Chapter 1

Topology Preserving Parallel 3D Thinning
Algorithms

Kalman Pahgyi, Gdbor Nemeth, and éter Kardos

Abstract A widely used technique to obtain skeletons of binary olsjethinning,
which is an iterative layer-by-layer erosion in a topologgserving way. Thinning
in 3D is capable of extracting various skeleton-like shapscdptors (i.e., center-
lines, medial surfaces, and topological kernels). Thigptdradescribes a family of
new parallel 3D thinning algorithms fd26,6) binary pictures. The reported algo-
rithms are derived from some sufficient conditions for tagyl preserving parallel
reduction operations, hence their topological correcmeguaranteed.

1.1 Introduction

Skeleton is a region-based shape descriptor which regseengeneral shape of
objects. 3D skeleton-like shape features (i.e., cengslimedial surfaces, and topo-
logical kernels) play important role in various applicagoin image processing,
pattern recognition, and visualization [6, 10, 38, 41, 44, 4

An illustrative definition of the skeleton uses the praiire-analogy: the object
boundary is set on fire, and the skeleton is formed by the Ibaresthe fire fronts
meet and extinguish each other [5]. Thinning is a digitalation of the fire front
propagation: the border points that satisfy certain togicll and geometric con-
straints are deleted in iteration steps [12].

A 3D binary picture[11, 12] is a mapping that assigns a value of 0 or 1 to
each point with integer coordinates in the 3D digital sp@éePoints having the
value of 1 are calledblack points, and those with a zero value are calekite
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ones. Black points form the components of a picture, whil@evpoints form the
background and the cavities. We consi(28, 6)—pictures, where 26—adjacency and
6—adjacency are, respectively, used for the componentthairccomplement [12].

A reduction operatiortransforms a binary picture only by changing some black
points to white ones (which is referred to as thedetionof 1's). A parallel reduc-
tion operationdeletes all points satisfying its condition simultanegualreduction
operation doesot preserve topology [11] if

e any component in the input picture is split (into several ponents) or is com-
pletely deleted,

e any cavity in the input picture is merged with the backgroondnother cavity,
or

e acavity is created where there was none in the input picture.

There is an additional concept callédle (or tunnel)in 3D pictures. A hole
(which doughnuts have) is formed of O’s, but it is not a caji®]. Topology preser-
vation implies that eliminating or creating any hole is nittaed.

There are three types of 3D thinning algorithms for prodgdime three types
of skeleton-like shape featuremurve—thinningalgorithms are used to extract me-
dial lines or centerlinesurface—thinninglgorithms produce medial surfaces, while
kernel-thinningalgorithms are capable of extracting topological kernalsopo-
logical kernel is a minimal set of points that is topologigaquivalent [12] to the
original object (i.e., if we remove any further point fromtiien the topology is not
preserved). Note that kernel-thinning algorithms areroftderred to as reductive
shrinking algorithms [9]. 3D curve-thinning and surfabé@hing algorithms use
operations that delete some points which areemutpoints since preserving end-
points provides important geometrical information refatio the shape of the ob-
jects. Kernel-thinning algorithms for extracting topdlzg kernels do not take any
endpoint characterization into consideration. Mediafates are usually extracted
from general shapes, tubular structures can be represeyntbeir centerlines, and
extracting topological kernels is useful in topologicasdeption.

Most of the existing thinning algorithms are parallel asfirefront propagation
is by nature parallel. These algorithms are composed oflpharaduction opera-
tions. Parallel reduction operations delete a set of paintsiitaneously which may
lead to altering the topology. Note that deletion rules afflal thinning algorithms
are generally given by matching templates. In order to ydtift a given parallel
3D thinning algorithm preserves the topology for all poks{l26, 6) pictures, some
sufficient conditions for topology preservation have beesppsed [11, 18, 36].
However, verifying these conditions usually means chegkmveral configurations
of points, hence papers presenting thinning algorithmsaiorong proof parts.
Despite of complex proofs, it was claimed in [14, 45] that tparallel 3D thin-
ning algorithms [18, 19] are not topology preserving. Thatvhy we propose a
safe technique for designing topologically correct pata8D thinning algorithms.
Our approach is based on some new sufficient conditions paldgy preservation.
These conditions consider individual points (instead dhpoonfigurations) and
can be combined with various thinning strategies.
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In this chapter we present 15 algorithms that are derived fiee new sufficient
conditions combined with the three major strategies foalpelrthinning (i.e., fully
parallel, subiteration-based, and subfield-based [8]}laret types of endpoints.

The rest of this chapter is organized as follows. Sectiomevizws the basic no-
tions and results of 3D digital topology, and we present aificsent conditions for
topology preservation. Then, in Sect. 1.3 we propose 13Ipb8® thinning algo-
rithms and their topological correctness is proved. Siasedxtraction of skeleton-
like shape features is extremely important in numerousiegpbns for large 3D
shapes, Sect. 1.4 is devoted to the efficient implementatiche proposed algo-
rithms, and Sect. 1.5 presents some illustrative resuitSeict. 1.6 some possible
future works and open problems are outlined. Finally, wencboff the chapter with
some concluding remarks.

1.2 Topology Preserving Parallel Reduction Operations

In this section, we present new sufficient conditions footogy preservation. First
we outline some concepts of digital topology and related desyilts that will be
used in the sequel.

