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Abstract: Background and objectives: Urinary tract infections (UTIs) are the third most common
infections in humans, representing a significant factor of morbidity, both among outpatients and
inpatients. The pathogenic role of Citrobacter, Enterobacter, and Serratia species (CES bacteria) has
been described in UTIs. CES bacteria present a therapeutic challenge due to the various intrinsic and
acquired resistance mechanisms they possess. Materials and Methods: The aim of this study was to
assess and compare the resistance trends and epidemiology of CES pathogens in UTIs (RECESUTI)
in inpatients and outpatients during a 10-year study period. To evaluate the resistance trends of
isolated strains, several antibiotics were chosen as indicator drugs based on local utilization data.
578 CES isolates were obtained from inpatients and 554 from outpatients, representing 2.57 ± 0.41%
of all positive urine samples for outpatients and 3.02 ± 0.40% for inpatients. E. cloacae was the most
prevalent species. Results: The ratio of resistant strains to most of the indicator drugs was higher in
the inpatient group and lower in the second half of the study period. ESBL-producing isolates were
detected in 0–9.75% from outpatient and 0–29.09% from inpatient samples. Conclusions: Resistance
developments of CES bacteria, coupled with their intrinsic non-susceptibility to several antibiotics,
severely limits the number of therapeutic alternatives, especially for outpatients.

Keywords: urinary tract infection; UTI; antibiotic; resistance; indicator; epidemiology; fosfomycin;
ESBL; Citrobacter; Enterobacter; Serratia

1. Introduction

Urinary tract infections (UTIs) are the third most prevalent type of infections in human medicine
worldwide, following respiratory and gastrointestinal infections, while in Europe, UTIs are the
second most prevalent type of infections in humans [1,2]. UTIs are a significant factor of morbidity,
both among outpatients and hospitalized patients [3]. In fact, hospital acquired UTIs are the most
common healthcare associated infections (i.e., nosocomial infections). They account for 25–50% of
nosocomial infections overall, representing a serious economic and public health issue for healthcare
institutions [1,2,4]. UTIs are most commonly caused by members of the Enterobacterales order (typical
pathogens include Escherichia coli and Klebsiella spp.), however, several bacteria, which were previously
isolated infrequently (e.g., the Proteus-Providencia-Morganella tribe, Citrobacter-Enterobacter-Serratia
species) have now emerged as increasingly relevant pathogens in UTIs, both in community and
nosocomial settings [1–6].
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Species of the Citrobacter, Enterobacter, and Serratia genera (hereafter abbreviated as CES) are
facultative anaerobic, non-spore forming Gram-negative bacilli. They are widely distributed in the
environment (soil, water) and in the gastrointestinal tract of animals and humans [7]. Discussion
of these three genera together is justified by their similar biochemical characteristics, prevalence,
and resistance trends [8]. The pathogenic role of CES bacteria has been described in urinary tract
infections, respiratory tract infections, bacteremia and sepsis, gastroenteritis, conjunctivitis, wound
infections, endocarditis, meningitis (both in adults and neonates), and brain abscesses [2,9–21]. In recent
years, outbreaks associated with CES bacteria has become more frequent (especially in neonatal and
adult intensive care units), highlighting that these bacteria pose a serious concern from an infection
control perspective [9–21].

Compared to E. coli, members of CES are more frequently isolated in complicated UTIs
(associated with catheters, functional or anatomical abnormalities of the genitourinary tract)
from patients with underlying conditions or immunosuppression. They are also more frequently
associated with pyelonephritis, recurrence, and prolonged therapy [9,10,12–15,18,20,21]. CES bacteria
present a challenge to clinicians and microbiologists alike due to the various intrinsic and
acquired resistance mechanisms they possess. They are all intrinsically resistant to penicillins,
several β-lactam/β-lactamase combinations (e.g., ampicillin/sulbactam, amoxicillin/clavulanic acid),
first–second generation cephalosporins, and cephamycins (i.e., cefoxitin), due to their penicillinases and
AmpC-β-lactamases [9–23]. In addition, Serratia species are also intrinsically resistant to nitrofurantoin,
doxycycline, colistin and most of the aminoglycosides (with the exception of streptomycin and
amikacin) [12,13,16,22,24]. Due to the clinical significance of their AmpC-β-lactamase-production,
these pathogens are a part of the “SPICE” group (Serratia, Pseudomonas, indole-positive Proteus,
Citrobacter, and Enterobacter) of bacteria [23,25]. To make matters worse, multidrug resistant strains
(MDR), expressing plasmid-encoded (transmissible) extended-spectrum β-lactamases (ESBLs) or
carbapenemases have emerged, where clinicians are left with very few and expensive (e.g., tigecycline,
ceftazidime/avibactam) treatment options [26–29]. Therefore, it is no surprise that carbapenem-resistant
Enterobacter species are a part of the “ESKAPE” pathogens, which are considered as the most concerning
for the healthcare institutions worldwide [30–32].

