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INTRODUCTION

RNA-sequencing has revolutionized transcriptomics and the way we measure gene expression
(Wang et al., 2009). As of today, short-read RNA sequencing is more widely used, and due to its
low price and high throughput, is the preferred tool for the quantitative analysis of gene expression.
However, the annotation of transcript isoforms is rather difficult using only short-read sequencing
data, because the reads are shorter than most transcripts (Steijger et al., 2013). Long-read
sequencing, on the other hand, can provide full contig information about transcripts, including
exon-connectivity, and its merits in transcriptome profiling are being increasingly acknowledged
(Sharon et al., 2013; Abdel-Ghany et al., 2016; Wang et al., 2016; Kuo et al., 2017). Due to the
relatively low throughput of current long-read sequencing technologies, they can only characterize
smaller transcriptomes in high-depth (Weirather et al., 2017).

The Human cytomegalovirus (HCMV) is a ubiquitous betaherpesvirus, which can cause
mononucleosis-like symptoms in adults (Cohen and Corey, 1985), and severe life-threatening
infections in newborns (Wen et al., 2002). Latent HCMV infection has recently been implicated
to affect cancer formation (Dziurzynski et al., 2012; Jin et al., 2014). Examining the transcriptome
of the virus can go a long way in helping understand its molecular biology. Short-read RNA
sequencing studies have discovered splice junctions and non-coding transcripts (Gatherer et al.,
2011) and have shown that the most abundant HCMV transcripts are similarly expressed in
different cell types (Cheng et al., 2017). Our long-read RNA sequencing experiments using
the Pacific Biosciences (PacBio) RSII platform revealed a great number of transcript isoforms,
polycistronic RNAs and transcriptional overlaps (Balázs et al., 2017a).

Data
Here, we present the dual-platform long-read RNA sequencing dataset of two HCMV-infected
fibroblast samples. We have sequenced the same RNA population that we have previously
sequenced with the PacBio RS II platform (Balázs et al., 2017b), but now using the PacBio Sequel
and Oxford Nanopore Technologies (ONT) MinION platforms. These data, apart from providing
a more profound picture of the lytic HCMV transcriptome, can also be used to compare the current
technologies. A further sample was prepared, using lytic HCMV RNAs. This sample was subjected
to ONT Cap-selected cDNA sequencing (Cap-Seq) in order to allow better characterization
of the transcription start sites, and also to direct (d)RNA sequencing in order to avoid
reverse-transcription (RT) and PCR artifacts. We report of sequencing of approximately 100 GB
raw data (Supplementary Table 1). The CapSeq by the MinION platform yielded the highest read
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count, the throughputs of the Sequel platform and the
ONT dRNA sequencing both lagged behind (summarized
in Figure 1A); both technologies nonetheless offer significant
benefits. The Sequel platform is more accurate and the dRNA
sequencing is free of RT and PCR artifacts. The read length
distribution shows that the Sequel platform has a similar
molecule-size preference to the RSII platform, while the MinION
platform sequences more short reads (Figure 1B). The length-
distribution of the non-cap selected cDNA sequencing reads are
different from the other ONT reads, because this library was
size-selected (>500 nt).

Each experiment shows a different coverage pattern along the
HCMV genome (Figure 1C), which can be partly attributed to
(1) whether or not cap-selection was applied, (2) whether or not
the sample was reverse transcribed and amplified, (3) the length-
preference of the platform, and (4) to the variance between the
samples.

MATERIALS AND METHODS

Samples
Two independent biological samples (with Biosample accession
numbers ERS1870077 and ERS2312967) were used in this study.
The layout of the experiments has been summarized in Figure 2.

Biosample ERS2312967
Four T75 cell culture flasks (Thermo Fischer) of human lung
fibroblast cells [MRC-5; American Type Culture Collection
(ATCC)] were cultured at 37◦C and 5% CO2-concentration
in DMEM supplemented with 10% fetal bovine serum (Gibco
Invitrogen) and 100 units of potassium penicillin and 100 µg
of streptomycin sulfate per 1ml (Lonza). Rapidly-growing near-
saturated cell cultures were infected with HCMV strain Towne
VarS (ATCC), at a multiplicity of infection (MOI) of 0.5 plaque-
forming units (pfu) per cell. The infected cells were incubated for
1 h, after which the virus suspension was removed and washed
with PBS. Following the addition of fresh culture medium,
the cells were incubated for 24, 72, or 120 h (in 1-2-1 flasks,
respectively). Total RNA was isolated from each sample using the
NucleoSpin RNA kit (Macherey-Nagel) and 20 µl of each were
pooled before reverse transcription.

