sub> vs. Pt(c) and TiO<sub>2</sub> – 597 insights on the generally higher activity of TiO<sub>2</sub>-Pt(s) composites for 598 phenol degradation

599 One of the reasons for the generally lower activity of Pt(c)- vs.  
600 Pt(s)-containing composites was the nature of the contact between  
601 the commercial titania and the Pt nanoparticles. As the Pt  
602 cubooctahedral contain a significant number of low-indexed facets,  
603 such as (001), (010), and (100), electron transfer is inhibited com-  
604 pared to that on the spherical particles that contain a large number  
605 of high-indexed facets, which facilitate electron transfer [48]. It  
606 was already shown that without shape control, the contact  
607 between a metal and a semiconductor is realized with several crys-  
608 tal facets of the metal (some of them are high-indexed ones) [61].  
609 However, the contact between a shape-tailored noble metal nano-  
610 particle and base catalyst should differ significantly, as shown in  
611 **Fig. 11**. It can be seen that these Pt cubooctahedral particles can con-  
612 nect to the TiO<sub>2</sub> only through their specific crystallographic planes  
613 available (in the indicated example Pt (001) is one of the intercon-  
614 necting facet). This observation demonstrates that when electron  
615 transfer occurs from TiO<sub>2</sub> to Pt(c), the electron has to pass through  
616 one of the mentioned facets that inhibit electron transfer. This  
617 explains the generally lower activity of the Pt(c)-containing com-  
618 posites vs. the Pt(s)-containing ones.

### 619 3.6.2. The contact number as determining factor in the photocatalytic 620 activity – AA- and AR- vs. P25-based composites

621 A major issue that was raised in this paper was the inferior  
622 activity of bare AA and AR compared to their platinized versions  
623 (AA-Pt(c), AA-Pt(s), AR-Pt(c), and AR-Pt(s)). An intriguing question  
624 was also the reversed situation in the case of P25, where the bare  
625 photocatalyst was more active than Pt-containing P25-based com-  
626 posites in the case of phenol degradation.

627 Although, in each of the composite materials, the Pt content was  
628 set/determined to be 1 wt.%, the TiO<sub>2</sub> crystal size is significantly  
629 larger in AA and AR (nanocrystals, with  $d > 150$  nm) compared to  
630 P25 ( $d = 25$ –40 nm). This means that the same amount of Pt nano-  
631 particles is distributed differently among the AA, AR, and P25  
632 nanocrystals.

633 For this reason, the following approaches were considered  
634 (to facilitate the mathematical background of the estimation) to  
635 determine the ratio of the TiO<sub>2</sub> and Pt nanocrystals:  $d_{AA}$  or  
636  $AR = 150$  nm,  $d_{P25} = 30$  nm, TiO<sub>2</sub> geometry – spherical,  $d_{Pt} = 5$  nm,  
637  $\rho_{TiO2} = 4.23$  g cm<sup>-3</sup>,  $\rho_{Pt} = 21.45$  g cm<sup>-3</sup>, amount of TiO<sub>2</sub> 0.99 g

and 0.01 g Pt. The equation to evaluate the number of TiO<sub>2</sub> or  
Pt is

$$N_p = \frac{3m_p}{4\pi\rho_p \left(\frac{d_p}{2}\right)^3}, \quad (1)$$

(details regarding this equation can be found in [Supporting information](#)), where  $N_p$  is the number of particles,  $m_p$  is the total mass of the particles, and  $\rho$  is the density of the chosen material, while  $d_p$  is the diameter of a single nanocrystal. The ratio of the nanocrystals can be estimated by calculating the ratio between  $N_{p, Pt}$  and  $N_{p, TiO2}$ . The following overall particle ratio numbers were obtained:

- (i) In the case of AA- and AR-based composites: 1 TiO<sub>2</sub> nanopar-  
ticle – 7 Pt nanoparticles.
- (ii) In the case of P25 based composites: 10 TiO<sub>2</sub> nanoparticles –  
4 Pt nanoparticles.