The epidemiology and antibiotic susceptibility-patterns of urinary tract pathogens vary greatly
by region. Therefore, the assessment of local data is essential to evaluate trends over time and to
reflect on the national situation, compared to international data [33]. Additionally, knowledge of
the relevant antibiotic susceptibility patterns of the major bacterial pathogens for UTIs is of utmost
importance to allow for the optimal choice for antibiotic therapy [34–36]. The aim of this study
was to assess and compare the resistance trends and epidemiology of different species of CES in
UTIs (RECESUTI) in inpatients and outpatients at the Albert Szent-Györgyi Clinical Center (Szeged,
Hungary) retrospectively, during a 10-year study period.

2. Materials and Methods

2.1. Study Design, Data Collection

This retrospective study was carried out using microbiological data collected from the period
between January 1, 2008, and December 31, 2017, at the Institute of Clinical Microbiology (University
of Szeged), which is the affiliated diagnostic microbiology laboratory of the Albert Szent-Györgyi
Clinical Center, a primary-and tertiary-care teaching hospital in the Southern Great Plain of Hungary.
The Clinical Center has a bed capacity of 1820-beds (1465 acute and 355 chronic beds, respectively)
and annually serves more than 400,000 patients in the region, according to the data of the Hungarian
National Health Insurance Fund (NEAK) [37]. Based on the data of the Hungarian Central Statistical
Office (KSH), the ratio of the 0—14-year-old population in the region is around 15.3%, while people
over 60 years of age represent around 21.2% of the regional population. Electronic search in the
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records of the MedBakter laboratory information system (LIS) for urine samples positive for Citrobacter,
Enterobacter, and Serratia (CES) species was conducted.

Samples with clinically significant colony counts for CES (>105 CFU/mL; however, this was subject
to interpretation based on the information provided on the request forms for microbiological analysis
and relevant international guidelines, e.g., presence of underlying conditions in the genitourinary tract)
were included in the data analysis. Only the first isolate per patient was included in the study. However,
isolates with different antibiotic-susceptibility patterns were considered as different individual isolates.
In addition, patient data was also collected, which were limited to demographic characteristics (age
and sex). The study was deemed exempt from ethics review by the Institutional Review Board,
and informed consent was not required as data anonymity was maintained.

2.2. Identification of Isolates

Ten microliters of each uncentrifuged urine sample was cultured on UriSelect chromogenic agar
plates (Bio-Rad, Berkeley, CA, USA) with a calibrated loop, according to the manufacturer’s instructions,
and incubated at 37 ◦C for 24–48 h, aerobically. If the relevant pathogens presented in significant
colony count, the plates were passed on for further processing. Between 2008–2012, presumptive
phenotypic (biochemical reaction-based) methods and VITEK 2 ID (bioMérieux, Marcy-l’Étoile, France)
were used for bacterial identification, while after 2013, this was complemented by matrix-assisted
laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS; Bruker Daltonik Gmbh.
Gr.). The methodology of sample preparation for MALDI-TOF MS measurements was described
elsewhere [38,39]. Mass spectrometry was performed by the Microflex MALDI Biotyper (Bruker
Daltonics, Germany) in positive linear mode across the m/z range of 2 to 20 kDa; for each spectrum,
240 laser shots at 60 Hz in groups of 40 shots per sampling area were collected. The MALDI Biotyper
RTC 3.1 software (Bruker Daltonics, Germany) and the MALDI Biotyper Library 3.1 were used for
spectrum analysis.