Let p be a point in the 3D digital spa@®. Let us denot&; (p) (for j = 6,18, 26)
the set of points that arpadjacentto pointp (see Fig. 1.1).
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Fig. 1.1 Frequently used adjacencies 3. The setNg(p) contains pointp and the six points
markedU, D, N, E, S, andW. The setN;g(p) containsNg(p) and the twelve points marked by
“0”. The setNyg(p) containsNig(p) and the eight points marked bg*

The sequence of distinct poinfg, x1, . .., X) is called g-path (for j = 6,26) of
lengthn from pointXp to pointx, in a non-empty set of pointX if each point of
the sequence is iK andx; is j-adjacent tax_1 for each 1<i < n (see Fig. 1.1).
Note that a single point is ppath of length 0. Two points are said tojeeonnected
in the setX if there is aj-path inX between themj(= 6,26). A set of pointsX is
j-connectedn the set of pointy O X if any two points inX are j-connected ir¥Y
(j = 6,26).
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A 3D binary (26,6) digital picture & is a quadruple? = (Z*,26,6,B) [12].
Each element o2 is called apoint of 2. Each point inB C Z3 is called ablack
pointand has a value 1. Each pointZd\Biis called avhite pointand has a value 0.
An objectis a maximal 26-connected set of black points, whitghgte componeris
a maximal 6-connected set of white points. Here it is assuived picture contains
finitely many black points.

Thelexicographical orderelation “<” between two distinct pointp = (py, Py, Pz)
andq = (g, Gy, ;) in Z° is defined as follows:

P<0 & (Pz<0)V(Pz=0APy<0y)V(Pz=0zAPy=0yAPx<0x).

LetC C Z2 be a set of points. Poirg € C is thesmallest elemeruf C if for any
qeC\{p}. p=<a.

A unit lattice squards a set of four mutually 18-adjacent pointsZa, while a
unit lattice cubes a set of eight mutually 26-adjacent point<Zih

A black point is called &order pointin (26,6) pictures if it is 6-adjacent to
at least one white point. A border poiptis called aU-border pointif the point
markedU= u(p) in Fig. 1.1 is a white point. We can defile, N-, E-, S-, andW-
border points in the same way. A black point is calledrgerior point if it is not
a border point. Asimplepoint in a(26,6) picture is a black point whose deletion
is a topology preserving reduction operation [12]. Note gimplicity of point p
in (26,6) pictures is a local property that can be decided by invetitigdhe set
N2e(p) [12].

Parallel reduction operations delete a set of black pointsreot just a single
simple point. Hence we need to consider what is meant by égyobreservation
when a number of black points are deleted simultaneously.

Ma [17] gave someufficient conditiongor 3D parallel reduction operations to
preserve topology. Later, Rajyi and Kuba proposed the following simplified con-
ditions [36]:

Theorem 1.[36] The parallel reduction operatio® is topology preserving for
(26,6) pictures if all the following conditions hold.

1. Only simple points are deleted b

2. Let p be any black point in a pictuf&?,26,6,B) such that p is deleted bg.
Let QC B be any set of simple points (@3, 26,6,B) such that p= Q, and Q is
contained in a unit lattice square.
Then point p is simple in picturgZ®, 26,6, B\ (Q\{p})).

3. No object contained in a unit lattice cube is deleted cetgby byo.

Theorem 1 provides a general method of verifying that a prlinning algo-
rithm preserves topology. In this section, we present scemesufficient conditions
for topology preservation as a basis for designing 3D pelrtdinning algorithms.

Theorem 2. The parallel reduction operatiod is topology preserving fof26,6)
pictures if all the following conditions hold for any blacloipt p in any picture
(73,26,6,B) such that p is deleted by.
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1. Point p is simple ifZ3,26,6,B).

2. Let QC B be any set of simple points {2, 26,6,B) such that pc Q, and Q is
contained in a unit lattice square.
Then point p is simple in picturgZ?, 26,6,B\(Q\{p})), or p is not the smallest
element of Q.

3. Point p is not the smallest element of any object 8 in (Z2,26,6,B) such that
C is contained in a unit lattice cube.

Proof. It can be readily seen that if the parallel reduction operedi satisfies Con-
dition i of Theorem 2, then Conditionof Theorem 1 is also satisfied=€ 1,2, 3).
Hence, parallel reduction operatignis topology preserving fof26,6) pictures.

O

1.3 Variations on Parallel 3D Thinning Algorithms

In this section, 15 parallel 3D thinning algorithms are praed. These algorithms
are composed of parallel reduction operations derived fransufficient conditions
for topology preservation (see Theorem 2).

Thinning algorithms preserve endpoints and some bordetptiat provide rel-
evant geometrical information with respect to the shapehefdbject. Here, we
consider three types of endpoints.

Definition 1. There is no endpoint of typeK .

To standardize the notations, shrinking algorithms capablproducing topo-
logical kernels are considered as kernel-thinning algorst, where no endpoint is
preserved, hence we use endpoints of ftJle(i.e., the empty set of the endpoints).

Definition 2. A black pointp in picture (Z2,26,6,B) is a curve-endpoint of type
CE if (N2s(p)\{p}) N B contains exactly one point (i.e,is 26-adjacent to exactly
one further black point).

Endpoints of typeCE have been considered by numerous existing 3D curve-
thinning algorithms [26, 27, 28, 34, 35, 36, 38].

Definition 3. A black pointp in picture(Z3,26,6,B) is a surface-endpoint of type
SE if there is no interior point ifNzs(p) N B.

Note that the characterization of endpoir8& is applied in some existing
surface-thinning algorithms [24, 26, 27, 28, 31, 33, 37].

In the rest of this section we present parallel 3D thinnirgpathms composed
of parallel reduction operations that satisfy Theorem 2.
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1.3.1 Fully Parallel Algorithms

In fully parallel algorithms, the same parallel reductigrecation is applied in each
iteration step [1, 15, 16, 18, 19, 33, 45].

The scheme of the proposed fully parallel thinning algoniD-FP€ using end-
point of typee is sketched in Algorithm 1 € { TK, CE, SE }). Note that Pagyi
and Nemeth reported three fully parallel 3D surface-thinnirgpaithms in [37], but
they were based on different sufficient conditions.