The above listed two points mean that the photogenerated elec-  
trons at the surfaces of AA and AR can be easily conducted away by  
the 7 Pt particles available, while this advantage cannot be  
assumed in the case of P25, where each third TiO<sub>2</sub> particle has a  
single available Pt nanocrystal. Additionally, at larger crystal size  
domains, the average electron conductance of TiO<sub>2</sub> can be several  
times higher [62], suggesting that the electrons can also be more  
efficiently transported through the entire TiO<sub>2</sub> nanoparticle. This  
observation reinforces even more the efficient charge transfer  
possibilities in the AA- and AR-based composites.

### 665 3.6.3. The nature of the chosen pollutant: in which case is the shape 666 tailoring important?

**Phenol** In the case of this pollutant the adsorption on the titania  
668 surface is minimal [63]. Hence, the generated OH radicals are  
669 responsible for the degradation process (also shown by the  
670 large number of hydroxylated degradation intermediates). The  
671 most probable factors responsible for the degradation of this  
672 compound were already discussed in the previous two sections.  
**Oxalic acid** This organic compound behaves differently than  
673 phenol. It can adsorb to the surface of the titania extremely  
674 well, which is why the chosen concentration for oxalic acid  
675 was 10 times higher (at lower concentration the adsorption  
676 can be a competitive process to photodegradation and the  
677 two cannot easily be distinguished) [64].

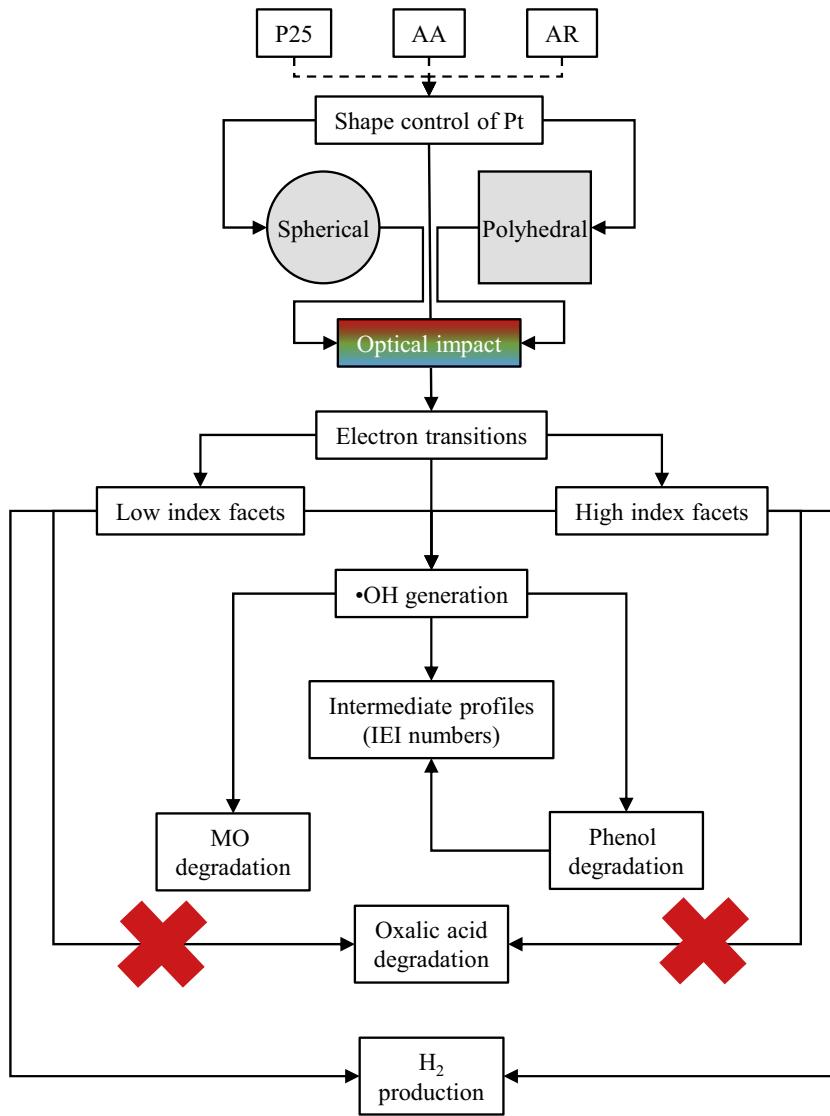



Fig. 12. A schematic overview of the impact of Pt shape tailoring.