Biosample ERS1870077
The same total RNA sample that had been sequenced and
presented in our earlier publication (Balázs et al., 2017a) was also
sequenced by Oxford Nanopore cDNA sequencing and the novel,
high-throughput sequencing platform of Pacific Biosciences
called Sequel. Briefly, pooled RNA sample was obtained from
HCMV strain Towne VarS (ATCC) infected MRC-5 (ATCC)
cells, that were grown under the same conditions as mentioned
above. The infection was carried out at a MOI of 0.05 pfu per cell.
Total RNA was isolated from infected cells at 1, 3, 6, 12, 24, 72,
96, 120 h post-infection (p.i.).

Selection and Library Preparation
The Oligotex mRNA Mini Kit (Qiagen) was used to select
polyadenylated RNAs from both samples. Four different,

poly(A)-selected libraries were prepared in order to better
characterize the HCMV transcriptome.

Direct RNA Library for Sequencing on the ONT

Platform
500 ng polyA-selected RNA was used from biosample
ERS2312967 for direct RNA sequencing. A first-strand cDNA
was synthesized using SuperScript IV (Thermo Fischer Scientific)
and the adapter primers provided by the Direct RNA Sequencing
kit (SQK-RNA001, Oxford Nanopore Technologies). The
library was prepared using the Oxford Nanopore Ligation
Sequencing 1D kit (SQK-LSK108) following the instructions of
the manufacturer.

Non Cap-Selected cDNA Library for Sequencing on

the ONT Platform
31 ng polyA(+) RNA of biosample ERS1870077 was reverse
transcribed using SuperScript IV (Thermo Fischer Scientific)
and adapter-linked oligod(T) primers, and 5

′

adapter sequences
with three O-methyl-guanine ribonucleotides (synthesized by
Bio Basic) were ligated to allow for second-strand synthesis.
The cDNA was amplified through 18 cycles using KapaHiFi
DNA polymerase (Kapa Biosystems). The PCR products were
separated on an UltraPure Agarose (Thermo Fischer Scientific)
gel and cDNA fragments larger than 500 nt were isolated using
the Zymoclean Large Fragment DNA Recovery Kit. The library
was prepared using the Ligation Sequencing 1D kit (SQK-
LSK108, Oxford Nanopore Technologies) and the NEBNext
End repair / dA-tailing Module NEB Blunt/TA Ligase Master
Mix (New England Biolabs) according to the manufacturers’
recommendations.

cDNA Library for Sequencing on the Sequel Platforms
2 milligrams polyA(+) RNA from biosample ERS1870077 was
reverse transcribed using SuperScript IV (Thermo Fischer
Scientific) and anchored oligod(T) primers, following the
PacBio Iso-Seq protocol. The cDNA was amplified using
the Clontech SMARTer PCR. The cDNA sample was not
fractionated according to size. The library was prepared with
the SMRTbell DNA Template Prep Kit 2.0 and bound to
MagBeads (MagBead Kit v2) for sequencing using the P6-C4
chemistry.

Cap-Selected cDNA Library for Sequencing on the

ONT Platform
Two micrograms of total RNA of biosample ERS2312967 was
used for first strand cDNA synthesis using the TeloPrime
Full-Length cDNA Amplification Kit (Lexogen). The 5′

adapter was ligated to the DNA-RNA hybrid overnight at
25◦C. Endpoint PCR was performed using the reagents
supplied in the kit. The libraries for cDNA sequencing were
prepared using the Ligation Sequencing 1D kit (SQK-LSK108,
Oxford Nanopore Technologies) and the NEBNext End
repair / dA-tailing Module NEB Blunt/TA Ligase Master
Mix (New England Biolabs) according to the manufacturers’
recommendations.
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FIGURE 1 | Data quality and metrics. (A) Summarizes the quality metrics of the sequencing reads for each sequencing run broken down per species (host and virus).

All errors are given as standard errors. (B) Depicts the read-length distribution. The files have been uploaded to the ENA under the study accession PRJEB25680.

