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Abstract
Autosomal recessive primary microcephaly (MCPH) is a group of rare neurodevelopmental diseases with severe microcephaly at
birth. One type of the disorder, MCPH2, is caused by biallelic mutations in the WDR62 gene, which encodes the WD repeat–
containing protein 62. Patients with WDR62 mutation may have a wide range of malformations of cortical development in
addition to congenital microcephaly. We describe two patients, a boy and a girl, with severe congenital microcephaly, global
developmental delay, epilepsy, and failure to thrive. MRI showed hemispherical asymmetry, diffuse pachygyria, thick gray
matter, indistinct gray-white matter junction, and corpus callosum and white matter hypoplasia. Whole exome sequencing
revealed the same novel homozygous missense mutation, c.668T>C, p.Phe223Ser in exon 6 of the WDR62 gene. The healthy
parents were heterozygous for this mutation. The mutation affects a highly conserved region in one of the WD repeats of the
WDR62 protein. Haplotype analysis showed genetic relatedness between the families of the patients. Our findings expand the
spectrum of mutations randomly distributed in theWDR62 gene. A review is also provided of the brain malformations described
in WDR62 mutations in association with congenital microcephaly.
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Global developmental delay

Introduction

Microcephaly is defined as an occipitofrontal head circumfer-
ence below the third percentile or more than two standard
deviations (SD) below the mean for sex, age, and ethnicity.
It can be associated with delayed motor and cognitive

development, various neurological signs, intellectual disabili-
ty, epilepsy, and autism and accounts for a significant propor-
tion of neurodevelopmental disorders in childhood.
Microcephaly may develop prenatally or postnatally and
may have genetic or non-genetic cause. Any condition that
affects important processes of brain growth, including
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progenitor cell proliferation, cell differentiation, and cell
death, can lead to microcephaly (Alcantara and O’Driscoll
2014; Barbelanne and Tsang 2014; Zaqout et al. 2017).
Anomalies causing microcephaly may exclusively affect ce-
rebral development (non-syndromic microcephaly) or may be
associated with dysmorphic features and extracerebral
malformations (syndromic microcephaly). The spectrum of
phenotypes and associated disorders of Bmicrocephaly^ is
wide with more than 1300 entries recorded to April 2018 in
The Online Mendelian Inheritance in Man (OMIM) database.

Although a wide spectrum of genetic defects can result in
microcephaly, traditionally, a group of microcephalies is dis-
tinguished as autosomal recessive primary microcephaly
(MicroCephaly Primary Hereditary, MCPH) (Barbelanne
and Tsang 2014; Zaqout et al. 2017). At least 17 genetic loci
(MCPH1–17) have been implicated in MCPH, all of which
have now been connected to single genes: MCPH1, WDR62,
CDK5RAP2, KNL1, ASPM, CENPJ, STIL, CEP135,
CEP152, ZNF335, PHC1, CDK6 and CENPE, SASS6,
MFSD2A, ANKLE2, CIT (Zaqout et al. 2017). Many of the
proteins encoded by these genes interact with the centrosome,
which organizes the separation of chromosome copies during
cell division (Alcantara and O’Driscoll 2014; Barbelanne and
Tsang 2014; Zaqout et al. 2017).

Mutations in WDR62, encoding WD repeat–containing
protein 62, are responsible for MCPH2, which is the second
most frequent form of MCPH after MCPH5 caused by ASPM
mutations. Over 40 pathogenic mutations in WDR62 have
already been published. In addition to microcephaly, a wide
range of cortical malformations was also described in these
patients (Bacino et al. 2012; Banerjee et al. 2016; Bastaki et al.
2016; Bhat et al. 2011; Farag et al. 2013; Sajid Hussain et al.
2013; Kousar et al. 2011; McDonell et al. 2014; Memon et al.
2013; Miyamoto et al. 2017; Murdock et al. 2011; Najmabadi
et al. 2011; Nardello et al. 2018; Naseer et al. 2017; Poulton
et al. 2014; Rupp et al. 2014; Wang et al. 2017).

We report on two patients, a boy and a girl with the same
novel missense mutation in WDR62, revealed by whole ex-
ome sequencing. Both of them have pachygyria and thick
cortex in addition to severe congenital microcephaly, short
stature, epilepsy, and severe developmental delay.

Clinical report

Patient 1

This 5-year-old boy was born at term from the third pregnancy
with Cesarean section to a 32-year-oldmother and 37-year-old
father. The parents are consanguineous of Romani ethnicity
(Fig. 1a). Apgar scores were 8 and 8 at 1 and 5 min, respec-
tively. Severe microcephaly was noted at birth with head cir-
cumference of 30 cm (− 3.5SD). The birthweight was 2900 g

(− 1SD) and length 50 cm (0.1SD). The pregnancy was unre-
markable, with no report of infection, alcohol use, or sub-
stance abuse. The parents had unremarkable medical histories,
normal head size and normal intellect. They have a healthy
son and a healthy daughter. Microcephaly progressed, with
head circumference of 40 cm (− 6SD) at 2 years and
41.5 cm (− 6SD) at 4 years of age. The patient also had short
stature, with a height of 89 cm (− 3.4SD) and a weight of
12 kg (− 2.4SD) at 4 years of age. Sloping forehead and dis-
proportionately large face and ears as compared to the skull
were observed. He followed objects and responded to loud
sounds. Global hypotonia was present with preserved deep
tendon reflexes. Motor and intellectual development was se-
verely impaired with inability to sit and stand unsupported, or
reach out for objects at the age of 5 years. He had no words,
but showed emotions. Infantile spasms began at 4 months of
age and were well controlled by vigabatrin, which was tapered
off and discontinued by 3 years of age. One year later, com-
plex partial seizures appeared and the EEG showed interictal
short paroxysms of bilateral spike and wave discharges.
Valproate treatment was initiated and proved to be successful.
Metabolic screening (plasma amino acids and urine organic
acids) was negative.