Algorithm 1 Algorithm 3D-FP¢

. Input picture(Z3,26,6,X)

: Output picture(Z2,26,6,Y)

Y =X

. repeat

/I one iteration step

D = {p| pis 3D-FP-¢-deletablein Y}
Y=Y\D

cuntl D=0

3D-FP-¢-deletablepoints are defined as follows:

Definition 4. A black point is3D-FP-g-deletableif it is not an endpoint of type,
and all conditions of Theorem 2 hold € { TK, CE, SE}).

We have the following theorem.

Theorem 3. Algorithm 3D-FP<€ (¢ € { TK, CE, SE }) is topology preserving for
(26,6) pictures.

Proof. Deletable points of the proposed fully parallel algorithf®se Definition 4)
are derived directly from conditions of Theorem 2. Hendefehe three algorithms
are topology preserving. O

Note that all objects contained in a unit lattice cube arenfmt of endpoints of
type SE. Hence, Condition 3 of Theorem 2 can be ignored in algoritvFpP-SE.

1.3.2 Subiteration-based Algorithms

In subiteration-based (or frequently referred to as dioeet) thinning algorithms,
an iteration step is decomposed iktguccessive parallel reduction operations ac-
cording tok deletion directions [8]. If the current deletion directizd, then a set
of d-border points can be deleted by the parallel reductionadjmer assigned to it.
Since there are six kinds of major directions in 3D casesjliteration algorithms
were generally proposed [2, 7, 13, 20, 25, 34, 43, 46]. Maged®—subiteration
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[30, 31, 32], 8—subiteration [35], and 12—subiteratior] @§orithms have also been
developed for this task.

In what follows, we present three examples of parallel 3DuBitsration thinning
algorithms. Algorithm 2 sketches the scheme of 3D 6-sudtiten parallel thinning
algorithm 3D-6-Sle that uses the endpoint of tygge € { TK, CE, SE }).

Algorithm 2 Algorithm 3D-6-Sl€

1: Input picture(Z2,26,6,X)
2: Output picture(Z2,26,6,Y)

3Y=X

4: repeat

5:  //one iteration step

6: for eachi € {U,D,N,E,S, W} do

7 / subiteration for deleting some i-border points
8: D(i) = { p| pis a 3D-6-Sli-¢-deletable pointiry }
9 Y =Y\ D(i)

10:  end for

11: until D(U)UD(D)UD(N)UD(E)UD(S)UD(W) =0

The ordered list of deletion directios), D,N,E,S,W) [7, 34] is considered in
the proposed algorithm 3D-6-3l{¢ € { TK, CE, SE }). Note that subiteration-
based thinning algorithms are not invariant under the oodefeletion directions
(i.e., choosing different orders may yield various regults

In the first subiteration of our 6-subiteration thinninga@ithms, the set 08D-
6-Sl-U-¢-deletablepoints are deleted simultaneously, and the s&»6-SIW-¢-
deletablepoints are deleted in the last (i.e., the 6th) subiterafiow we lay down
3D-6-S1U-¢-deletablepoints.

Definition 5. A black point p in picture (Z3,26,6,X) is 3D-6-SIU-g-deletable if
all of the following conditions hold:

1. Pointp is a simple andJ-border point, but it is not an endpoint of tygein
picture(Z2,26,6,X).

2. Let.<Z(p) be the family of the following 13 sets (see Fig. 1.2b):
{e}, {s}, {se}, {sw}, {dn}, {de}, {ds}, {dw},
{e,;s}, {e s}, {s,s€}, {s,sw},
{e,s,se}.
For any sefA in the family <7 (p) composed of simple and-border points, but
not endpoints of type in picture(Z3, 26,6, X), point p remains simple in picture
(73,26,6,X\A).

3. Let #(p) be the family of the following 42 objects in pictut&?,26,6, X) (see
Fig. 1.2¢c):
{ah}, {b,g}, {c, f}, {d,e},
{ah,b}, {a,h,c}, {a,h, }, {a,h,g}, {b,g,a}, {b,g,d}, {b,g,e}, {b,g,h},
{c, f,a}, {c, f,d}, {c, f,e}, {c, f,h}, {d,e b}, {d,ec}, {d,e f}, {d,eqg}
{b,c,h}, {d,q, f}, {a,d,f}, {b,eh}, {b,ce}, {a f,g}, {a,d,g}, {c,eh},
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{aﬂ h? b7C}’ {a7 h? b?g}’ {a7 h7C3 f}’ {a7 h) f7g}' {b7g?a)d}’ {b7gﬂd3e}’ {b7 C7e7 h}'
{b7g767h}’ {C7 fvaid}’ {C7 fidie}’ {Cﬂ f7e7h}' {d7e7b7c}’ {d7e7 f7g}’ {a"dﬂ f7g}'
Pointp is not the smallest element of any objecti#{p).
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Fig. 1.2 The considered right-handed 3D coordinate system (a). Notidiche points ifN1g(p)
(b). Notation for the points in a unit lattice cube (c)

Note that the deletable points at the remaining five suliitera can be derived
from 3D-6-SIU-¢-deletable points (assigned to the deletion directipisee Defi-
nition 5) by reflexions and rotations.

Theorem 4. Algorithm3D-6-Sl< (¢ € { TK, CE, SE }) is topology preserving for
(26,6) pictures.

Proof. Without loss of generality, itis sufficient to prove that first subiteration of
algorithm 3D-6-Sle is topology preserving. To this end, we show that the pdralle
reduction operatiort that deletes 3D-6-SU-¢-deletable pointge € { TK, CE,

SE }) satisfies all conditions of Theorem 2.

1. Operation7 may delete simple points by Condition 1 of Definition 5. Hence
Condition 1 of Theorem 2 is satisfied.

2. Itis easy to see that the family' (p) (see Condition 2 of Definition 5 and Fig.
1.2a-b) contains all possible sets of simpléorder points that are considered
by Condition 2 of Theorem 2. Therefore, this latter conditi® satisfied.

