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Abstract

We consider scalar delay differential equations of the form

& (t) = —pa () + f (2 (t = 1)),

where ;1 > 0 and f is a nondecreasing C'-function. If x is a fixed point of
fur R uw f(u)/p € R with f, (x) > 1, then [-1,0] 3 s = x € R is an
unstable equilibrium. A periodic solution is said to have large amplitude if it
oscillates about at least two fixed points x— < x4 of f, with f} (x-) > 1 and
[ (x+) > 1. We investigate what type of large-amplitude periodic solutions
may exist at the same time when the number of such fixed points (and hence
the number of unstable equilibria) is an arbitrary integer N > 2. It is shown
that the number of different configurations equals the number of ways in which
N symbols can be parenthesized. The location of the Floquet multipliers of the
corresponding periodic orbits is also discussed.
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1. Introduction
We study the delay differential equation
i () = —pa (£) + f (@ (= 1)) (L1)
under the hypotheses
(HO) p>0,

I'E-mail: vasg@math.u-szeged.hu

Preprint submitted to Journal of Differential Equations November 11, 2016



(H1) feedback function f € C' (R,R) is nondecreasing.

If x € Ris a fixed point of f,: R 3 u — f(u)/u € R, then x € C =
C([-1,0],R), defined by x(s) = x for all s € [-1,0], is an equilibrium of
the semiflow. In this paper we assume that

(H2) if x is a fixed point of f,, then f,: (x) #1.

This hypothesis guarantees that all equilibria are hyperbolic. It is well known
that if y is an unstable fixed point of f,, (that is, if f, (x) > 1), then ¥ is an
unstable equilibrium. If y is a stable fixed point of f, (that is, if f, (x) < 1),
then x is also stable (exponentially stable). The stable and unstable equilibria
alternate in pointwise ordering.

Mallet-Paret and Sell have verified a Poincaré-—Bendixson type result for
in the case when f’'(u) > 0 for all u € R [18]. Krisztin, Walther and
Wu obtained further detailed results on the structure of the solutions (see e.g.
[8, @, 10, [13] 14} [15]). They have characterized the geometrical and topological
properties of the closure of the unstable set of an unstable equilibrium, the so
called Krisztin—Walther—Wu attractor. If there is only one unstable equilibrium,
sufficient conditions can be given for the closure of the unstable set to be the
global attractor.

The chief motivation for the present work comes from the paper [I§] of
Mallet-Paret and Sell. They have shown that if f' (u) > 0 for all v € R, then

m:C3 o (p(0),0(-1)) € R?

maps different (nonconstant and constant) periodic orbits of onto disjoint
sets in R?, and the images of nonconstant periodic orbits are simple closed curves
in R2. They have also shown that a nonconstant periodic solution p : R — R of
oscillates about a fixed point x of f, if and only if max = (), X) is in the
interior of mo {p¢ : t € R}. See Figure These results give a strong restriction
on what type of periodic solutions the equation may have for the same feedback
function f: Suppose that p': R — R and p?>: R — R are periodic solutions of
equation . For both i € {1,2}, let E; be the set of those fixed points of f,
about which p’ oscillates. Then either F; C E; or By C Ey or By NEy = (. We
can easily extend these assertions to the case when f' (u) > 0 for all u € R, see
Proposition [3-4] in Section [3]

&

Figure 1.1: Three examples excluded by Mallet-Paret and Sell. Here we show the images of
periodic orbits and equilibria under ms.

This paper considers large-amplitude periodic solutions: periodic solutions
oscillating about at least two unstable fixed points of f,. Figure [I.2]lists all
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configurations of large-amplitude periodic solutions allowed by the previously
cited results of Mallet-Paret and Sell in case there are three and four unstable
equilibria, respectively. It is a natural question whether all of them indeed exist
for some nonlinearities f.

Allowing any number of unstable equilibria, we confirm the existence of
all possible configurations of large-amplitude periodic solutions by constructing
the suitable feedback functions and periodic solutions explicitly. The oscillation
frequency of these periodic solutions is the lowest possible. The corresponding
periodic orbits are hyperbolic, unstable, and they have exactly one Floquet
multiplier outside the unit circle. We do not state uniqueness; there may exist
more periodic solutions that cannot be obtained from each other by translation
of time and oscillate about the same fixed points of f,.