MRI at age of 5 months showed hemispherical asymmetry
(R > L) and abnormal cortical pattern. Diffuse pachygyria was
observed with a few broad gyri, thick graymatter, and shallow
sulci. The gray-white matter junction appeared indistinct at
some areas. Moderate hypoplasia of the corpus callosum
was seen. The white matter was thin in association with an
asymmetrical (L > R) dilatation of the lateral ventricles. The
myelination of the corpus callosum and internal capsule was
appropriate for the infant’s age. Moderate cerebellar hypopla-
sia was also seen. The Virchow-Robin spaces were dilated.
The basal ganglia, brainstem, and hippocampus were pre-
served (Fig. 2a, b).

Patient 2

This 4-year-old girl was born at term from the first preg-
nancy with Cesarean section because of fetal bradycardia
to a 17-year-old mother and 20-year-old father. The par-
ents are of Romani ethnicity; they deny consanguinity
(Fig. 1b). Apgar scores were 7, 9, and 10 at 1, 5, and
10 min, respectively. The pregnancy was complicated
with urinary tract infection. Severe microcephaly was
noted at birth with head circumference of 28 cm (−
5SD). Her birthweight was 2490 g (− 0.4SD) and length
46 cm (− 1.7SD). There was no evidence of inborn error
of metabolism, intrauterine infection, alcohol use, or sub-
stance abuse. The parents had unremarkable medical his-
tor ies , normal head size and normal in te l lec t .
Microcephaly progressed, with head circumference of
39 cm (− 5.9SD) at 2 years and 40 cm (− 6.6SD) at
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4 years of age. The patient also had short stature, with
height of 88 cm (− 3.4SD) and weight of 12.4 kg (−

2.0SD) at 4 years of age. On examination at the age of
14 months, she had severe convergent squint, but

Fig. 1 Pedigree of patient 1 (a) and patient 2 (b). Sanger sequencing of
part of exon 6 of the WDR62 gene shows the homozygous T to C muta-
tion at position 668 of the coding DNA sequence in the patients. The 668
positions of the coding DNA sequences are indicated by arrows. The

mutation was heterozygous in the parents and brother of patient 1 (Y =
T/C). A normal sequence is also shown in an unrelated control subject (c).
The mutation affects one of the WD40 repeats in the WDR62 protein (d)
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followed objects and responded to loud sounds. Her mo-
tor and cognitive development was severely delayed with
inability to sit, stand, or reach out for objects. There was
a moderate decrease in the muscle tone with slight left-
sided weakness and preserved deep tendon reflexes. No
further development was observed until the last follow-
up at 4 years of age. Complex partial seizures started
after 3 years of age, and the interictal EEG showed bi-
lateral spike and wave discharges. The epilepsy was con-
trolled with valproate treatment.

MRI at the age of 4 years showed hemispherical
asymmetry (L > R) and abnormal cortical pattern similar
to patient 1. Diffuse pachygyria, thick gray matter, and
shallow sulci were observed. The white matter was thin
with more or less age-appropriate myelin formation. The
lateral ventricles were dilated in an asymmetrical (R > L)
manner. On T2 images, a narrow periventricular band
with high signal intensity was observed adjacent to the
occipital horn of the right lateral ventricle. The Virchow-
Robin spaces were dilated. The corpus callosum, basal
ganglia, hippocampi, brainstem, and cerebellum were
preserved (Fig. 2C, D).

The family members of the two patients were unaware of
any relatedness.

Molecular analysis

Routine chromosomal analysis by G-banding showed normal
karyotype in both patients. DNAwas isolated from the periph-
eral blood. Array comparative genomic hybridization using
the Agilent 180K oligo-array showed normal genomic copy
number in both patients.

Whole exome sequencing (WES) of affected probands and
unaffected parents was performed with CentoXome® at
Centogene AG (Rostock, Germany). Genomic capture was
carried out with Illumina’s Nextera Rapid Capture Exome
Kit. Massively parallel sequencing was done using
NextSeq500 Sequencer (Illumina) in combination with the
NextSeq™ 500 High Output Kit (2×150 bp). Raw sequence
data analyses, including base calling, de-multiplexing, align-
ment to the hg19 human reference genome (Genome
Reference Consortium GRCh37), and variant calling, were
performed using an in-house bioinformatics pipeline. For var-
iant filtration, all disease-causing variants reported in

Fig. 2 MRI of patient 1 (a, b) at
the age of 5 months and patient 2
(c, d) at the age of 4 years. The
T2-weighted axial images dem-
onstrate hemispherical asymme-
try, diffuse pachygyria with a few
broad gyri and shallow sulci, wide
gray matter, and indistinct white-
gray matter border in certain
areas. The white matter is thin and
the ventricles are asymmetrically
enlarged. The Virchow spaces are
dilated
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HGMD®, ClinVar, or in CentoMD® as well as all variants
with minor allele frequency (MAF) of less than 1% in ExAc
database were considered. Variants that possibly impair the
protein sequence, i.e., disruption of conserved splice sites,
missense, nonsense, read-throughs, or small insertions/dele-
tions, were prioritized. All relevant inheritance patterns were
considered. All candidate pathogenic variants not previously
identified were confirmed by conventional PCR amplification
and Sanger sequencing. Segregation of these changes with the
disease was assessed for all available family members.

We identified the same homozygous variant, c.668T>C,
p . P h e 2 2 3 S e r i n e x o n 6 i n t h e WDR62 g e n e
(NM_001083961.1) in both patients. The detected variant
was also found in heterozygous state in the patients’ parents
and the brother of patient 1, whereas it was absent in his sister
(Fig. 1a, b, c). To date, this variant has not been described in
the Exome Aggregation Consortium, Exome Sequencing
Project, or the 1000 Genome Browser. This variant is located
in a highly conserved nucleotide (phyloP, 4.48) with large
physicochemical differences between the exchanged amino
acids phenylalanine and serine (Alamut v.2.7.1). Prediction
programs Polyphen2, SIFT, and MutationTaster predicted
pathogenicity of the missense variant which affects the
WD40 repeat region of the protein (Fig. 1d).