2.3. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion
method and E-test (Liofilchem, Abruzzo, Italy) on Mueller-Hinton agar (MHA) plates. In addition,
for the verification of discrepant results, VITEK 2 AST (bioMérieux, Marcy-l’Étoile, France) was also
utilized. The interpretation of the results was based on EUCAST breakpoints (http://www.eucast.org).
Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212, Proteus mirabilis ATCC 35659,
Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 27853 were used as quality control strains.

To evaluate the resistance trends of isolated strains, ciprofloxacin (CIP), ceftriaxone (CRO),
meropenem (MER), gentamicin (GEN; relevant in case of Citrobacter and Enterobacter spp.),
and sulfamethoxazole/trimetoprim (SXT) were chosen as indicator antibiotics based on local antibiotic
utilization data [22,40,41]. In addition, susceptibility data for doxycycline (DOX; relevant in case
of Citrobacter and Enterobacter spp.) was available for the first half (2008–2012) of the study period,
and for fosfomycin (FOS), data was available for the second half (2013–2017) of the study period.
FOS susceptibility testing was not routinely performed. Instead, it was performed only in cases
of extensive drug resistance or per request of the clinicians. During data analysis, intermediately
susceptible results were grouped with and reported as resistant. Detection of extended-spectrum
beta-lactamase (ESBL)-producing isolates was carried out based on EUCAST recommendations
(http://www.eucast.org/resistance_mechanisms/).

2.4. Statistical Analysis

Descriptive statistical analysis (including means or medians with ranges and percentages to
characterize data) was performed using Microsoft Excel 2013 (Redmond, WA, USA, Microsoft Corp.).
Statistical analyses were performed with SPSS software version 24 (IBM SPSS Statistics for Windows
24.0, Armonk, NY, USA, IBM Corp.), using the χ2-test, Student’s t-test and Mann-Whitney U test.

http://www.eucast.org
http://www.eucast.org/resistance_mechanisms/
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The normality of variables was tested using Shapiro-Wilk tests. p values < 0.05 were considered
statistically significant.

3. Results

3.1. Demographic Characteristics, Sample Types

The median age of affected patients was 56 years (range: 0.3–97) in the outpatient group with a
female-to-male ratio of 1.1 (52.4% female), while in the inpatient group, these values were 68 years
(range: 0.9–98) and 1.1 (52.4% female), respectively. The detailed age distribution of patients in both
affected patient groups is presented in Figure 1. The difference in the age distribution of the two patient
groups was statistically significant (p < 0.0001). Among the affected patients, the age groups under
10 years of age (outpatients: 25.7%, inpatients: 16.7%) and over 60 years of age (outpatients: 43.4%,
inpatients: 63.1%) were the most numerous.

Medicina 2019, 55, x FOR PEER REVIEW 4 of 12 

 

24.0, Armonk, NY, USA, IBM Corp.), using the χ2-test, Student’s t-test and Mann-Whitney U test. The 
normality of variables was tested using Shapiro-Wilk tests. p values < 0.05 were considered 
statistically significant. 

3. Results 

3.1. Demographic Characteristics, Sample Types 

The median age of affected patients was 56 years (range: 0.3—97) in the outpatient group with a 
female-to-male ratio of 1.1 (52.4% female), while in the inpatient group, these values were 68 years 
(range: 0.9—98) and 1.1 (52.4% female), respectively. The detailed age distribution of patients in both 
affected patient groups is presented in Figure 1. The difference in the age distribution of the two 
patient groups was statistically significant (p < 0.0001). Among the affected patients, the age groups 
under 10 years of age (outpatients: 25.7%, inpatients: 16.7%) and over 60 years of age (outpatients: 
43.4%, inpatients: 63.1%) were the most numerous. 

 
Figure 1. Age distribution of the affected patients in the outpatient and inpatient group. 

All (100%) samples received from outpatient clinics were voided (midstream) urine, while the 
sample distribution from the inpatient departments was the following: Catheter-specimen urine 
(47.1%), midstream urine (41.0%), first-stream urine (11.6%), and samples obtained through 
suprapubic bladder aspiration (0.3%). 