Proving the nonexistence of periodic solutions is a challenging problem in
general, see for example the papers [2] 13| [I9] for some well-known results. We
can verify that unrequired large-amplitude periodic solutions do not appear for
the feedback functions constructed in the paper. So for any configuration in
Figure there is a nonlinearity f such that equation admits the marked
large-amplitude periodic solutions (maybe even more of the same type), but it
has none of those that are not indicated.

In the negative feedback case, i.e., when f is nonincreasing, there is at most
one equilibrium. Still, it is possible to prove the coexistence of an arbitrary num-
ber of slowly oscillatory periodic orbits, see paper [22] for an explicit construc-
tion. If f is continuously differentiable, then these periodic orbits hyperbolic
and stable.
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Figure 1.2: Possible configurations for three or four unstable equilibria: The images of the
large-amplitude periodic orbits and the unstable equilibria under 7.
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2. The main result

Before formulating the main result precisely, we give an introduction to the
theoretical background and to the notation used in the paper. Consider equation
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under (H0) — (H2).

The phase space for is the Banach space C = C ([-1,0],R) with the
maximum norm. If J is an interval, v : J — R is continuous and [t — 1,¢] C J,
then the segment u; € C is defined by w (s) = u(t +5), -1 < s <0.

A solution of equation is either a continuous function z: [ty — 1,00) —
R, to € R, that is differentiable for ¢t > t; and satisfies equation on (tg, 00),
or a continuously differentiable function z: R — R satisfying the equation for
all t € R. To all ¢ € C, there corresponds a unique solution z¥ : [-1,00) = R
with zf = ¢.

Let ®: [0,00) x C' 3 (t,¢) = x{ € C denote the solution semiflow. The
global attractor A, if exists, is a nonempty, compact set in C' with the following
two properties: A is invariant in the sense that ® (¢, A) = Aforallt > 0. A
attracts bounded sets in the sense that for every bounded set B C C' and for
every open set U D A, there exists ¢ > 0 with ® ([¢t,00) x B) C U. Global
attractors are uniquely determined [4].

In this paper the number of unstable equilibria is an arbitrary integer N > 2.
We use the notation & < & < ... < &y for those fixed points of f, that give the
unstable equilibria. Typically we will consider feedback functions for which f,,
admits N +1 further fixed points (;, j € {0,1,..., N}, inducing stable equilibria.
Then

<& <Q<EL<@E<.. <y <.

See Figure 2.1 for an example.
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Figure 2.1: A nonlinearity f giving N unstable and N 4 1 stable equilibria.

As usual, an arbitrary solution z is called oscillatory about a fixed point x
of f, if the set 2! (x) C R is not bounded from above. A solution z is slowly
oscillatory if for any fixed point y in z (R) and for any ¢ € R such that [t —1,¢]
is in the domain of z, the function [t — 1,¢] 3 s — 2z (s) — x € R has one or two
sign changes.

As it has been mentioned before, we say that a periodic solution has large
amplitude if it oscillates about at least two elements of {&1,&s,...,&n}. This
definition is the straightforward generalization of the one used in [II]. By an
[¢, 7] periodic solution with 1 <i < j < N, we mean a large-amplitude periodic
solution that oscillates about the elements of {&;,&41,...,§;} but not about
the elements of {&,&,. .., &1} U{&41,- -, En}, see Figure

If p: R - R is a periodic solution with minimal period w > 1, one can
consider the period map ® (w,-) and its derivative M = D>® (w,py). M is
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Figure 2.2: An [¢, j] periodic function.

called the monodromy operator. It is a compact operator, and 0 belongs to its
spectrum o = o (M). Eigenvalues of finite multiplicity — the so called Floquet
multipliers of the periodic orbit O, = {p;: t € [0,w)} — form o (M) \ {0}. It is
known that 1 is a Floquet multiplier with eigenfunction py. The periodic orbit
O, is said to be hyperbolic if the generalized eigenspace of M corresponding to
the eigenvalue 1 is one-dimensional, furthermore there are no Floquet multipliers
on the unit circle besides 1.