Haplotype analysis of the families

Since the two families were unaware of any relation between
them, we performed a haplotype analysis to investigate their
potential genetic relation. Plink (version v1.90b4.9) was used
to convert variants in the region of interest to PED and MAP
files from the joint VCF file (Chang et al. 2015). Haplotype
analysis was performed by Merlin (version 1.1.2.) software
with the B–best^ option using the PED, DAT, and MAP files
prepared manually from the plink output files (Abecasis et al.
2002). HaploPainter (version 1.043) was used to visualize the
haplotypes in the families (Thiele and Nürnberg 2005). Our
analysis showed that both families carry exactly the same
haplotype for the entire WDR62 gene (around 55 kilobases)
as shown in Fig. 3. Our results suggest that the two families
are closely related genetically.

Discussion

The human WDR62 gene maps to chromosome 19q13.12,
consists of 32 exons, and encodes a 1523 amino acid protein
containing several WD40 repeats (Bilgüvar et al. 2010;
Nicholas et al. 2010; Yu et al. 2010).We found the same novel
missense mutation in the WDR62 gene in two patients from
related families with microcephaly in association with diffuse
pachygyria, thickened cortex, and indistinct gray-white matter
junction. Wide spectrum of cortical malformations has been

reported in WDR62 mutations. Apart from pachygyria, thick-
ened cortex and indistinct gray-white matter junction, band
heterotopia, polymicrogyria, schizencephaly, and asymmetry
of hemispheres have also been observed (Tables 1 and 2).
Neuropathology in a fetus with WDR62 mutation revealed
severe disruption of cortical neuronal architecture, immature
radial columnar organization, and heterotopia in the interme-
diate zone (Yu et al. 2010).

The frameshifts, missense, nonsense, and splice site muta-
tions in the WDR62 gene are randomly distributed (Tables 1
and 2). It has been suggested initially that missense mutations
may cause a deficiency of neurogenesis resulting in primary
microcephaly, but nonsense mutations may cause a more se-
vere microcephaly phenotype with addition of a cerebral cor-
tex lamination defect (Nicholas et al. 2010). Later studies,
however, did not recognize any genotype-phenotype correla-
tion. The novel missense mutation c.668T>C, p.Phe223Ser in
our patients is associated with severe defects in cortical archi-
tecture. It affects one of the WD40 repeat regions of the
WDR62 protein. WD40 repeat is a short structural motif of
approximately 40 amino acids, often terminating in a
tryptophan-aspartic acid (W-D) dipeptide. The common func-
tion of all WD40 repeat proteins is coordinating multiprotein
complex assemblies, where the repeating units serve as a rigid
scaffold for protein interactions (Li and Roberts 2001).

Central to the mitotic process is the formation and mainte-
nance of a microtubule-based spindle apparatus organized by
the centrosomes (Prosser and Pelletier 2017). The centrosome
contains a pair of cylindrical centrioles in an orthogonal con-
figuration and each made primarily of nine microtubule trip-
lets. The centrioles are surrounded by pericentriolar matrix of
proteins and centrosomal satellites. The satellites are granular
structures implicated in the trafficking of material involved in
centriole assembly (Bettencourt-Dias et al. 2011). It is note-
worthy that the two centrioles differ in their structure and
function. The older, Bmother^ centriole possesses subdistal
appendages, where microtubules are docked, and distal ap-
pendages, which are important for docking to the plasma
membrane. In contrast, the younger Bdaughter^ centriole,
which is formed during the preceding S phase, lacks these
structures (Bettencourt-Dias et al. 2011). Full acquisition of
appendages by the daughter centriole is not achieved until at
least one-and-a half cell cycles later. Centrosome replication
during each cell cycle leads to asymmetric centrosome inher-
itance, that is, the formation of two centrosomes: one of which
retains the original old mother centriole (that is, the Bmother^
centrosome) while the other receives the new Bmother^ cen-
triole (that is, the daughter centrosome). Asymmetric centro-
some inheritance maintains neural progenitors in the neocor-
tex (Wang et al. 2009).

At the onset of mitosis, centrosomes separate and the
pericentriolar matrix expands through the coordinated activa-
tion and recruitment of spindle pole proteins (Fujita et al.
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2016). Centrosomal duplication results in the generation of a
bipolar mitotic spindle. The mitotic spindle is an array of
microtubules, which are assembled from dimers of α- and
β-tubulins, initiated by a γ-tubulin ring complex. The chro-
mosomes attach to bundles of microtubules via kinetochores,
which are multiprotein complexes that assemble on the cen-
tromere of each sister chromatid (Prosser and Pelletier 2017).
A coordinated interplay between proteins, including WDR62,
i.e., a large network of protein-protein interactions, is essential
for normal centrosomal function. It has been demonstrated
recently that four of the primary microcephaly-associated pro-
teins, such as CDK5RAP2, CEP152, WDR62, and CEP63,
assemble in a step-wise hierarchical manner. Both the
microcephaly-associated proteins and their centriolar satellite
partner proteins are required for the centrosomal localization
of CDK2, a cyclin-dependent kinase, which has a role in both
centriole duplication and cell cycle progression (Kodani et al.
2015; Meraldi et al. 1999). Loss of any of the microcephaly-
associated proteins, like loss of functioning WDR62 in our
patients, disrupts centriole duplication or stability (Fujita

et al. 2016; Kodani et al. 2015; Meraldi et al. 1999). The
regulation and subcellular localization ofWDR62 is cell cycle
dependent. Studies by immunocytochemistry revealed that
WDR62 protein showed cytosolic distribution in the inter-
phase but it accumulated strongly at the spindle poles during
mitosis (Bogoyevitch et al. 2012; Farag et al. 2013; Nicholas
et al. 2010; Sgourdou et al. 2017; Yu et al. 2010). Fibroblasts
from patient with homozygous WDR62 mutation or cells
transfected with missense and frameshift mutations in
WDR62 failed to show protein expression at the spindle poles
(Farag et al. 2013; Nicholas et al. 2010; Sgourdou et al. 2017).
WDR62 recruitment coincides with increased activity of
Aurora A kinase, a centrosomal and spindle-associated protein
that regulates spindle architecture and stability during mitosis
(Carmena et al. 2009). It potentiates the recruitment of
WDR62 to the spindle pole and is essential for mitotic spindle
regulation (Lim et al. 2016).