3.2. Distribution of Citrobacter-Enterobacter-Serratia Isolates 

During the 10-year study period (January 1, 2008—December 31, 2017), the Institute of Clinical 
Microbiology received 21,150 urine samples from outpatient clinics and 19,325 samples from 
inpatient departments that turned out to be positive for a significant urinary pathogen. 578 
Citrobacter/Enterobacter/Serratia isolates were obtained from inpatients and 554 from outpatients. 
Henceforth, out of the positive urine samples, these pathogens represented 2.6 ± 0.4% (range: 1.9–
3.2%, lowest in 2012, highest in 2017) for outpatients, while 3.0 ± 0.4% (range: 2.5–3.8%, lowest in 
2015, highest in 2013) of all positive urine samples; (p > 0.05). In both groups, E. cloacae (outpatients: 
38.9%; inpatients: 55.5%), E. aerogenes (outpatients: 20.0%, inpatients: 15.9%), C. koseri (outpatients: 
16.6%, inpatients: 9.7%), and C. freundii (outpatients: 4.9%, inpatients: 5.9%) were the most prevalent, 
while Serratia species accounted for 4.5% and 3.8% of the isolates, respectively. The epidemiology and 

Figure 1. Age distribution of the affected patients in the outpatient and inpatient group.

All (100%) samples received from outpatient clinics were voided (midstream) urine, while the
sample distribution from the inpatient departments was the following: Catheter-specimen urine
(47.1%), midstream urine (41.0%), first-stream urine (11.6%), and samples obtained through suprapubic
bladder aspiration (0.3%).

3.2. Distribution of Citrobacter-Enterobacter-Serratia Isolates

During the 10-year study period (1 January 2008–31 December 2017), the Institute of
Clinical Microbiology received 21,150 urine samples from outpatient clinics and 19,325 samples
from inpatient departments that turned out to be positive for a significant urinary pathogen.
578 Citrobacter/Enterobacter/Serratia isolates were obtained from inpatients and 554 from outpatients.
Henceforth, out of the positive urine samples, these pathogens represented 2.6 ± 0.4% (range: 1.9–3.2%,
lowest in 2012, highest in 2017) for outpatients, while 3.0 ± 0.4% (range: 2.5–3.8%, lowest in 2015,
highest in 2013) of all positive urine samples; (p > 0.05). In both groups, E. cloacae (outpatients:
38.9%; inpatients: 55.5%), E. aerogenes (outpatients: 20.0%, inpatients: 15.9%), C. koseri (outpatients:
16.6%, inpatients: 9.7%), and C. freundii (outpatients: 4.9%, inpatients: 5.9%) were the most prevalent,
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while Serratia species accounted for 4.5% and 3.8% of the isolates, respectively. The epidemiology and
total species distribution of outpatient and inpatient samples is presented in Figure 2 (inpatients) and
Figure 3 (outpatients). In the inpatient group, 11 different species of CES were isolated, while in the
outpatient group, the species distribution was more diverse, with 17 different species detected.

Medicina 2019, 55, x FOR PEER REVIEW 5 of 12 

 

total species distribution of outpatient and inpatient samples is presented in Figures 2 (inpatients) 
and 3 (outpatients). In the inpatient group, 11 different species of CES were isolated, while in the 
outpatient group, the species distribution was more diverse, with 17 different species detected. 

 
Figure 2. Frequency and species distribution of Citrobacter, Enterobacter, and Serratia (CES) isolates in 

outpatient samples (2008—2017). 

3.3. Antibiotic Susceptibility Trends among CES Isolates 

The resistance trends of the isolates Citrobacter/Enterobacter/Serratia species against ciprofloxacin 
(CIP), ceftriaxone (CRO), gentamicin (GEN; regarding Enterobacter and Citrobacter species), 
doxycycline (DOX; regarding Enterobacter and Citrobacter species), fosfomycin (FOS), and 
sulfamethoxazole-trimethoprim (SXT) during the 10-year surveillance period are presented in  Table 
1;  Table 2. The ratio of resistant strains in the inpatient group were significantly higher to CIP, CRO, 
GEN, and DOX (based on data from 2008—2012) (p = 0.0189, p = 0.0167, p = 0.0232, and p = 0.0342, 
respectively), but not in case of SUM and FOS (p > 0.05). In addition, resistance levels to the indicator 
antibiotics were significantly higher (p < 0.05) in the first half (2008—2012) of the study period in case 
of every drug (apart from DOX and FOS, where resistance data was not available throughout the 10-
year period) (Tables 1 and 2). 