680  
681  
682  
683  
684  
685  
686  
687  
688  
689

As oxalic acid is a hole scavenger, the electrons are efficiently separated. Since the electron flux is significantly higher than in the case of phenol (due to the holes trapped by the oxalic acid), the higher potential gradient between the Pt and  $\text{TiO}_2$  nanoparticles overcomes the energetic barrier provided by the low-indexed crystallographic planes of Pt. Hence, the P25-Pt(s) and P25-Pt(c) are extremely efficient, and both of them show higher degradation rates than the bare P25. In this case the morphology of the Pt does not play any role.

#### 690 3.6.4. Unclear aspects: signs regarding new experimental horizons

691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702

Methyl orange degradation Phenol and oxalic acid are relatively simple pollutants, with predictable behavior. However, MO is a more sophisticated molecule; hence several factors can intervene in the achieved degradation efficiency, such as selective adsorption of the intermediates (this is highly possible, as several functional groups are present in the molecule: azo group, sulfonate, amine group). Thus, the observed efficiency order of the composites cannot be directly related just to the geometry of the Pt nanoparticles. However, it shows once again that shape-tailoring-driven activity tuning is more complicated than it looks at first sight.

703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
10010  
10011  
10012  
10013  
10014  
10015  
10016  
10017  
10018  
10019  
10020  
10021  
10022  
10023  
10024  
10025  
10026  
10027  
10028  
10029  
10030  
10031  
10032  
10033  
10034  
10035  
10036  
10037  
10038  
10039  
10040  
10041  
10042  
10043  
10044  
10045  
10046  
10047  
10048  
10049  
10050  
10051  
10052  
10053  
10054  
10055  
10056  
10057  
10058  
10059  
10060  
10061  
10062  
10063  
10064  
10065  
10066  
10067  
10068  
10069  
10070  
10071  
10072  
10073  
10074  
10075  
10076  
10077  
10078  
10079  
10080  
10081  
10082  
10083  
10084  
10085  
10086  
10087  
10088  
10089  
10090  
10091  
10092  
10093  
10094  
10095  
10096  
10097  
10098  
10099  
100100  
100101  
100102  
100103  
100104  
100105  
100106  
100107  
100108  
100109  
100110  
100111  
100112  
100113  
100114  
100115  
100116  
100117  
100118  
100119  
100120  
100121  
100122  
100123  
100124  
100125  
100126  
100127  
100128  
100129  
100130  
100131  
100132  
100133  
100134  
100135  
100136  
100137  
100138  
100139  
100140  
100141  
100142  
100143  
100144  
100145  
100146  
100147  
100148  
100149  
100150  
100151  
100152  
100153  
100154  
100155  
100156  
100157  
100158  
100159  
100160  
100161  
100162  
100163  
100164  
100165  
100166  
100167  
100168  
100169  
100170  
100171  
100172  
100173  
100174  
100175  
100176  
100177  
100178  
100179  
100180  
100181  
100182  
100183  
100184  
100185  
100186  
100187  
100188  
100189  
100190  
100191  
100192  
100193  
100194  
100195  
100196  
100197  
100198  
100199  
100200  
100201  
100202  
100203  
100204  
100205  
100206  
100207  
100208  
100209  
100210  
100211  
100212  
100213  
100214  
100215  
100216  
100217  
100218  
100219  
100220  
100221  
100222  
100223  
100224  
100225  
100226  
100227  
100228  
100229  
100230  
100231  
100232  
100233  
100234  
100235  
100236  
100237  
100238  
100239  
100240  
100241  
100242  
100243  
100244  
100245  
100246  
100247  
100248  
100249  
100250  
100251  
100252  
100253  
100254  
100255  
100256  
100257  
100258  
100259  
100260  
100261  
100262  
100263  
100264  
100265  
100266  
100267  
100268  
100269  
100270  
100271  
100272  
100273  
100274  