We know a lot about the dynamics from previous works of Krisztin, Walther
and Wu in the case when f' (u) > 0 for all u € R. With the notation introduced
above, consider the subset

Ci={peC: (i1 <¢(s) < forall se[-1,0]}, ie{l,...,N},
(2.1)
of the phase space C. Clearly, the equilibria 6,-_1,5,-,@ belong to C;. The
monotonicity of f implies that the set is positively invariant under the
solution semiflow ®, see Proposition of this paper. Krisztin, Walther and
Wu have characterized the closure of the unstable set

{(pEC: w”existson]Randa:f—)éiast—>—oo}.

It has a so-called spindle-like structure: it contains @,1,&', @-, periodic orbits
oscillating about &;, and heteroclinic connections among them. In the sim-
plest situation the periodic orbit is unique, and it oscillates slowly [I3] [14]. In
other cases, the closure of the unstable set has a more complicated structure.
For example, more periodic orbits appear via a series of Hopf-bifurcations in a
small neighborhood of & as f' (&) increases, see [I5]. Under certain technical
conditions, the closure of the unstable set of él is the global attractor of the
restriction @[jg oo)xc; [9 [13]. For further details, see the paper [§], and the
references therein.

The monograph [14] of Krisztin, Walther and Wu raised originally the ques-
tion, whether the global attractor is the union of the global attractors 4; of the
restrictions ®|j oo)xc;, @ € {1,..., N}. We already know from the previous pa-
per [II] of Krisztin and Vas that this is not necessarily the case. In the N = 2
case there exists a strictly increasing feedback function f such that equation
has exactly two periodic orbits outside A; U A, and the unstable sets
of them constitute the global attractor besides A4; U As. These two periodic
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solutions have large amplitude; they oscillate slowly about & and &. See paper
[12] of Krisztin and Vas for the geometrical description of the unstable sets of
these large-amplitude periodic orbits.

The purpose of this paper is to develop the result of [I1] by investigating what
type of large-amplitude periodic solutions may exist for the same nonlinearity
f if the number of unstable equilibria is an arbitrary integer greater than 1.

Our main result can be formulated using parenthetical expressions. A pair
of parentheses consists of a left parenthesis ”(” and a right parenthesis ”)”, fur-
thermore, ”(” precedes ”)” if read from left to right. A parenthetical expression
of N numbers consists of the integers 1,2,..., N and a finite (possibly zero)
number of pairs of parentheses such that

e the integers 1,2,..., N are used exactly once in increasing order,

e a pair of parenthesis encloses at least two numbers out of 1,2,..., N, e.g.,
the expressions (1) 23 or 1()23 are not allowed,

e multiple enclosing of the same sublist of numbers is not allowed, e.g.,
((12))3 is not allowed,

e for any two pairs of parentheses, if the left parenthesis ”(” of the first
pair precedes the left parenthesis ”(” of the second one, then the right
parenthesis ”)” of the second pair precedes the right parenthesis ”)” of
the first one.

For example, the parenthetical expressions of 3 numbers are
123, (12)3, 1(23), (123), ((12)3), (1(23)). (2.2)

We emphasize that parentheses appear in pairs in a correct parenthetical
expression, and it is definite which right parenthesis ”)” belongs to a given left
parenthesis ”(”.

By the result of Mallet-Paret and Sell, if the derivative of f is positive,
p': R = R and p?: R — R are periodic solutions of (L.I), and E; is the set
of fixed points of f, about which p’ oscillates for both i € {1,2}, then either
E, C Ey or E; C E; or E; N Ey = (). This assertion is already true under
hypotheses (H0) — (H1). See Proposition [3.4] in Section [3| for a proof in the
=1 case.

This property guarantees that we can assign a correct parenthetical expres-
sion of N numbers to each p and f satisfying (HO0) and (H1) if we use the
following rule: for all i < j, the numbers i,7 + 1,...,j are enclosed by a pair
of parentheses (not containing further numbers) if and only if with this
parameter u and nonlinearity f admits at least one [i, j] periodic solution.

The monotonicity of f is important here. In general we cannot guarantee
that we can assign a correct parenthetical expression in the above explained way
to each > 0 and f € C' (R, R). For example, in case of four unstable equilib-
ria, we cannot exclude that the equation has [1, 3] and [2, 4] periodic solutions
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for the same nonmonotone f € C' (R,R). Then we would get the incorrect ex-
pression (;1(223);4),, where (1123); corresponds to the [1, 3] periodic solution,
and (2234)s corresponds to the [2,4] periodic solution.