Figure 2. Frequency and species distribution of Citrobacter, Enterobacter, and Serratia (CES) isolates in
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3.3. Antibiotic Susceptibility Trends among CES Isolates

The resistance trends of the isolates Citrobacter/Enterobacter/Serratia species against ciprofloxacin
(CIP), ceftriaxone (CRO), gentamicin (GEN; regarding Enterobacter and Citrobacter species),
doxycycline (DOX; regarding Enterobacter and Citrobacter species), fosfomycin (FOS), and
sulfamethoxazole-trimethoprim (SXT) during the 10-year surveillance period are presented in Table 1;
Table 2. The ratio of resistant strains in the inpatient group were significantly higher to CIP, CRO,
GEN, and DOX (based on data from 2008–2012) (p = 0.0189, p = 0.0167, p = 0.0232, and p = 0.0342,
respectively), but not in case of SUM and FOS (p > 0.05). In addition, resistance levels to the indicator
antibiotics were significantly higher (p < 0.05) in the first half (2008–2012) of the study period in case of
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every drug (apart from DOX and FOS, where resistance data was not available throughout the 10-year
period) (Tables 1 and 2).Medicina 2019, 55, x FOR PEER REVIEW 6 of 12 
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Table 1. Percentage of resistant strains to indicator antibiotics from inpatient and outpatient departments
(2008–2017).

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Overall (±SE) Statistics

CIP R%
Outpatient 2.4 23.9 18.8 26.9 8.6 7.0 5.6 8.7 6.1 5.8 11.4 ± 2.7 p = 0.0189
Inpatient 36.4 37.3 45.3 54.6 44.3 40.8 8.6 8.5 6.8 3.9 28.6 ± 6.1

CRO R%
Outpatient 30.6 47.8 47.9 29.3 25.7 24.0 24.1 24.4 24.4 19.5 29.8 ± 3.2 p = 0.0167
Inpatient 65.9 72.5 64.2 61.8 56.8 43.4 28.6 27.1 27.1 27. 47.5 ± 5.9

GEN R%
Outpatient 4.9 19.6 16.7 17.9 5.7 8.3 1.9 3.2 2.6 2.4 8.3 ± 2.2 p = 0.0232
Inpatient 51.9 48.0 45.3 47.3 27.5 11.1 7.6 5.3 5.3 5. 25.4 ± 6.5

SUM R%
Outpatient 16.7 21.4 14.6 24.4 15.7 12.0 3.7 8.7 3.7 1.1 12.2 ± 2.5 n.s.

(p = 0.0778)Inpatient 50.0 49.0 37.3 31.8 16.1 13.2 14.3 10.2 10.2 1.9 23.5 ± 5.5

Values in italics represent the lowest resistance levels, boldface (peak) values correspond to the highest resistance
levels in the study period; n.s.: Not significant.

Table 2. Percentage of resistant strains to indicator antibiotics from inpatient and
outpatient departments.

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Overall (±SE) Statistics

DOX R%
Outpatient 31.7 30.0 27.7 38.5 35.7 32.7 ± 1.9

p = 0.0342
Inpatient 48.9 44.5 33.0 39.3 40.0 41.1 ± 2.7

FOS R%
Outpatient 10.0% 7.4% 8.7% 12.2% 8.1% 9.3 ± 0.8 n.s.

(p = 0.454)Inpatient 7.7% 15.7% 20.3% 15.3% 9.8% 13.8 ± 2.1

ESBL %
Outpatient 0.0 0.0 8.8 9.8 2.9 8.0 1.9 4.8 1.2 2.3 3.7 ± 1.2

(p = 0.0152)
Inpatient 0.0 0.0 28.3 29.1 7.8 7.9 11.4 1.7 1.7 5.9 10.9 ± 3.4

Values in italics represent the lowest resistance levels, boldface (peak) values correspond to the highest resistance
levels in the study period; n.s.: Not significant.