100275  
100276  
100277  
100278  
100279  
100280  
100281  
100282  
100283  
100284  
100285  
100286  
100287  
100288  
100289  
100290  
100291  
100292  
100293  
100294  
100295  
100296  
100297  
100298  
100299  
100300  
100301  
100302  
100303  
100304  
100305  
100306  
100307  
100308  
100309  
100310  
100311  
100312  
100313  
100314  
100315  
100316  
100317  
100318  
100319  
100320  
100321  
100322  
100323  
100324  
100325  
100326  
100327  
100328  
100329  
100330  
100331  
100332  
100333  
100334  
100335  
100336  
100337  
100338  
100339  
100340  
100341  
100342  
100343  
100344  
100345  
100346  
100347  
100348  
100349  
100350  
100351  
100352  
100353  
100354  
100355  
100356  
100357  
100358  
100359  
100360  
100361  
100362  
100363  
100364  
100365  
100366  
100367  
100368  
100369  
100370  
100371  
100372  
100373  
100374  
100375  
100376  
100377  
100378  
100379  
100380  
100381  
100382  
100383  
100384  
100385  
100386  
100387  
100388  
100389  
100390  
100391  
100392  
100393  
100394  
100395  
100396  
100397  
100398  
100399  
100400  
100401  
100402  
100403  
100404  
100405  
100406  
100407  
100408  
100409  
100410  
100411  
100412  
100413  
100414  
100415  
100416  
100417  
100418  
100419  
100420  
100421  
100422  
100423  
100424  
100425  
100426  
100427  
100428  
100429  
100430  
100431  
100432  
100433  
100434  
100435  
100436  
100437  
100438  
100439  
100440  
100441  
100442  
100443  
100444  
100445  
100446  
100447  
100448  
100449  
100450  
100451  
100452  
100453  
100454  
100455  
100456  
100457  
100458  
100459  
100460  
100461  
100462  
100463  
100464  
100465  
100466  
100467  
100468  
100469  
100470  
100471  
100472  
100473  
100474  
100475  
100476  
100477  
100478  
100479  
100480  
100481  
100482  
100483  
100484  
100485  
100486  
100487  
100488  
100489  
100490  
100491  
100492  
100493  
100494  
100495  
100496  
100497  
100498  
100499  
100500  
100501  
100502  
100503  
100504  
100505  
100506  
100507  
100508  
100509  
100510  
100511  
100512  
100513  
100514  
100515  
100516  
100517  
100518  
100519  
100520  
100521  
100522  
100523  
100524  
100525  
100526  
100527  
100528  
100529  
100530  
100531  
100532  
100533  
100534  
100535  
100536  
100537  
100538  
100539  
100540  
100541  
100542  
100543  
100544  
100545  
100546  
100547  
100548  
100549  
100550  
100551  
100552  
100553  
100554  
100555  
100556  
100557  
100558  
100559  
100560  
100561  
100562  
100563  
100564  
100565  
100566  
100567  
100568  
100569  
100570  
100571  
100572  
100573  
100574  
100575  
100576  
100577  
100578  
100579  
100580  
100581  
100582  
100583  
100584  
100585  
100586  
100587  
100588  
100589  
100590  
100591  
100592  
100593  
100594  
100595  
100596  
100597  
100598  
100599  
100600  
100601  
100602  
100603  
100604  
100605  
100606  
100607  
100608  
100609  
100610  
100611  
100612  
100613  
100614  
100615  
100616  
100617  
100618  
100619  
100620  
100621  
100622  
100623  
100624  
100625  
100626  
100627  
100628  
100629  
100630  
100631  
100632  
100633  
100634  
100635  
100636  
100637  
100638  
100639  
100640  
100641  
100642  
100643  
100644  
100645  
100646  
100647  
100648  
100649  
100650  
100651  
100652  
100653  
100654  
100655  
100656  
100657  
100658  
100659  
100660  
100661  
100662  
100663  
100664  
100665  
100666  
100667  
100668  
100669  
100670  
100671  
100672  
100673  
100674  
100675  
100676  
100677  
100678  
100679  
100680  
100681  
100682  
100683  
100684  
100685  
100686  
100687  
100688  
100689  
100690  
100691  
100692  
100693  