The mitotic processes are dependent also upon the highly
conserved chromosomal passenger complex, consisting of
Aurora B kinase, inner centromere protein (INCENP),

Fig. 3 Haplotype analysis of the
two families (a family 1, b family
2). Except the 19:36558314T>c
unique variant, all the other
examined SNPs are listed by their
reference numbers. The identical
haplotypes are colored matched.
The haplotype linked with the
causative mutation is colored
magenta
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Table 1 Homozygous WDR62 mutations and associated brain malformation patterns

Location Nucleotide variation Amino acid variation Mutation type Brain malformations (MRI findings) in addition to
microcephaly

References

Exon 2 c.193G>A p.Val65Met Missense Simplified gyral pattern, polymicrogyria,
schizencephaly, dysmorphic corpus callosum

Nicholas
et al.
(2010)

Yu et al.
(2010)

Exon 3 c.332G>C p.Arg111Thr Missense/splice-site Not reported Sajid
Hussain
et al.
(2013)

Exon 4 c.363delT p.Asp112MetfsX5 Frameshift Simplified gyral pattern, hemispherical asymmetry,
suggestion of subcortical heterotopia, thin corpus
callosum, enlarged lateral ventricles

Yu et al.
(2010)

Exon 4 c.390G>A p.Glu130Glu Splice-site Agyria-pachygyria Bastaki
et al.
(2016)

Exon 5 c.535_536insA p.Met179fsX21 Frameshift Pachygyria, cortical dysplasia Bhat et al.
(2011)

Exon 6 c.668T>C p.Phe223Ser Missense Diffuse pachygyria, thickened cortex, abnormal corpus
callosum

This study

Exon 6 c.671G>C p.Trp224Ser Missense Pachygyria, polymicrogyria, cortical thickening,
under-opercularization, schizencephaly, dysmorphic
hippocampus, corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Exon
8–9

c.883-1273_
1237-850del

Deletion of exon 8–9 Micro deletion Not reported Wang et al.
(2017)

Exon 8 c.900C>A p.Cys300X Nonsense Pachygyria, polymicrogyria, band heterotopia Bhat et al.
(2011)

Intron 8 c.1043+1G>A p.Ser348ArgfsX63 Splice-site Diminished sulcation, band heterotopia, thin corpus
callosum

Yu et al.
(2010)

Exon 9 c.1143delA p.His381ProfsX48 Frameshift Brain atrophy, schizencephaly, corpus callosum
hypoplasia (CT only)

Memon
et al.
(2013)

Exon 9 c.1194G>A p.Trp398X Nonsense Not reported Sajid
Hussain
et al.
(2013)

Exon 9 c.1198G>A p.Glu400Lys Missense Pachygyria (CT only) Bacino
et al.
(2012)

Exon 10 c.1313G>A p.Arg438His Missense Simplified gyral pattern, normal cortical thickness with
indistinct border

Kousar
et al.
(2011)

Nicholas
et al.
(2010)

Sajid
Hussain
et al.
(2013)

Exon 11 c.1408C>T p.Gln470X Nonsense Pachygyria, cortical thickening,
under-opercularization, dysmorphic hippocampus,
corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Exon 11 c.1531G>A p.Asp511Asn Missense Not reported Kousar
et al.
(2011)

J Appl Genetics (2019) 60:151–162 157



Table 1 (continued)

Location Nucleotide variation Amino acid variation Mutation type Brain malformations (MRI findings) in addition to
microcephaly

References

Nicholas
et al.
(2010)

Exon 12 c.1576G > T p.Glu526X Nonsense Pachygyria, cortical thickening, dysmorphic
hippocampus, corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Exon 12 c.1576G >A p.Glu526Lys Missense Pachygyria, cortical thickening,
under-opercularization, corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Exon 12 c.1606G > T p.Glu536X Nonsense Pachygyria, thickened cortex, corpus callosum
dysplasia

Poulton
et al.
(2014)

Exon 14 c.1821dupT p.Arg608SerfsX26 Frameshift Details not reported McDonell
et al.
(2014)

Exon 15 c.1942C > T p.Gln648X Nonsense Hemispherical asymmetry, ill-defined gyral pattern
(CT)

Kousar
et al.
(2011)

Exon 17 c.2115C >G p.Gly705Gly Splice-site Cerebellar atrophy, cortical structure not reported Najmabadi
et al.
(2011)

Intron
21

c.2520 + 5G > T p.Asp823AlafsX5 Splice-site Not reported Wang et al.
(2017)

Exon 22 c.2527dupG p.Asp843GlyfsX3 Frameshift Hemispherical asymmetry, ill-defined gyral pattern Rupp et al.
(2014)

Exon 22 c.2588G >A p.Arg863His Missense Polymicrogyria, incomplete opercularization Poulton
et al.
(2014)

Exon 22 c.2667_2668GA >TT p.Met[889Ile;Lys890X] Nonsense Not reported Wang et al.
(2017)

Exon 23 c.2863delGACA p.Asp955AlafsX112 Frameshift Pachygyria, thickened cortex, corpus callosum
dysplasia

Poulton
et al.
(2014)

Sgourdou
et al.
(2017)