Overall, the highest levels of resistance were recorded for CRO (outpatients: highest in 2010,
lowest in 2017; inpatients: highest in 2009, lowest in 2015), while the lowest for GEN (outpatients:
highest in 2009, lowest in 2014; inpatients: highest in 2014, lowest in 2017). During the course of the
study period, increasing resistance levels could be observed until 2009–2011, while around 2012–2014,
a dramatic (5–25-times) decrease in the ratio of resistant strains was noted, except in the case of CRO.
DOX-resistance levels were around 30% in the inpatient group and above 30% in the outpatient group
between 2008–2012 (Table 2). FOS susceptibility-testing was performed in around 10% of the isolates.
Resistance levels were between 20–57.1% for outpatients and 17.1–77.9% for inpatients (2013–2017).
The ratio of ESBL-producing isolates was ranging between 0–9.8% (lowest in 2008–2009, highest in
2011) from outpatient samples and 0–29.1% (lowest in 2008–2009, highest in 2010) from inpatient
samples; ESBL-positivity was detected more frequently in inpatient samples (p = 0.0152; Table 2).
No meropenem-resistant isolates were recovered during the 10-year study period.

4. Discussion

Enterobacterales (the novel taxonomic designation of the Enterobacteriaceae family) are the most
common (70–80%) cause of urinary tract infections (UTIs) in both community and healthcare
settings [1,2,42,43]. Empiric antibiotic therapy should be selected based on local susceptibility
profiles or a cumulative hospital antibiogram. Nevertheless, the choice of antimicrobial drugs
should be revised after the specific antibiogram for the relevant urinary pathogen has become
available [44,45]. Guidelines of the Infectious Diseases Society of America (IDSA) also recommend
that one of the main factors of choosing empiric antibiotic therapy for UTIs is local resistance data,
in addition to considering the history of the patient, drug allergies/intolerance and local/institutional
drug availability [1,3,46]. In general, nitrofurantoin, sulfamethoxazole-trimethoprim and fosfomycin
should be used for uncomplicated UTIs empirically (if local resistance levels do not exceed 20%),
while for complicated UTIs or pyelonephritis, third generation cephalosporins (e.g., ceftriaxone),
fluoroquinolones, aminoglycosides, or carbapenems should be used [1,3,46–48].
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In the context of our study, the members of the Citrobacter, Enterobacter, and Serratia genera
were causative agents in UTIs in around 2.5–3% of cases in both outpatient and inpatient settings.
Although on first approach this may seem as relatively low prevalence, their clinical relevance should
not be disregarded in either settings. There is a shortage of data available on the prevalence and
resistance trends of CES isolates, and the available published evidence is usually in the form of larger
multicenter or international surveillance studies (e.g., SENTRY Antimicrobial Surveillance Program):
In these reports, the overall prevalence of CES isolates ranges between 0.5–18% in urinary tract
infections [2,16,49–51]. Some reports suggest that Citrobacter and Enterobacter species are the third most
common pathogens in UTIs, while in others, they are less frequently isolated than Proteae [2,16,49–53].
Based on the results of this retrospective survey, the most prevalent isolates at our tertiary-care center
were E. aerogenes and E. cloacae; interestingly, the species distribution in the outpatient isolates was
~1.5-times higher, than in the outpatient group, while in the literature, the opposite is generally
observed [49,51].

Regarding the local resistance levels, the results of the 10-year survey showed that there has been
a pronounced decrease in the resistance rates of several antibiotics (cf. ceftriaxone) in the period of
2012–2014. In fact, some antibiotics had their lowest resistance rates in the last year (2017) of the study
period. There was no single underlying event found that may be responsible for this local advantageous
change in resistance levels, although the developments in antibiotic stewardship and stricter adherence
to diagnostic and therapeutic guidelines–both at the Albert Szent-Györgyi Clinical Center and in the
country in general from the 2010s–may have had a notable role [22,40–42,54,55]. The most concerning
development is the resistance rates to third generation cephalosporins (exemplified by ceftriaxone
in this survey), where even the lowest levels of resistance were around 20% in the outpatient group
and close to 30% in the inpatient group. Resistance to β-lactam antibiotics should be considered
as a serious issue, because in some vulnerable patient groups–like pregnant women and children,
where many other antibiotic drugs cannot be used–they are the first-choice agents [56]. In some cases
(e.g., an ESBL-positive Serratia), where special patient groups are affected, carbapenem antibiotics
remain the singular choice of drugs. In Hungary (and, specifically, in the southern region of the country),
the blaCTX-M group is the most prevalent, which is associated with carrying resistance determinants
to quinolones and aminoglycosides in addition to the relevant β-lactam antibiotics [57]. It is worth
noting that if the isolate is resistant to quinolones, sulfamethoxazole-trimethoprim and fosfomycin,
there are basically no orally available therapeutic options left for the treatment of CES infections.
In this case, treatment needs to be carried out in an inpatient setting, or through outpatient parenteral
antibiotic therapy (OPAT), utilizing aminoglycosides (marginally effective against Serratia), third–fourth
generation cephalosporins or carbapenems [35,58,59]. The differences in the resistance rates among
inpatient and outpatient samples overall may have been influenced by the species distribution as well
(Figure 2; Figure 3). In the inpatient group, E. cloacae was the most predominant isolate, the species
distribution in the inpatient isolates was more balanced.