100694  
100695  
100696  
100697  
100698  
100699  
100700  
100701  
100702  
100703  
100704  
100705  
100706  
100707  
100708  
100709  
100710  
100711  
100712  
100713  
100714  
100715  
100716  
100717  
100718  
100719  
100720  
100721  
100722  
100723  
100724  
100725  
100726  
100727  
100728  
100729  
100730  
100731  
100732  
100733  
100734  
100735  
100736  
100737  
100738  
100739  
100740  
100741  
100742  
100743  
100744  
100745  
100746  
100747  
100748  
100749  
100750  
100751  
100752  
100753  
100754  
100755  
100756  
100757  
100758  
100759  
100760  
100761  
100762  
100763  
100764  
100765  
100766  
100767  
100768  
100769  
100770  
100771  
100772  
100773  
100774  
100775  
100776  
100777  
100778  
100779  
100780  
100781  
100782  
100783  
100784  
100785  
100786  
100787  
100788  
100789  
100790  
100791  
100792  
100793  
100794  
100795  
100796  
100797  
100798  
100799  
100800  
100801  
100802  
100803  
100804  
100805  
100806  
100807  
100808  
100809  
100810  
100811  
100812  
100813  
100814  
100815  
100816  
100817  
100818  
100819  
100820  
100821  
100822  
100823  
100824  
100825  
100826  
100827  
100828  
100829  
100830  
100831  
100832  
100833  
100834  
100835  
100836  
100837  
100838  
100839  
100840  
100841  
100842  
100843  
100844  
100845  
100846  
100847  
100848  
100849  
100850  
100851  
100852  
100853  
100854  
100855  
100856  
100857  
100858  
100859  
100860  
100861  
100862  
100863  
100864  
100865  
100866  
100867  
100868  
100869  
100870  
100871  
100872  
100873  
100874  
100875  
100876  
100877  
100878  
100879  
100880  
100881  
100882  
100883  
100884  
100885  
100886  
100887  
100888  
100889  
100890  
100891  
100892  
100893  
100894  
100895  
100896  
100897  
100898  
100899  
100900  
100901  
100902  
100903  
100904  
100905  
100906  
100907  
100908  
100909  
100910  
100911  
100912  
100913  
100914  
100915  
100916  
100917  
100918  
100919  
100920  
100921  
100922  
100923  
100924  
100925  
100926  
100927  
100928  
100929  
100930  
100931  
100932  
100933  
100934  
100935  
100936  
100937  
100938  
100939  
100940  
100941  
100942  
100943  
100944  
100945  
100946  
100947  
100948  
100949  
100950  
100951  
100952  
100953  
100954  
100955  
100956  
100957  
100958  
100959  
100960  
100961  
100962  
100963  
100964  
100965  
100966  
100967  
100968  
100969  
100970  
100971  
100972  
100973  
100974  
100975  
100976  
100977  
100978  
100979  
100980  
100981  
100982  
100983  
100984  
100985  
100986  
100987  
100988  
100989  
100990  
100991  
100992  
100993  
100994  
100995  
100996  
100997  
100998  
100999  
1001000  
100101  
100102  
100103  
100104  
100105  
100106  
100107  
100108  
100109  
100110  
100111  
100112  
100113  
100114  
100115  
100116  
100117  
100118  
100119  
100120  
100121  
100122  
100123  
100124  
100125  
100126  
100127  
100128  
100129  
100130  
100131  
100132  
100133  
100134  
100135  
100136  
100137  
100138  
100139  
100140  
100141  
100142  
100143  
100144  
100145  
100146  
100147  
100148  
100149  
100150  
100151  
100152  
100153  
100154  
100155  
100156  
100157  
100158  
100159  
100160  
100161  
100162  
100163  
100164  
100165  
100166  
100167  
100168  
100169  
100170  
100171  
100172  
100173  
100174  
100175  
100176  
100177  
100178  
100179  
100180  
100181  
100182  
100183  
100184  
100185  
100186  
100187  
100188  
100189  
100190  
100191  
100192  
100193  
100194  
100195  
100196  
100197  
100198  
100199  
100200  
100201  
100202  
100203  
100204  
100205  
100206  
100207  
100208  
100209  
100210  
1002