Intron
23

c.2867 + 4_
c.2867 + 7delGGT-
G

p.Ser956CysfsX38 Splice-site Band heterotopia, thin corpus callosum (Appearance of
the cortex not reported)

Yu et al.
(2010)

Exon 27 c.3232G >A p.Ala1078Thr Missense Not reported Nicholas
et al.
(2010)

Intron
27

c.3335 + 1G >C p.? Splice site Polymicrogyria, gray-white matter blurring Nardello
et al.
(2018)

Exon 28 c.3361delG p.Ala1121GlnfsX6 Frameshift Not reported Sajid
Hussain
et al.
(2013)

Exon 29 c.3503G >A p.Trp1168X Nonsense Not reported Sajid
Hussain
et al.
(2013)

Exon 30 p.Gly1275AlafsX21 Frameshift
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survivin, and borealin (van der Waal et al. 2012). The chro-
mosomal passenger complex associates with the inner centro-
mere until metaphase and then transfers to the spindle
midzone, equatorial cell cortex, and midbody in late mitosis
and cytokinesis. Aurora B functions include regulation of
chromosome interactions with microtubules, chromatid cohe-
sion, spindle stability, and cytokinesis (Carmena et al. 2009).

Brain size at birth is primarily dependent on the ability of
neuroprogenitor cells to proliferate and self-renew. While sym-
metrical division of a neuroprogenitor cell results in the gener-
ation of two identical neuroprogenitor cells (thereby increasing

the progenitor pool), asymmetrical division leads to the produc-
tion of one progenitor cell (thereby maintaining the progenitor
pool) and a committed precursor, which eventually undergoes
migration and differentiates into neuron (Barbelanne and Tsang
2014). In vivo experiments on mice with knockdown or genetic
inactivation of Wdr62 and in vitro tests on cells with WDR62/
Wdr62 mutations led to significant progress in the understand-
ing the pathogenesis of microcephaly in patients with WDR62
mutations (Bogoyevitch et al. 2012; Chen et al. 2014;
Jayaraman et al. 2016; Sgourdou et al. 2017). Impaired prolif-
eration of neural progenitors and reduced brain size were

Table 2 Compound heterozygous WDR62 mutations and associated brain malformation patterns

Location Nucleotide
variation

Amino acid variation Mutation type Brain malformations (MRI findings)
in addition to microcephaly

Reference

Exon 1 c.28G>T p.Ala10Ser Missense Abnormal gyral pattern (dysgyria),
corpus callosum dysgenesis,
cerebellar atrophy

Banerjee et al. (2016)
Exon 2 c.189G>T p.Glu63Asp Missense

Exon 7 c.731C>T p.Ser244Leu Missense Not reported Miyamoto et al. (2017)
Exon 20 c.2413G>T p.Glu805X Nonsense

Exon 10 c.1313G>A p.Arg438His Missense Small frontal lobes, simplified
hippocampal gyration, corpus
callosum hypoplasia, cerebellar
hypoplasia (US only)

Farag et al. (2013)
Exon 23 c.2864_2867delACAG p.Asp955AlafsX112 Frameshift

Exon 17 c.2083delA p.Ser696AlafsX4 Frameshift Polymicrogyria, hemispherical
asymmetry, heterotopia, abnormal
corpus callosum

Murdock et al. (2011)
Exon 23 c.2472_2473delAG p.Gln918GlyfsX18 Frameshift

Table 1 (continued)

Location Nucleotide variation Amino acid variation Mutation type Brain malformations (MRI findings) in addition to
microcephaly

References

c.3839_
3855delGCCAAG-
AGCCTGCCCTG

Simplified gyral pattern, pachygyria, cortical
thickening, under-opercularization, dysmorphic
hippocampus, corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Yu et al.
(2010)

Exon 30 c.3878C >A p.Ala1293Asp Missense Not reported Naseer
et al.
(2017)

Exon 30 c.3936dupC p.Val1314ArgfsX18 Frameshift Simplified gyral pattern, thickened cortex Nicholas
et al.
(2010)

Exon 30 c.3936_3937insC p.Val1314ArgfsX18 Frameshift Hemispherical asymmetry, simplified gyral pattern,
polymicrogyria, abnormal corpus callosum

Kousar
et al.
(2011)

Yu et al.
(2010)

Exon 31 c.4205_
4208delTGCC

p.Val1402GlyfsX12 Frameshift Pachygyria, polymicrogyria, cortical thickening,
under-opercularization, indistinct gray-white
junction, corpus callosum hypoplasia

Bilgüvar
et al.
(2010)

Exon 31 c.4241dupT p.Leu1414LeufsX41 Frameshift Not reported Nicholas
et al.
(2010)
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observed in these animals (Chen et al. 2014; Jayaraman et al.
2016; Sgourdou et al. 2017). Abnormalities in the centriole
duplication, spindle pole orientation, and symmetric/
asymmetric division of neural progenitor cells and defects in
the mitotic progression were noticed (Bogoyevitch et al. 2012;
Chen et al. 2014; Jayaraman et al. 2016; Sgourdou et al. 2017).
Premature delamination of progenitors from the germinal zones
and increased apoptosis were also suggested in these experi-
ments as the cause of reduced brain size (Bilgüvar et al. 2010;
Bogoyevitch et al. 2012; Chen et al. 2014; Farag et al. 2013;
Jayaraman et al. 2016; Nicholas et al. 2010; Sgourdou et al.
2017; Yu et al. 2010). Downregulated Aurora-A-kinase activity
was also found inWdr62mutant mouse embryonic fibroblasts,
and investigations on isolated neural progenitor cells suggested
that Wdr62 and Aurora A may genetically interact to regulate
mitotic progression of neural progenitor cells (Chen et al. 2014).