3. It can be readily seen that the family of objegf$p) (see Condition 3 of Def-
inition 5 and Fig. 1.2c) contains all possible objectdJsborder points that are
considered in Condition 3 of Theorem 2. Hence, this last itmmdis satisfied.
Since objects contained in a unit lattice cube are compokeddpoints of type
SE, Condition 3 of Definition 5 can be ignored in algorithm 3C56SE. ad
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1.3.3 Subfield-based Algorithms

The third type of parallel thinning algorithms applies salafibased technique [8].
In existing subfield-based parallel 3D thinning algorithriie digital spacé&? is
partitioned into two [21, 22, 26], four [23, 27], and eight B¥] subfields which are
alternatively activated. At a given iteration step df-aubfield algorithmk succes-
sive parallel reduction operations associated t&k#wubfields are performed. In each
of them, some border points in the active subfield can be datig for deletion.

Let us denoteSK(i) thei-th subfield ifZ3 is partitioned intok subfields k =
2,4,8;i=0,...,k—1). Sk(i) is defined formally as follows:

SK(i) = { (px, Py: P2)| (Px+Py+ P, mod 2 =i },
SF(i) = { (Px Py, P2)| (Px+1 mod 2 - [2- (py mod 2 + (p, mod 2] +

(px mod2) - [2- (py+1 mod 2 + (p,+1 mod 3] =i },
SRs(i) = { (Px, Py, Pz)| 4- (px mod 2 +2- (py mod 2) + (p; mod 2 =i }

The considered divisions are illustrated in Fig. 1.3.

1 0 1 0——3——0 7 3— 7
oL L LT s |11 5
1/ o’/ i o/ | 3’/ 7/ 3’/ 7
) 1 0 1 2 1 6 2 6
‘ 1 < L/ ‘ ‘3 - 3/ ‘ 4 < 4/
0 Y0 1 1 o310 - A
‘ /0—71—70/ ‘ /2 1 z/ ‘ /5 /1 /5/
1Z—05L—1 0—3—3/ 7 3 7
a b C

Fig. 1.3 The divisions ofZ2 into 2 (a), 4 (b), and 8 (c) subfields. If partitioning irksubfields is
considered, then points markeid are in the subfiel®&k(i) (k=2,4,8;i=0,1,...,k—1)

Proposition 1. For the 2-subfield case (see Fig. 1.3a), two points p ard\as(p)
are in the same subfield, ifgNig(p)\Ns(p).

Proposition 2. For the 4-subfield case (see Fig. 1.3b), two points p ard\as(p)
are in the same subfield, ifeNys(p)\N1s(p)-

Proposition 3. For the 8-subfield case (see Fig. 1.3c), two points p ard\as(p)
are notin the same subfield.

In order to reduce the noise sensitivity and the number désiiepoints (without
overshrinking the objects),&neth, Kardos, and Radyi introduced a new subfield-
based thinning scheme [26]. It takes the endpoints intoideretion at the begin-
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ning of iteration steps, instead of preserving them in eachlfel reduction opera-
tion as it is accustomed in the conventional subfield-basieding scheme.

Next, we present nine parallel 3D subfield-based thinniggrithms. The scheme
of the subfield-based parallel thinning algorithm RESF-¢ with iteration-level end-
point checking using endpoint of typds sketched in Algorithm 3 (with = 2,4, 8;

e {TK,CE, SE}).

Algorithm 3 Algorithm 3Dk-SF<¢

. Input picture(Z3,26,6,X)
: Output picture(Z2,26,6,Y)
1Y =X
repeat
/I one iteration step
E = { p| pis aborder point, but not an endpoint of typ&n Y }
fori=0tok—1do
/I subfield SKi) is activated
D(i) = { g qis a 3D-SFk-deletable point ire " Sk(i) }
Y =Y\ D()
11:  endfor
12: until D(O)UD(1)U...UD(k—1)=0

CoNIORWONE

[y
Q

The 3D-SFk-deletable points are defined as follows= 2, 4, 8):

Definition 6. A black pointpis 3D-SFk-deletablek = 2,4, 8) in picture(Z2, 26,6, X)
if all of the following conditions hold:

1. Pointp is simple in(Z2,26,6,X).
2. If k= 2, then pointp is simple in picturgZ3, 26,6, X\ {q}) for any simple point
g such thag € Nig(p)\Ns(p) andp < g.
3. e If k=2, then pointp is not the smallest element of the ten objects depicted in
Fig. 1.4.
e If k=4, then pointp is not the smallest element of the four objects depicted
in Fig. 1.5.

Theorem 5. Algorithm 3D-k-SF< (k= 2,4,8; € € { TK, CE, SE }) is topology
preserving for(26,6) pictures.

Proof. To prove it, we show that the parallel reduction operatinthat deletes
3D-SFk-deletable points satisfies all conditions of Theorem 2.

1. Operation7 may delete simple points by Condition 1 of Definition 6. Hence
Condition 1 of Theorem 2 is satisfied.
2. o Letk=2and letp € SK(i) be any black point in picturéZ?, 26,6, X) that is
deleted by7 (i =0,1).
LetQ C XN SK(i) be any set of black points ifZ2, 26,6, X) such thatp € Q,
Q is contained in a unit lattice square, and each poir@\fp} is simple in
picture(Z23,26,6,X).
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R
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R

Fig. 1.4 The ten objects that are taken into consideration by 2-suleigtatithms. Notations: each
point marked by @ is a black point; each point marked by>® is a white point. (Note that each
of these objects is contained in a unit lattice cube.)

R
R
R
R

Fig. 1.5 The four objects considered by 4-subfield algorithms. Notatieash point marked®”
is a black point; each point marke®"” is a white point. (Note that each of these objects is con-
tained in a unit lattice cube.)