The emergence and spread of ESBL-and/or carbapenemase-producing Enterobacterales is a serious
concern in any case, especially if the pathogens in question also have additional intrinsic resistance
mechanisms. Consequently, the therapeutic armamentarium becomes very limited. Tigecycline has
activity against ESBL-producing bacteria, however, due to its pharmacokinetics, it is not ideal for the
treatment of urinary tract infections [60]. Colistin has recently become the “last resort” antibiotic in the
therapy of Gram-negative MDR infections: it has shown clinical effectiveness where other options were
not available, however, this drug cases severe nephrotoxicity and neurotoxicity. Therefore, it should
be reserved for infections caused by carbapenem and aminoglycoside-resistant infections [61,62].
In addition, Serratia species are colistin resistant [22]. Novel antibiotics (e.g., ceftolozane-tazobactam,
ceftazidime-avibactam, ceftaroline-avibactam, delafloxacin etc.) offer new hope in the effective therapy
of all sorts of infections caused by MDR Gram-negative pathogens, although due to their exorbitant
price and limited clinical experience, it is questionable how long will it take for these drugs to be
acknowledged in the routine therapeutic protocols [28,63–66].
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Some limitations of this study must be acknowledged. First, the study design is retrospective
and due to the inability to access the medical records of the individual patients affected,
the correlation between the existence of relevant risk factors and underlying illnesses (apart from
age, inpatient/outpatient status, and catheterization) and Citrobacter/Enterobacter/Serratia UTIs could
not be assessed. The age-associated incidence in isolation of CES may also reflect (at least in part)
the high rate of bacteriuria in the elderly population. Furthermore, molecular characterization of
the genetic background of resistance in the individual isolates was not performed, only to the extent
of presence/absence of ESBLs. There is a risk of selection bias, as studies describing the prevalence
of infectious diseases and resistance trends are tertiary-care centers, which generally correspond to
patients with more severe conditions or underlying illnesses [67].

5. Conclusions

This study presents the epidemiological trends and resistance levels of
Citrobacter/Enterobacter/Serratia associated with of urinary tract infections (UTIs) in Hungary
over a long surveillance period (10 years), demonstrating the gradient of change in the resistance levels
regarding various antibiotics. To the best of our knowledge, this is the first and longest-spanning study
reporting on the prevalence and susceptibility patterns of CES pathogens (and UTIs caused by these
uropathogens by proxy) in Hungary. Their higher prevalence in patients with advanced age (over
60 years of age) is in line with the findings in literature, while the type of setting (inpatient/outpatient)
did not have an effect on their isolation frequency.

The emergence of this usually rare organism as an increasingly common urinary pathogen is
alarming. During the current study period, the susceptibility of CES bacteria showed an advantageous
trend (excluding resistance to β-lactam antibiotics; nevertheless, this trend is only sustainable through
strict adherence to infection control practices and relevant therapeutic and diagnostic guidelines).
As the therapeutic options are largely limited in the current antibiotic resistance climate, energies should
be put into the prudent use of antibiotics. In addition, due to the potential of these pathogens to cause
nosocomial outbreaks (usually in vulnerable patient groups), stern and continuous surveillance is
required on both institutional and on a national level.
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40. Matuz, M.; Benkő, R.; Hajdú, E.; Viola, R.; Soós, G. Evaluation of ambulatory antibiotic use in Hungary using
drug-specific quality indicators. Orv. Hetil. 2013, 154, 947–956. [CrossRef] [PubMed]
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