A recent study revealed more details of the premature de-
pletion of progenitor cells and mitotic progression defects in
mice with truncated Wdr62 transcripts (Wdr621-21/1-21)
(Sgourdou et al. 2017). Centrosomes with differently aged
mother centrioles are differentially inherited by the two
daughter cells of asymmetrically dividing radial glia progeni-
tors in the developing neocortex. Whereas the centrosome
with the less mature newmother centriole migrates away from
the ventricular surface and is largely inherited by differentiat-
ing cells, the centrosome with the more mature old mother
centriole stays at the ventricular zone surface and is predom-
inantly inherited by renewing radial glia progenitors. WDR62
loss in mutantWdr6221-21/1-21 mice disrupted asymmetric cen-
trosome inheritance: the percentage of centrosomes retaining
the old mother centriole decreased in the proliferating zones,
while the percentage of centrosomes with new mother centri-
oles increased. The opposite was found in the cortical plate
suggesting abnormal migration and possibly differentiation.
This disturbed asymmetric centrosome inheritance may lead
to premature depletion of progenitor cells from the ventricular
zone and microcephaly (Sgourdou et al. 2017). It has also
been demonstrated that WDR62 protein can interact with the
chromosomal passenger complex. Depletion of any chromo-
somal passenger complex component disrupts mitotic pro-
gression. WDR62 disruption caused a modest decrease in ki-
netochore levels of Aurora B kinase, and a significant increase
in kinetochore levels of survivin in fibroblasts from a patient
with homozygous Asp955AlafsX112 mutation in WDR62
suggesting perturbed kinetochore function (Sgourdou et al.
2017). It has also been suggested that the mitotic delay of
neural progenitors caused byWDR62 disruption may contrib-
ute to the structural abnormalities observed in patients with
WDR62 mutations (Sgourdou et al. 2017).

However, human brain disorders can be poorly recapitulat-
ed in the mouse. Mice have smooth cerebral cortex that is
1000 times smaller than the abundantly gyrified human cor-
tex. Cortical thinning was found after knockdown or genetic

inactivation of Wdr62 in mice (Chen et al. 2014; Jayaraman
et al. 2016; Sgourdou et al. 2017) in contrast to thick gray
matter and cortical malformations in humans with WDR62
mutations (Tables 1 and 2). This contradiction highlights that
loss of Wdr62/WDR62 may elicit divergent brain phenotypes
in mice and humans. Recent experiments in Aspm knockdown
ferret, a species with a larger, gyrified cortex and greater neu-
ral progenitor cell diversity than mice, suggested evolutionari-
ly divergent functions of Aspm in the corticogenesis of mice
and ferret (Johnson et al. 2018). Since both microcephaly
proteins,Wdr62 and Aspm, define a mother centriole complex
regulating centriole biogenesis, apical complex, and cell fate
(Jayaraman et al. 2016), similar divergence inWdr62/WDR62
function can also be hypothesized. Further experiments in
ferret might elucidate more details of the abnormal
corticogenesis in WDR62 mutations (Johnson et al. 2018).

Conclusions

Mutations in WDR62 are the second most common cause of
autosomal recessive microcephaly. The microcephaly is often
associated with pachygyria, cortical thickening, and indistinct
gray-white matter border, as in patients in this report; howev-
er, a variety of other structural cortical malformations can also
occur. Genotype-phenotype correlation cannot be found.
Recent investigations highlighted that WDR62 protein plays
an essential role in the centrosome function and neural pro-
genitor cell cycle; however, even these elegant experiments
failed to explain accurately the genesis of the diverse cortical
malformations. Discovery of more aspects of WDR62 func-
tion in different animal models may clarify the mechanism of
phenotypic heterogeneity.

Acknowledgements The authors thank the patients’ parents for their
participation in this study.

Authors’ contributions MZ examined the patients and was a major con-
tributor in writing the manuscript; MB and BT interpreted the patients’
data; TK, NN, and ZM contributed to gene analysis; OB supervised
laboratory work; LSZ analyzed MRI data and designed the study. All
authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interests The authors declare that they have no conflicts of
interest.

Ethical approval and consent to participate The parents of both patients
gave written informed consent to enter the study, which was approved by
the Ethics Committee of the Faculty of Medicine, University of Szeged
(Szeged, Hungary, Reference no: 18/2016-SZTE).

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

160 J Appl Genetics (2019) 60:151–162



References

Abecasis GR, Cherny SS, CooksonWO, Cardon LR (2002)Merlin–rapid
analysis of dense genetic maps using sparse gene flow trees. Nat
Genet 30:97–101

Alcantara D, O’Driscoll M (2014) Congenital microcephaly. Am J Med
Genet C Semin Med Genet 166C:124–139

Bacino CA, Arriola LA, Wiszniewska J, Bonnen PE (2012) WDR62
missense mutation in a consanguineous family with primary micro-
cephaly. Am J Med Genet A 158A:622–625

Banerjee S, Chen H, Huang H, Wu J, Yang Z, Deng W, Chen D, Deng J,
Su Y, Li Y, Wu C, Wang Y, Zeng H, Wang Y, Li X (2016) Novel
mutations c.28G>T (p.Ala10Ser) and c.189G>T (p.Glu63Asp) in
WDR62 associated with early onset acanthosis and hyperkeratosis
in a patient with autosomal recessive microcephaly type 2.
Oncotarget 7:78363–78371

Barbelanne M, Tsang WY (2014) Molecular and cellular basis of auto-
somal recessive primary microcephaly. Biomed Res Int. https://doi.
org/10.1155/2014/547986

Bastaki F, Mohamed M, Nair P, Saif F, Tawfiq N, Aithala G, El-Halik M,
Al-AliM, Hamzeh AR (2016) Novel splice-site mutation inWDR62
revealed by whole-exome sequencing in a Sudanese family with
primary microcephaly. Congenit Anom 56:135–137

Bettencourt-Dias M, Hildebrandt F, Pellman D, Woods G, Godinho SA
(2011) Centrosomes and cilia in human disease. Trends Genet 27:
307–315