ThenQ =0 orQ = {qg} by Proposition 1, and such kind of sets are considered
by Condition 2 of Definition 6. Hence Condition 2 of Theorensatisfied.
e Letk=4and letp € SR(i) be any black point in pictur€Z?, 26,6, X) that is
deleted by (i =0,1,2,3).
LetQ C XN Sk(i) be any set of black points i3, 26,6, X) such thap € Q,
Q is contained in a unit lattice square, and each poif@\fp} is simple in
picture(Z3,26,6,X).
ThenQ = 0 by Proposition 2. Hence Condition 2 of Theorem 2 is satisfie
e Letk=8and letp € Sk(i) be any black point in pictur€Z?, 26,6, X) that is
deleted by (i =0,1,...,7).
LetQ C XN SK(i) be any set of black points ifZ2, 26,6, X) such thatp € Q,
Q is contained in a unit lattice square, and each poif@\fp} is simple in
picture(Z3,26,6,X).
ThenQ = 0 by Proposition 3. Hence Condition 2 of Theorem 2 is satisfie
3. e Letk=2and letC C X NSk(i) be any object in picturéZ?, 26,6, X) that is
contained in a unit lattice cube=£ 0,1).
It can be readily seen by Proposition 1 that all the ten péssifses for such
objects are depicted in Fig. 1.4, and these objects canri®lbted completely
by Condition 3 of Definition 6.
Hence Condition 3 of Theorem 2 is satisfied.
e Letk=4and letC C XN SK(i) be any object in pictur€¢Z?,26,6,X) that is
contained in a unit lattice cube=£ 0,1,2, 3).
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It can be readily seen by Proposition 2 that all the four fmesiases for such
objects are depicted in Fig. 1.5, and these objects canmialbied completely
by Condition 3 of Definition 6.
Hence Condition 3 of Theorem 2 is satisfied.

e Letk=8and letC C XN Sk(i) be any object in picturéZ?,26,6,X) that is
contained in a unit lattice cube£0,1,....7).
It is easy to see that there is no such an object by Propod4ition
Hence Condition 3 of Theorem 2 is satisfied. O

Since objects contained in a unit lattice cube are compo$ezhdpoints of
type SE, Condition 3 of Definition 6 can be ignored in algorithm ¥EBF-SE
(k=2,4,8).

1.4 Implementation

One may think that the proposed algorithms are time consyraimd it is rather

difficult to implement them. That is why we outline a methodifaplementing any

3D fully parallel thinning algorithm on a conventional seqtial computer. This

framework is fairly general, as similar schemes can be usethé other classes of
parallel algorithms and some sequential 3D thinning athors [38, 33, 37].

The proposed method uses a pre—calculated look-up-tabénd¢ode simple
points. In addition, two lists are used to speed up the psoaae for storing the
border points in the current picture (since thinning caryatdlete border points,
thus the repeated scans/traverses of the entire arraggtbe picture are avoided);
the other list is to collect all deletable points in the catrphase of the process.
At each iteration, the deletable points are found and d&leted the list of border
points is updated accordingly. The algorithm terminatesmwho further update is
required.

For simplicity, the pseudocode of the proposed 3D fully par¢hinning algo-
rithms is given (see Algorithm 4). The subiteration-based the subfield-based
variants can be implemented in similar ways.

The two input parameters of the procedure are akayhich stores the input
picture to be thinned and the type of the considered endpeirih input arrayA,
the value “1” corresponds to black points and the value “Ofiates white ones.
According to the proposed scheme, the input and the outpturps can be stored
in the same array, hence arrawill contain the resultant structure.

First, the input picture is scanned and all the border pansinserted into the
list borderlist. We should mention here that it is the only time consumingsicey.
Since only a small part of points in a usual picture belondhedbjects, the thin-
ning procedure is much faster if we just deal with the set afibo points in the
actual picture. This subset of object points is storetarderlist (i.e., a dynamic
data structure). Theorderlist is then updated: if a border point is deleted, then
all interior points that are 6-adjacent to it become bord#ngs. These brand new
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Algorithm 4 Fully parallel thinning algorithm

. Input arrayA and endpoint characterizatien

: Output arrayA

. I/ collect border points

. borderlist =< empty list>

: for eachp=(x,y,z) in Ado

if pis border pointhen
border.list = borderlist + < p >
Alxy,Z =2

end if

10: end for

11: //thinning

12: repeat

13:  deletec=0

14:  deletablelist = < empty list>

15:  //checking Condition 1 of Theorem 2

16: for each poinp = (x,Y,2) in borderlist do

17: if pis a simple point and not an endpoint of typéen
18: deletablelist = deletablelist + < p >

19: Alx,y,Z =3

20: else

21: Alxy,Z =2

22: end if

23:  endfor

24:  [lIchecking Condition 2 of Theorem 2
25:  for each pointpin deletablelist do

26: if deletionp does not satisfy Condition 2 of Theorenthzn
27: deletablelist = deletablelist — < p >

28: end if

29:  end for

30:  //checking Condition 3 of Theorem 2
31: for each pointpin deletablelist do

32: if deletionp does not satisfy Condition 3 of Theorenthzn
33: deletablelist = deletablelist — < p >

34: end if

35:  end for

36:  //deletion
37:  for each pointp = (X,Y,z) in deletablelist do

38: AlX,y,Z =0

39: border.list = border.list — < p >

40: deleted= deleted-1

41: /lupdate bordetist

42: for each poing = (X,y',Z) that is 6-adjacent tp do
43: if AX,y,Z]=1then

44: AX,Y.,Z] =2

45: borderlist = borderlist + < q >
46: end if

47: end for

48:  end for

49: until deleted=0

13
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border points of the actual picture are added tolibederlist. In order to avoid
storing more than one copy of a border pointhiorder list, array A represents a
four-colour picture during the thinning process: the valQe& corresponds to the
white points, the value “1” corresponds to (black) integmints, the value “2” is
assigned to all (black) border points in the actual pictaddéd tdorder list), and
the value “3” corresponds to points that are added tal#letablelist (i.e., a sublist
of border.list).