presence of the (100) crystal plane of Pt (in AR-Pt(c)) blocked the beneficial effect of Pt itself (of charge separation), while remaining uninfluential on the photocatalytic activity finally registered. When high-indexed crystal planes appear for Pt (AR-Pt(s)), the enhancement is again readily observable.

The latter issue was also valid for photocatalytic H<sub>2</sub> production experiments. All the composite materials that possessed spherical Pt nanoparticles were much more efficient than their corresponding composites with polyhedral Pt.

### Acknowledgments

The Hungarian authors express their gratitude for a grant from Swiss Contribution (SH/7/2/20). Furthermore, the authors would like to thank to the Romanian–Hungarian bilateral Project No. 661/2013/K-TÉT\_12\_RO-1-2013-0109966. Also the research Grant No. GTC\_34027 is thanked, which was provided by the Babes-Bolyai University for young researchers. Furthermore, for S.K. this research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/1-11-1-2012-0001 'National Excellence Program'.

G.K. acknowledges the support of the European Union and the State of Hungary, co-financed by the European Social Fund within the framework of TÁMOP-4.2.4.A/2-11/1-2012-0001 'National Program of Excellence' – convergence program for the elaboration and execution of a national personal support system for students and researchers. The project is implemented with the support of the European Union and co-financed by the European Social Fund.

Z.S.P. acknowledges that this research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 'National Excellence Program'.

### Appendix A. Supplementary material

Supplementary data associated with this article can be found, in the online version, at <http://dx.doi.org/10.1016/j.jcat.2015.02.008>.