Bhat V, Girimaji SC, Mohan G, Arvinda HR, Singhmar P, Duvvari MR,
Kumar A (2011) Mutations inWDR62, encoding a centrosomal and
nuclear protein, in Indian primary microcephaly families with corti-
cal malformations. Clin Genet 80:532–540

Bilgüvar K, Öztürk AK, Louvi A, Kwan KY, ChoiM, Tatli B, Yalnizoğlu
D, Tüysüz B, Çağlayan AO, Gökben S, Kaymakçalan H, Barak T,
Bakircioğlu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S,
Dinçer A, Johnson MH, Bronen RA, Koçer N, Per H, Mane S,
Pamir MN, Yalçinkaya C, Kumandaş S, Topçu M, Özmen M,
Šestan N, Lifton RP, State MW, Günel M (2010) Whole-exome
sequencing identifies recessive WDR62 mutations in severe brain
malformations. Nature 467:207–210

Bogoyevitch MA, Yeap YYC, Qu Z, Ngoei KR, Yip YY, Zhao TT, Heng
JI, Ng DCH (2012) WD40-repeat protein 62 is a JNK-
phosphorylated spindle pole protein required for spindle mainte-
nance and timely mitotic progression. J Cell Sci 125:5096–50109

Carmena M, Ruchaud S, Earnshaw WC (2009) Making the Auroras
glow: regulation of Aurora A and B kinase function by interacting
proteins. Curr Opin Cell Biol 21:796–805

Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015)
Second-generation PLINK: rising to the challenge of larger and
richer datasets. Gigascience. https://doi.org/10.1186/s13742-015-
0047-8

Chen JF, Zhang Y, Wilde J, Hansen K, Lai F, Niswander L (2014)
Microcephaly disease gene Wdr62 regulates mitotic progression of
embryonic neural stem cells and brain size. Nat Commun. https://
doi.org/10.1038/ncomms4885

Farag HG, Froehler S, Oexle K, Ravindran E, Schindler D, Staab T,
Huebner A, Kraemer N, Chen W, Kaindl AM (2013) Abnormal
centrosome and spindle morphology in a patient with autosomal
recessive primary microcephaly type 2 due to compound heterozy-
gous WDR62 gene mutation. Orphanet J Rare Dis. https://doi.org/
10.1186/1750-1172-8-178

Fujita H, Yoshino Y, Chiba N (2016) Regulation of the centrosome cycle.
Mol Cell Oncol. https://doi.org/10.1080/23723556.2015.1075643

Jayaraman D, Kodani A, Gonzalez DM, Mancias JD, Mochida GH,
Vagnoni C, Johnson J, Krogan N, Harper JW, Reiter JF, Yu TW,
Bae B, Walsh CA (2016) Microcephaly proteins Wdr62 and Aspm

define a mother centriole complex regulating centriole biogenesis,
apical complex, and cell fate. Neuron 92:813–828

JohnsonMB, SunX, Kodani A, Borges-Monroy R, Girskis KM, Ryu SC,
Wang PP, Patel K, Gonzalez DM, Woo YM, Yan Z, Liang B, Smith
RS, Chatterjee M, Coman D, Papademetris X, Staib LH, Hyder F,
Mandeville JB, Grant PE, Im K, Kwak H, Engelhardt JF, Walsh CA,
Bae BI (2018) Aspm knockout ferret reveals an evolutionary mech-
anism governing cerebral cortical size. Nature 556:370–375

Kodani A, Yu TW, Johnson JR, Jayaraman D, Johnson TL, Al-Gazali L,
Sztriha L, Partlow JN, Kim H, Krup AL, Dammermann A, Krogan
NJ, Walsh CA, Reiter JF (2015) Centriolar satellites assemble
centrosomal microcephaly proteins to recruit CDK2 and promote
centriole duplication. elife. https://doi.org/10.7554/eLife.07519

Kousar R, Hassan MJ, Khan B, Basit S, Mahmood S, Mir A, Ahmad W,
Ansar M (2011) Mutations in WDR62 gene in Pakistani families
with autosomal recessive primary microcephaly. BMC Neurol.
https://doi.org/10.1186/1471-2377-11-119

Li D, Roberts R (2001) WD-repeat proteins: structure characteristics,
biological function, and their involvement in human diseases. Cell
Mol Life Sci 58:2085–2097

Lim NR, Yeap YYC, Ang CS, Williamson NA, Bogoyevitch MA, Quinn
LM, Ng DCH (2016) Aurora A phosphorylation of WD40-repeat
protein 62 in mitotic spindle regulation. Cell Cycle 15:413–424

McDonell LM, Chardon JW, Schwartzentruber J, Foster D, Beaulieu CL,
FORGE Canada Consortium, Majewski J, Bulman DE, Boycott
KM (2014) The utility of exome sequencing for genetic diagnosis
in a familial microcephaly epilepsy syndrome. BMCNeurol. https://
doi.org/10.1186/1471-2377-14-22

Memon MM, Raza SI, Basit S, Kousar R, Ahmad W, Ansar M (2013) A
novelWDR62 mutation causes primary microcephaly in a Pakistani
family. Mol Biol Rep 40:591–595

Meraldi P, Lukas J, Fry AM, Bartek J, Nigg EA (1999) Centrosome
duplication in mammalian somatic cells requires E2F and Cdk2-
cyclin A. Nat Cell Biol 1:88–93

Miyamoto T, Akutsu SN, Fukumitsu A,Morino H,Masatsuna Y, Hosoba
K, Kawakami H, Yamamoto T, Shimizu K, Ohashi H, Matsuura S
(2017) PLK1-mediated phosphorylation of WDR62/MCPH2 en-
sures proper mitotic spindle orientation. Hum Mol Genet 26:4429–
4440