The kernel of theepeat cycle corresponds to one iteration step of the thinning
process. The number of deleted points is stored in the \ar@dileddeleted The
thinning process terminates when no more points can beede(ee., no further
changes occur). After thinning, all points having a nonaeloe belong to the pro-
duced skeleton-like shape feature.

Simple points in(26,6) pictures can be locally characterized; the simplicity of
a pointp can be decided by examining the d&k(p) [12]. There are 2 possible
configurations in the & 3 x 3 neighborhood if the central point is not considered.
Hence we can assign an index (i.e., a non-negative integks) dor each possible
configuration and address a pre-calculated (unit time agdesk-up-table having
226 entries of 1 bit in size, therefore, it requires only 8 medabystorage space in
memory.

By adapting this efficient implementation method, our athons can be well
applied in practice: they are capable of extracting skakliite shape features from
large 3D pictures containing 1,000,000 object points withine second on a stan-
dard PC.

1.5 Results

The proposed 15 algorithms were tested on objects of diffeshapes. Here we
present some of them (see Figs. 1.6-1.12). The pairs of nignb@arentheses are
the counts of object points in the produced skeleton-likecstire and the parallel
speed (i.e., the number of the performed parallel reduci@rations [8]).

1.6 Possible Future Works and Open Problems

In this section, we will outline some possible future worksl @pen problems con-
cerning parallel 3D thinning.

e Conventional thinning algorithms preserve endpoints tivisle important geo-
metric information relative to the object to be representgttrand and Cou-
prie proposed an alternative strategy [4]. They developsdgaiential thinning
scheme based on a generalization of curve/surface infauiats that are called
isthmues. Isthmuses are dynamically detected and accumulatedanstraint
set of non-simple points.
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posed parallel 3D kernel-thinning algorithms. The originalgmaontains 455295 black points.
Since the original object contains a hole, there are holés topological kernels, too
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Fig. 1.7 A 135x 86 x 191 image of a dragon and its centerlines produced by the fiygoged
parallel 3D curve-thinning algorithms. The original image taams 423 059 black points
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Fig. 1.9 A 103x 381x 255 image of a helicopter and its centerlines produced byvhefoposed
parallel 3D curve-thinning algorithms. The original image taams 273743 black points

The very first parallel 3D isthmus-based curve-thinningpethm was designed
by Raynal and Couprie [39]. Each iteration step of their Bismation algorithm
consists of two phases:

1. Updating the constraint set, by adding points detectestlasiuses;
2. Removing “deletable” points which are not in the consitraet.

Raynal and Couprie gave these “deletable” points by3x 3 matching tem-
plates, and proved that simultaneous deletion of “deletaiints is a topology
preserving reduction operation. Hence their algorithnojm®togy preserving.

In a forthcoming work, we are going to combine our sufficieahditions for
topology preservation (see Theorem 2) with various pdrédlaning strategies
(i.e., fully parallel, subiteration-based, and subfietddd) and some character-
izations of isthmuses to generate new parallel 3D curveathg and surface-
thinning algorithms.

e The 3D parallel thinning algorithms presented in this chapte based on The-
orem 2 (i.e., some sufficient conditions for topology preagon). Conditions 2
and 3 of Theorem 2 are “asymmetric”, since points that arsitimalest elements
of some sets may not be deleted. It is easy to see that theviofjctheorem
provides “symmetric” conditions for topology preservatio
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Fig. 1.10 A 45x 191x 191 image of a gear and its medial surfaces produced by the fipeged
parallel 3D surface—thinning algorithms. The original imagetams 596 360 black points
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Fig. 1.11 A 285x 285x 88 image of a camel and its medial surfaces produced by the fivegedp
parallel 3D surface—thinning algorithms. The original imagetams 1088458 black points
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Fig. 1.12 A 122 x 93 x 284 image of a car and its medial surfaces produced by the fiv@pedp

parallel 3D surface—thinning algorithms. The original imagetams 1321764 black points
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Theorem 6.The parallel reduction operatio& is topology preserving faf26, 6)
pictures if all the following conditions hold for any blackipt p in any picture
(73,26,6,B) such that p is deleted by.

1. Point p is simple ir{Z3, 26,6, B).

2. Let QC B be any set of simple points (&2, 26,6, B) such that pe Q, and Q
is contained in a unit lattice square.
Then point p is simple in picturgZ?, 26,6,B\ (Q\{p})).

3. Point p is not an element of any objectTB in (Z%,26,6,B) such that C is
contained in a unit lattice cube.

In a future work, we plan to combine alternative sufficiemditions for topol-
ogy preservation with parallel thinning strategies to gatefurther classes of
3D parallel thinning algorithms.

e Unfortunately, skeletonization methods (including thing) are rather sensitive
to coarse object boundaries, hence the produced skeletapsadly contain some
false segments. In order to overcome this problem, unwaskekttal parts are
usually removed by pruningprocess as a post-processing step [40]. In [29], we
presented a new thinning scheme for reducing the noisetisigsif 3D thinning
algorithms. It uses iteration-by-iteration smoothing gthiemoves some border
points being considered as extremities.

We are going to design new topology preserving parallelamanémoothing op-
erations, and combine our 3D parallel thinning algorithimaséd on sufficient
conditions for topology preservation) with iteration-ltgration smoothing.

e It is easy to see that subiteration-based and subfield-bpakadlel thinning
schemes are not invariant under the order of deletion direstnd subfield ac-
tivations, respectively. It means that choosing differanmlers of directions may
yield various results in subiteration-based algorithnmg] @arieties of skeleton-
like shape features can be produced by a subfield-basedthigavith diverse
orders of the active subfields.