### References

- [1] T. Nonoyama, T. Kinoshita, M. Higuchi, K. Nagata, M. Tanaka, K. Sato, K. Kato, *J. Am. Chem. Soc.* 134 (2012) 8841–8847.
- [2] N. Balázs, D.F. Srankó, A. Dombi, P. Sipos, K. Mogyorósi, *Appl. Catal. B* 96 (2010) 569–576.
- [3] T. Ohno, S. Tagawa, H. Itoh, H. Suzuki, T. Matsuda, *Mater. Chem. Phys.* 113 (2009) 119–123.
- [4] D.L. Liao, B.Q. Liao, *J. Photochem. Photobiol. A* 187 (2007) 363–369.
- [5] M. Zhang, J. Wang, H. Fu, *J. Mater. Process. Technol.* 199 (2008) 274–278.
- [6] M. Maeda, T. Watanabe, *Surf. Coat. Technol.* 201 (2007) 9309–9312.
- [7] M.A. Barakat, R.I. Al-Hutailah, E. Qayyum, J. Rashid, J.N. Kuhn, *Environ. Technol.* 35 (2013) 137–144.
- [8] L. Baia, A. Vulpoi, T. Radu, T. Karácsonyi, A. Dombi, K. Hernádi, V. Danciu, S. Simon, K. Norén, S.E. Canton, G. Kovács, *Z. Pap*, *Appl. Catal. B* 148–149 (2014) 589–600.
- [9] M. Li, J.C. Li, *Mater. Lett.* 60 (2006) 2526–2529.
- [10] A. Alonso-Tellez, R. Masson, D. Robert, N. Keller, V. Keller, *J. Photochem. Photobiol. A* 250 (2012) 58–65.
- [11] K. Doudrick, O. Monzón, A. Mangonon, K. Hristovski, P. Westerhoff, *J. Environ. Eng.* 138 (2012) 852–861.
- [12] R. Fateh, R. Dillert, D. Bahnemann, *Langmuir* 29 (2013) 3730–3739.
- [13] J.A. Ortega Méndez, C.R. López, E. Pulido Melián, O. González Díaz, J.M. Doña Rodríguez, D. Fernández Hevia, M. Macías, *Appl. Catal. B* 147 (2014) 439–452.
- [14] E.P. Melián, C.R. López, A.O. Méndez, O.G. Díaz, M.N. Suárez, J.M. Doña Rodríguez, J.A. Navío, D. Fernández Hevia, *Int. J. Hydrogen Energy* 38 (2013) 11737–11748.
- [15] I.S. Grover, S. Singh, B. Pal, *Appl. Surf. Sci.* 280 (2013) 366–372.
- [16] X. Chen, S.S. Mao, *Chem. Rev.* 107 (2007) 2891–2959.
- [17] N. Meng, K.H.L. Michael, Y.C.L. Dennis, K. Sumathy, *Renew. Sust. Energy Rev.* 11 (2007) 401–425.
- [18] Z. Peng, H. Yang, *Nano Today* 4 (2009) 143–164.
- [19] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, *Science* 272 (1996) 1924–1926.
- [20] L.-M. Lacroix, C. Gatel, R. Arenal, C. Garcia, S. Lachaize, T. Blon, B. Warot-Fonrose, E. Snoeck, B. Chaudret, G. Viau, *Angew. Chem. Int. Ed.* 51 (2012) 4690–4694.
- [21] M. Grzelczak, J. Perez-Juste, P. Mulvaney, L.M. Liz-Marzan, *Chem. Soc. Rev.* 37 (2008) 1783–1791.
- [22] V.K. Sharma, R.A. Yingard, Y. Lin, *Adv. Colloid Interface Sci.* 145 (2009) 83–96.
- [23] Z. Peng, C. Kisielowski, A.T. Bell, *Chem. Commun.* 48 (2012) 1854–1856.
- [24] M. Yang, X. Yang, J. Ma, K.C. Zhang, *Synthesis and characterizations of cubic Q8 assembly composed of platinum nanoparticles*, *Adv. Mater. Res.* 79–82 (2009) 1555–1558.
- [25] Y.T. Yu, B.Q. Xu, *Appl. Organomet. Chem.* 20 (2006) 638–647.
- [26] A. Miyazaki, S. Yoshida, Y. Nakano, I. Balint, *Chem. Lett.* 34 (2005) 74–75.
- [27] C. Coutanceau, P. Urchaga, S. Brimaud, S. Baranton, *Electrocatalysis* 3 (2012) 75–87.
- [28] J. Guerra, J.L. Burt, D.A. Ferrer, S. Mejía, M. José-Yacamán, *J. Nanopart. Res.* 13 (2011) 1723–1735.
- [29] F. Muench, S. Kaserer, U. Kunz, I. Svoboda, J. Brötz, S. Lauterbach, H.J. Kleebe, C. Roth, W. Ensinger, *J. Mater. Chem.* 21 (2011) 6286–6291.
- [30] M.R.M. Hosseini, H. Jamalabadi, M. Najafi, *Measurement* 46 (2013) 3328–3332.
- [31] M. Moritz, M. Geszke-Moritz, *Chem. Eng. J.* 228 (2013) 596–613.
- [32] C.-L. Tseng, K.-C. Chang, M.-C. Yeh, K.-C. Yang, T.-P. Tang, F.-H. Lin, *Ceram. Int.* 40 (2014) 5117–5127.
- [33] A. Ghosh, F. Stellacci, R. Kumar, *Catal. Today* 198 (2012) 77–84.
- [34] S. Semlali, T. Pigot, D. Flahaut, J. Allouche, S. Lacombe, L. Nicole, *Appl. Catal. B* 150–151 (2014) 656–662.