Murdock DR, Clark GD, Bainbridge MN, Newsham I, Wu YQ, Muzny
DM, Cheung SW, Gibbs RA, Ramocki MB (2011) Whole-exome
sequencing identifies compound heterozygous mutations inWDR62
in siblings with recurrent polymicrogyria. Am JMed Genet A 155A:
2071–2077

Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W,
Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M,
Püttmann L, Vahid LN, Jensen C, Moheb LA, Bienek M, Larti F,
Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V,
Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R,
Firouzabadi SG, Cohen M, Fattahi Z, Rost I, Mojahedi F,
Hertzberg C, Dehghan A, Rajab A, Banavandi MJS, Hoffer J,
Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss AW,
Tzschach A, Kahrizi K, Ropers HH (2011) Deep sequencing reveals
50 novel genes for recessive cognitive disorders. Nature 478:57–63

Nardello R, Fontana A, Antona V, Beninati A, Mangano GD, Stallone
MC, Mangano S (2018) A novel mutation of WDR62 gene associ-
ated with severe phenotype including infantile spasm, microcephaly,
and intellectual disability. Brain and Development 40:58–64

Naseer MI, Rasool M, Sogaty S, Chaudhary RA, Mansour HM,
Chaudhary AG, Abuzenadah AM, Al-Qahtani H (2017) A novel
WDR62 mutation cause primary microcephaly in a large consan-
guineous Saudi family. Ann Saudi Med 37:148–153

Nicholas AK, Khurshid M, Désir J, Carvalho OP, Cox JJ, Thornton G,
Kausar R, Ansar M, AhmadW, Verloes A, Passemard S, Misson JP,
Lindsay S, Gergely F, Dobyns WB, Roberts E, Abramowicz M,

J Appl Genetics (2019) 60:151–162 161

https://doi.org/10.1155/2014/547986
https://doi.org/10.1155/2014/547986
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1038/ncomms4885
https://doi.org/10.1038/ncomms4885
https://doi.org/10.1186/1750-1172-8-178
https://doi.org/10.1186/1750-1172-8-178
https://doi.org/10.1080/23723556.2015.1075643
https://doi.org/10.7554/eLife.07519
https://doi.org/10.1186/1471-2377-11-119
https://doi.org/10.1186/1471-2377-14-22
https://doi.org/10.1186/1471-2377-14-22


Woods CG (2010)WDR62 is associated with the spindle pole and is
mutated in human microcephaly. Nat Genet 42:1010–1014

Poulton CJ, Schot R, Seufert K, Lequin MH, Accogli A, D’Annunzio G,
Villard L, Philip N, de Coo R, Catsman-Berrevoets C, Grasshoff U,
Kattentidt-Mouravieva A, Calf H, de Vreugt-Gronloh E, van Unen
L, Verheijen FW, Galjart N, Morris-Rosendahl DJ, Mancini GMS
(2014) Severe presentation of WDR62 mutation: is there a role for
modifying genetic factors? Am J Med Genet Part A 164A:2161–
2171

Prosser SL, Pelletier L (2017) Mitotic spindle assembly in animal cells: a
fine balancing act. Nat Rev Mol Cell Biol 18:187–201

Rupp V, Rauf S, Naveed I, Windpassinger C, Mir A (2014) A novel
single base pair duplication in WDR62 causes primary microceph-
aly. BMC Med Genet. https://doi.org/10.1186/s12881-014-0107-4

Sajid Hussain M, Marriam Bakhtiar S, Farooq M, Anjum I, Janzen E,
Reza Toliat M, Eiberg H, Kjaer KW, Tommerup N, Noegel AA,
Nürnberg P, Baig SM, Hansen L (2013) Genetic heterogeneity in
Pakistani microcephaly families. Clin Genet 83:446–451

Sgourdou P, Mishra-Gorur K, Saotome I, Henagariu O, Tuysuz B,
Campos C, Ishigame K, Giannikou K, Quon JL, Sestan N,
Caglayan AO, Gunel M, Louvi A (2017) Disruptions in asymmetric
centrosome inheritance andWDR62-Aurora kinase B interactions in
primary microcephaly. Sci Rep. https://doi.org/10.1038/srep43708

Thiele H, Nürnberg P (2005) HaploPainter: a tool for drawing pedigrees
with complex haplotypes. Bioinformatics 21:1730–1732

van der Waal MS, Hengeveld RCC, van der Horst A, Lens SMA (2012)
Cell division control by the chromosomal passenger complex. Exp
Cell Res 318:1407–1420

Wang X, Tsai JW, Imai JH, Lian WN, Vallee EB, Shi SH (2009)
Asymmetric centrosome inheritance maintains neural progenitors
in the neocortex. Nature 461:947–955

Wang R, Khan A, Han S, Zhang X (2017) Molecular analysis of 23
Pakistani families with autosomal recessive primary microcephaly
using targeted next-generation sequencing. J Hum Genet 62:299–
304

Yu TW, Mochida GH, Tischfield DJ, Sgaier SK, Flores-Sarnat L, Sergi
CM, Topçu M, McDonald MT, Barry BJ, Felie J, Sunu C, Dobyns
WB, Folkerth RD, Barkovich AJ, Walsh CA (2010) Mutations in
WDR62 encoding a centrosome-associated protein, cause micro-
cephaly with simplified gyri and abnormal cortical architecture.
Nat Genet 42:1015–1020

Zaqout S, Morris-Rosendahl D, Kaindl AM (2017) Autosomal recessive
primary microcephaly (MCPH): an update. Neuropediatrics 48:
135–142

162 J Appl Genetics (2019) 60:151–162

https://doi.org/10.1186/s12881-014-0107-4
https://doi.org/10.1038/srep43708

	A novel WDR62 missense mutation in microcephaly with abnormal cortical architecture and review of the literature
	Abstract
	Introduction
	Clinical report
	Patient 1
	Patient 2
	Molecular analysis
	Haplotype analysis of the families

	Discussion
	Conclusions
	References