Neither order-independensubiteration-based nor subfield-based parallel thin-
ning algorithms have been proposed. We are going to deal thishunsolved
problem (i.e., we plan to construct subiteration-basedsrdield-based algo-
rithms that produce the same result for any order of deletimctions and sub-
field activation).

1.7 Concluding Remarks

Fast and reliable extraction of skeleton-like shape feat(ire., medial surface, cen-
terline, and topological kernel) is extremely importanbimmerous applications for
large 3D shapes. In this chapter we presented a variety afi@ia@D thinning algo-
rithms and their efficient implementation. They are basedame sufficient condi-
tions for topology preserving parallel reduction openasiohence their topological
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correctness is guaranteed. The algorithms are based emeditfcharacterizations
of endpoints. Additional types of endpoints coupled witffisient conditions for
topology preservation yield newer thinning algorithms.

Acknowledgement

This research was supported by thAMOP-4.2.2/08/1/2008-0008 program of
the Hungarian National Development Agency, the EuropeaiortJand the Eu-
ropean Regional Development Fund under the grant agreeWOP-4.2.1/B-
09/1/KONV-2010-0005, and the grant CNK80370 of the NatidDffice for Re-
search and Technology (NKTH) & the Hungarian Scientific Resie Fund (OTKA).

References

1. Arcelli, C., Sanniti di Baja, G., Serino, L.: New removalesators for surface skeletonization.
In: Proc. 13th Int. Conf. Discrete Geometry for Computer ImageyCl 2006, Lecture Notes
in Computer Science, Vol. 4245, pp. 555-566. Springer, Heéatg (2006)

2. Bertrand, G.: A parallel thinning algorithm for medial sagés. Pattern Recognition Letters
16, 979986 (1995)

3. Bertrand, G., Aktouf, Z.: A 3D thinning algorithm using swdis. In: SPIE Proc. of Conf. on
Vision Geometry, pp. 113-124. (1994)

4. Bertrand, G., Couprie, M.: Transformations topologiqussrdtes. In: D. Coeurjolly, A. Mon-
tanvert, J. Chassery (eds.)e@rétrie discete et images nuémiques, pp. 187-209. Hegm
(2007)

5. Blum, H.: A transformation for extracting new descriptors . In: W. Wathen-Dunn (ed.),
Models for the Perception of Speech and Visual Form, pp. 3&R-BBT Press, Cambridge
(1967)

6. Gomberg, B.R., Saha, P.K., Song, H.K., Hwang, S.N., WelRMV.: Topological analysis of
trabecular bone MR images. IEEE Transactions on Medical Imatin@66—174 (2000)

7. Gong, W.X., Bertrand G.: A simple parallel 3D thinning aligfam. In: Proc. 10th IEEE Inter-
nat. Conf. on Pattern Recognition, ICPR’90, pp. 188-1999(Q)

8. Hall, R. W.: Parallel Connectivity-Preserving Thinnintgarithms. In: Kong, T. Y. and Rosen-
feld, A. (eds.), Topological Algorithms for Digital Image Pessing, pp. 145-179. Elsevier
Science B. V., Amsterdam (1996)

9. Hall, R. W,, Kong, T. Y., Rosenfeld, A.: Shrinking Binary Iges. In: Kong, T. Y. and Rosen-
feld, A. (eds.), Topological Algorithms for Digital Image Pessing, pp. 31-98. Elsevier Sci-
ence B. V., Amsterdam (1996)

10. ltoh, T., Yamaguchi, Y., Koyamada, K.: Fast isosurface gé¢ioerasing the volume thinning
algorithm. IEEE Transactions on Visualization and Computep@is7, 32—-46 (2001)

11. Kong, T.Y.: On topology preservation in 2—d and 3—d thigninternational Journal of Pattern
Recognition and Artificial Intelligenc®, 813-844 (1995)

12. Kong, T.Y., Rosenfeld, A.: Digital topology: Introduoti and survey. Computer Vision,
Graphics, and Image Processifg) 357-393 (1989)

13. Lee, T., Kashyap, R.L., Chu, C.: Building skeleton modeds3#D medial surface/axis thin-
ning algorithms. CVGIP: Graphical Models and Image Processfig62—478 (1994)

14. Lohou, C.: Detection of the non-topology preservatiolafs 3D surface-thinning algorithm,
by the use of P-simple points. Pattern Recognition Le28y822-827 (2008)



24

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

K. Palgyi, G. Nemeth, P. Kardos

Lohou C., Dehos, J.: An automatic correction of Mas thinmtggrithm based on P-simple
points. Journal of Mathematical Imaging and Visig8) 54—62 (2010)

Lohou C., Dehos, J.: Automatic correction of Ma and Sonkamsnithg algorithm using P-
simple points. IEEE Transactions on Pattern Analysis and Madhitedligence32, 1148—
1152 (2010)

Ma, C.M.: On topology preservation in 3D thinning. CVGIfiage Understanding9, 328—
339 (1994)

Ma, C.M.: A 3D fully parallel thinning algorithm for gereging medial faces. Pattern Recog-
nition Letters16, 83—87 (1995)

Ma, C.M., Sonka, M.: A fully parallel 3D thinning algdnin and its applications. Computer
Vision and Image Understandirtg, 420—433 (1996)

Ma, C.M., Wan, S-Y.: Parallel thinning algorithms on 38,d) binary images. Computer
Vision Image Understanding0, 364—378 (2000)

Ma, C.M., Wan, S.V.: A medial-surface oriented 3-d two-sltfthinning algorithm. Pattern
Recognition Letter®2, 1439-1446 (2001)

Ma, C.M., Wan, S.Y., Chang, H.K.: Extracting medial ceea 3D images. Pattern Recogni-
tion Letters23, 895-904 (2002)

Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topolpmgserving reduction on the 4-
subfields. IEEE Transaction on Pattern Analysis and Machindligigace 24, 1594-1605
(2002)

Manzanera, A., Bernard, T.M., Peek, F., Longuet, B.: Medial faces from a concise 3D thin-
ning algorithm. In: Proc. 7th IEEE Int. Conf. Computer VisioBQV’'99, pp. 337-343. (1999)
Mukherjee, J., Das, P.P., Chatterjee, B.N.: On connéctssues of ESPTA. Pattern Recogni-
tion Lettersl1, 643-648 (1990)

Nemeth, G., Kardos, P., Ralyi, K.: Topology preserving 2-subfield 3D thinning algomith

In: Proc. 7th IASTED Int. Conf. Signal Processing, Patterndgedion and Applications, pp.
310-316. (2010)

Nemeth, G., Kardos, P., Ralyi, K.: Topology preserving 3D thinning algorithms usingrfou
and eight subfields. In: Proc. International Conference on éatplysis and Recognition,
ICIAR 2010. LNCS, vol. 6111, pp. 316-325. Springer, Heiaetp(2010)

Nemeth, G., Kardos, P., Ralyi, K.: A family of topology-preserving 3D parallel 6-
subiteration thinning algorithms. In: Proc. 14th Internagsibiorkshop on Combinatorial
Image Analysis IWCIA2011, Madrid, Spain, Lecture Notes innGuuter Science 6636, pp.
17-30. Springer, Heidelberg (2011)

Nemeth, G., Kardos, P., Rayi, K.: Thinning combined with iteration-by-iteration sntbimg
for 3D binary images. Graphical Models, in press

Pahgyi, K.: A 3-subiteration 3D thinning algorithm for extra@y medial surfaces. Pattern
Recognition Letter23, 663—675 (2002)

Pahgyi, K.: A 3-Subiteration Surface-Thinning Algorithm. Rroc. 12th Int. Conf. Computer
Analysis of Images and Patterns, CAIP 2007, Vienna, AustriaturedNotes in Computer
Science 4673, pp. 628-635. Springer, Heidelberg (2007)

Pahgyi, K.: A subiteration-based surface-thinning algorithnthwa period of three. In: F.
Hamprecht, B. dhne, Ch. Schirr (eds.), Lecture Notes in Computer Science 4713, pp. 294—
303. Springer, Heidelberg (2007)

Pahgyi, K.: A 3D fully parallel surface-thinning algorithm. Ttuetical Computer Science
406, 119-135 (2008)

Pahgyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithmrfextracting medial lines.
Pattern Recognition Letted®, 613-627 (1998)

Pahgyi, K., Kuba, A.: Directional 3D thinning using 8 subiterats. In: Proc. 8th Int. Conf. on
Discrete Geometry for Computer Imagery, DGCI'99, Marne-lale/dfrance, Lecture Notes
in Computer Science 1568, pp. 325-336. Springer, Heideld€99)

Pahgyi, K., Kuba, A.: A parallel 3D 12—subiteration thinningyatithm. Graphical Models
and Image Processir@i, 199-221 (1999)



Subject Index 25

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

Pahgyi, K., Nemeth, G.: Fully parallel 3D thinning algorithms based on s#fitconditions
for topology preservation. In: Proc. 15th IAPR Internatio@anference on Discrete Geome-
try for Computer Imagery, DGCI 2009. LNCS, vol. 5810, pp. 48p-4Springer, Heidelberg
(2009)

Pahgyi, K., Tschirren, J., Hoffman, E.A., Sonka, M.: Quantitatanalysis of pulmonary air-
way tree structures. Computers in Biology and Medi@6e974-996 (2006)

Raynal, B., Couprie, M.: Directional 3D thinning using &#erations. In: Proc. 16th Int.
Conf. on Discrete Geometry for Computer Imagery, DGCI 2011, MaRcance, Lecture
Notes in Computer Science 6607, pp. 175-186. Springer, Heicg(2011)

Shaked, D., Bruckstein, A.: Pruning medial axes. Computgpiilmage Understandir@g,
156-169 (1998)

Siddiqi, K., Pizer, S. (eds.): Medial representations thdaatics, algorithms and applica-
tions. Computational Imaging and Vision, Vol. 37, Springer, Néawk (2008)

Sundar, H., Silver, D., Gagvani, N., Dickinson, S.: St@iebased shape matching and re-
trieval. In: Proc. Int. Conf. Shape Modeling and Applicato pp. 130-139. IEEE (2003)
Tsao, Y.F, Fu, K.S.: A parallel thinning algorithm forB3-pictures. Computer Graphics and
Image Processingj7, 315-331 (1981)

Wan, M., Liang, Z., Ke, Q., Hong, L., Bitter, I., Kaufman,: Automatic centerline extraction
for virtual colonoscopy. IEEE Transactions on Medical Imadgiig1450—-1460 (2002)

Wang, T., Basu, A.: A note on 'a fully parallel 3D thinnintgarithm and its applications’.
Pattern Recognition Lette28 501-506 (2007)

Xie, W., Thompson, R.P., Perucchio, R.: A topology-presgrparallel 3D thinning algorithm
for extracting the curve skeleton. Pattern Recogni#én1529—-1544 (2003)






Subject Index

3D-k-SF-< algorithm, 10
3D-6-Sl< algorithm, 7
3D-FP< algorithm, 6

adjacency, 3

binary picture, 1, 4
border point, 4

curve—-thinning algorithms, 2

Fully parallel thinning algorithm, 13

interior point, 4

kernel-thinning algorithms, 2
lexicographical order relation, 4
parallel reduction operation, 2
reduction operator, 2
surface—thinning algorithms, 2

tunnel (hole), 2

27