Aligned read length is expressed in base pairs and the distribution is depicted for 50-basepair-long bins. The x axis is only presented until 4500 base pairs, even

though the longest read was substantially longer (12079 bp), over 99% of the alignments fall into this range. The MinION platform generated predominantly shorter

reads, than the Sequel platform. The non-cap selected cDNA library was selected for fragments longer than 500 bp. Cap, Cap-selected cDNA sequencing on the

MinION platform; Non-cap, Non-cap selected cDNA sequencing on the MinION platform; dRNA, direct RNA sequencing on the MinION platform. Sequel, cDNA

sequencing on the Sequel platform. (C) shows the depth of sequencing along the HCMV genome. Reads were aligned to the HCMV strain Towne genome

(LT907985.1). Below the genome, blue rectangles denote the main repeat regions of HCMV. TRL, Terminal Repeat Long; OriLyt, lytic origin of replication; IRL, Internal

Repeat Long; IRS, internal Repeat Short; TRS, Terminal Repeat Short. Blue arrows mark the CDS sequences of HCMV genes. The coverage is shown on a

logarithmic scale for each sequencing method. Cap, Cap-selected cDNA sequencing on the MinION platform; Non-cap, Non-cap selected cDNA sequencing on the

MinION platform; dRNA, direct RNA sequencing on the MinION platform. Sequel: cDNA sequencing on the Sequel platform. All methods included polyA-selection.
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FIGURE 2 | Experimental layout. Isolated RNA samples from different

post-infection time points were pooled into two independent biosamples

(accessions: ERS1870077 and ERS2312967). Different selection and library

preparation protocols were used for each sequencing. The gray path denotes

a previously published experiment (Balázs et al., 2017b).

Sample concentration was determined using the Qubit
(ds)DNA HS Assay Kit (Thermo Fisher Scientific).

Sequencing
ONT
All three libraries were sequenced on R9.4 SpotON Flow Cells
with a MinION DNA/RNA sequencing device. The sequencing
runs were carried out using MinKNOW. Voltage levels were
set and reset in line with the suppliers’ recommendations. Base
calling was performed using Albacore v1.2.6.

Sequel
The prepared library was sequenced on a single SMRT cell
using the Sequel system. The length of the run was 10 h.
Consensus sequences were generated using SMRT-Link v5.0.1
(Potter, 2016).

Read Processing
All sequencing reads were aligned to both the human
genome (hg19 build) and the HCMV strain Towne VarS
genome (LT907985.1) using GMAP (Wu and Watanabe,
2005). The mapped reads have not been trimmed and
may therefore contain terminal poly(A) sequences or 5′

adapter sequences (AGAGTACATGGG in case of the Sequel,
TGGATTGATATGTAATACGACTCACTATAG in the case of
the CapSeq and TGCCATTACGGCCGGG in case of the not
cap-selected cDNA sequencing). These sequences are usually
soft clipped and can be used to determine read strandedness.
Direct RNA sequencing reads do not contain 5′ adapters; read
directions are determined by the sequencer as RNA molecules

enter the nanopores with the polyA-tail first. Read statistics were
calculated using custom scripts (doi: 10.5281/zenodo.1034511).
The data metrics were visualized using the ggplot2 (Wickham,
2016) and the Bioconductor (Hahne and Ivanek, 2016)
R packages.

Data Validation
The quantification of RNA and cDNA fractions was carried out
using a Qubit (Life Technologies) fluorometer. In the case of the
library preparation for the Sequel sequencing optimal conditions
for primer annealing and polymerase binding were determined
using PacBio’s Binding Calculator in RS Remote. An Agilent
2100 Bioanalyzer (Agilent High Sensitivity DNA Kit) was used
to measure the library sizes. The used samples had RNA Integrity
Numbers greater than 9.5. In order to confirm that the sequenced
virus is VarS from strain Towne, we have carried out PCR with
primers probing the deleted segment and with primers designed
to the two flanking sequences of the deletion in VarS as described
in (Balázs et al., 2017a).

Data Re-use
The dataset contains RNA sequencing reads from various post-
infection time points during the lytic infection of HCMV and
can be used to detect transcript isoforms, polycistronic RNA
molecules, transcriptional overlaps or transcript features such
as transcriptional start sites, transcriptional end sites and splice
junctions both in HCMV and in the human fibroblast cell
culture. The raw data files can be used to improve base calling
methods. The raw PacBio single-molecule real time sequencing
data contains information about the polymerase kinetics, stored
as IPD values. Raw reads are supplied in the company-standard
raw data formats: unmapped bam files for the Sequel data and
fast5 files for the nanopore data. Mapped binary alignment
(bam) files from each of the raw datasets have also been
uploaded to facilitate re-use. These files can be analyzed for
example using samtools (Li et al., 2009), bedtools (Quinlan and
Hall, 2010), or the Genome Analysis Toolkit (Van der Auwera
et al., 2013). The dataset can be used to detect structural or
single nucleotide variation or to test detection tools. The data
generated with different platforms can be compared to analyze
the differences in the performance of the platforms or to screen
for platform-specific errors. The dataset on the native RNA
sequencing can also be used to investigate epitranscriptomic
modifications.
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