- [35] J. Puskelova, L. Baia, A. Vulpoi, M. Baia, M. Antoniadou, V. Dracopoulos, E. Stathatos, K. Gabor, *Z. Pap*, V. Danciu, P. Lianos, *Chem. Eng. J.* 242 (2014) 96–101.
- [36] C.S. Turchi, D.F. Ollis, *J. Catal.* 122 (1990) 178–192.
- [37] K. Mogyorósi, N. Balázs, D.F. Srankó, E. Tombácz, I. Dékány, A. Oszkó, P. Sipos, A. Dombi, *Appl. Catal. B* 96 (2010) 577–585.
- [38] M. Delnavaz, B. Ayati, H. Ganjidoust, S. Sanjabi, *Toxicol. Environ. Chem.* 94 (2012) 1086–1098.
- [39] G. Kovács, L. Baia, A. Vulpoi, T. Radu, É. Karácsonyi, A. Dombi, K. Hernádi, V. Danciu, S. Simon, *Z. Pap*, *Appl. Catal. B* 147 (2014) 508–517.
- [40] E. Gaitan, *Environmental Goitrogenesis*, CRC Press, 1989.
- [41] N.V. Long, N.D. Chien, T. Hayakawa, H. Hirata, G. Lakshminarayana, M. Nogami, *Nanotechnology* 21 (2010) 035605.
- [42] N.V. Long, M. Ohtaki, M. Uchida, R. Jalem, H. Hirata, N.D. Chien, M. Nogami, *J. Colloid Interface Sci.* 359 (2011) 339–350.
- [43] H. Zhang, J.F. Banfield, *J. Phys. Chem. B* 104 (2000) 3481–3487.
- [44] R. Jenkins, R.L. Snyder, *Introduction to X-ray Powder Diffractometry*, Wiley, New York, 1996.
- [45] D. Flak, A. Braun, B.S. Mun, J.B. Park, M. Parlinska-Wojtan, T. Graule, M. Rekas, *Phys. Chem. Chem. Phys.* 15 (2013) 1417–1430.
- [46] É. Karácsonyi, L. Baia, A. Dombi, V. Danciu, K. Mogyorósi, L.C. Pop, G. Kovács, V. Coșevanu, A. Vulpoi, S. Simon, *Z. Pap*, *Catal. Today* 208 (2013) 19–27.
- [47] B. Ohtani, O.O. Prieto-Mahaney, D. Li, R. Abe, *J. Photochem. Photobiol. A* 216 (2010) 179–182.
- [48] N. Tian, Z.Y. Zhou, S.G. Sun, Y. Ding, Z.L. Wang, *Science* 316 (2007) 732–735.
- [49] B. Zhang, D. Wang, Y. Hou, S. Yang, X.H. Yang, J.H. Zhong, J. Liu, H.F. Wang, P. Hu, H.J. Zhao, H.G. Yang, *Sci. Rep.* 3 (2013) 1836.
- [50] G. Veréb, Z. Ambrus, *Z. Pap*, Á. Kmettykó, A. Dombi, V. Danciu, A. Cheesman, K. Mogyorósi, *Appl. Catal. A* 417–418 (2012) 26–36.
- [51] G. Veréb, L. Manczinger, G. Bozsó, A. Sienkiewicz, L. Forró, K. Mogyorósi, K. Hernádi, A. Dombi, *Appl. Catal. B* 129 (2013) 566–574.
- [52] H. Song, F. Kim, S. Connor, G.A. Somorjai, P. Yang, *J. Phys. Chem. B* 109 (2005) 188–193.
- [53] K. Vajda, K. Mogyorósi, Z. Nemeth, K. Hernádi, L. Forró, A. Magrez, A. Dombi, *Phys. Status Solidi Soli* 248 (2011) 2496–2499.
- [54] T.A. Egerton, J.A. Mattinson, *J. Photochem. Photobiol. A* 194 (2008) 283–289.
- [55] J.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, *Appl. Catal. B* 150–151 (2014) 107–115.
- [56] Q. Zhao, M. Li, J. Chu, T. Jiang, H. Yin, *Appl. Surf. Sci.* 255 (2009) 3773–3778.
- [57] M. Huang, C. Xu, Z. Wu, Y. Huang, J. Lin, J. Wu, *Dyes Pigments* 77 (2008) 327–334.
- [58] C. Fernández-Rodríguez, J.M. Doña-Rodríguez, O. González-Díaz, I. Seck, D. Zerbaní, D. Portillo, J. Pérez-Peña, *Appl. Catal. B* 125 (2012) 383–389.
- [59] K. Mogyorósi, Á. Kmettykó, N. Czirbus, G. Veréb, P. Sipos, A. Dombi, *React. Kinet. Catal. Lett.* 98 (2009) 215–225.
- [60] *Z. Pap*, É. Karácsonyi, L. Baia, A. Vulpoi, V. Danciu, K. Hernádi, K. Mogyorósi, A. Dombi, *Phys. Status Solidi B* 212 (2012) 2592–2595.
- [61] M. Behrens, F. Studt, I. Kasatkina, S. Kuhl, M. Havecker, F. Abild-Pedersen, S. Zander, F. Girsdies, P. Kurr, B.L. Kniep, M. Tovar, R.W. Fischer, J.K. Norskov, R. Schlogl, *Science* 336 (2012) 893–897.
- [62] P. Pichat, R. Enríquez, E. Mietton, *Solid State Phenom.* 162 (2010) 41–48.
- [63] *Z. Pap*, V. Danciu, Z. Cegled, A. Kukovecz, A. Oszko, A. Dombi, K. Mogyorósi, *Appl. Catal. B* 101 (2011) 461–470.
- [64] C.B. Mendive, M.A. Blesa, D. Bahnemann, *Water Sci. Technol.* 55 (2007) 139.