Tibor Krisztin has conjectured that the converse statement is true, that
is, we can assign a configuration of large-amplitude periodic solutions to each
parenthetical expression. The main result of the paper is the following.

2.1. Fiz a parenthetical expression of N numbers, where N > 2. Then there
exists u and f satisfying (HO)—(H2) such that the following assertions hold.
(i) For this p and f, there exist exactly N unstable equilibria

f,6, i with& <& <...<&n.

For all i,5 € {1,...,N} with i < j, the equation has an [i,j] periodic
solution if and only if there exists a pair of parentheses in the expression that
contains only the numbers i,1 +1,...,7.

(ii) For anyi,j € {1,..., N} such that the numbersi,i+1,...,5 are enclosed
by a pair of parentheses (not containing further integers), at least one of the
[i, 7] periodic solutions is slowly oscillatory. The corresponding periodic orbit is
hyperbolic, with exactly one Floquet multiplier outside the unit circle, which is
real, greater than 1 and simple.

Figure shows the configurations corresponding to ((1(23)) (45))6 and
((((12) 3)4) 5) 6: the images of the large-amplitude periodic orbits and unstable
equilibria under the projection m2: C' 3 ¢ — (¢ (0),p (—1)) € R2.

Figure 2.3:  Configurations corresponding to the expressions ((1(23))(45))6 and
((((12)3)4)5) 6.

In the proof of assertion (i) of Theorem we explicitly construct a nonde-
creasing C''-function f. This nonlinearity is close to a step function in the sense
that it is constant on certain subintervals of the real line. Roughly speaking,
we can control whether certain types of large-amplitude periodic orbits appear
or not by setting the heights of the steps properly.

In general, determining the Floquet multipliers is an infinite dimensional
problem. Our construction allows us to reduce this problem to a finite dimen-
sional one. This is why we can prove Theorem [2.1] (ii).

The hyperbolicity of the periodic orbits guarantees that Theorem [2.I]remains
true for nondecreasing perturbations of the feedback function, see Theorem
In consequence, we can require f in Theorem [2:1] to be even strictly increasing.

This correspondence between the configurations of large-amplitude periodic
solutions and the parenthetical expressions implies the following under hypothe-
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ses (H0)—-(H?2). If we ignore the exact number of large-amplitude periodic solu-
tions oscillating about the same given subsets of {{1,&a, ..., &x}, the number of
possible configurations for N unstable equilibria equals the number Cx of ways
in which N numbers can be correctly parenthesized. One can check that Cl,
N > 2, are the so called large Schréder numbers [I]. Applying a well-known
combinatorial tool, generating functions, it can be calculated that

Cn = Ly @><N§,>Qa—2¢ﬂiQﬁ+2¢@Ni, N>2. (2.3

2 4 _
=0
By this formula, Cs =2, C3 =6, Cy = 22, Cs = 90, Cs = 394 and C; = 1806.
Numerical simulation shows that C'x grows geometrically.

It is an interesting problem to show the existence of unstable periodic orbits
for delay equations by computer assisted proofs. Using a technique from [21],
Szczelina has recently found numerical approximations of apparently unstable
orbits in [20] for an equation of the form (L.I)). Lessard and Kiss, applying a
different approach developed in [16], have rigorously proven the coexistence of
three periodic orbits for Wright’s equation with two delays in [7], and at least
one of them is presumed to be unstable. Although the method of Lessard and
Kiss can be applied to determine both stable and unstable periodic solutions, it
is not suitable for the stability analysis of the obtained solutions.

The paper is organized as follows. For the sake of notational simplicity, we
fix p to be 1. In Section [3] we prove some simple results. The proof of Theorem
(i) is found in Sections In Section H| we consider feedback functions
f for which f(u) = Ksgn(u) if |u] > 1 and f(u) € [-K,K] if v € (-1,1).
We explicitly construct periodic solutions for such nonlinearities. Then we use
these feedback functions as building blocks in Sections [5] and [] to determine
a nonlinearity satisfying assertion (i) of Theorem [2.1} For a first reading one
may skip Section[d] only read Corollary f.10] without proof, and then look at the
construction in Sections We give a brief introduction to Floquet theory and
then verify Theorem [2.1}(ii) in Section [7] The proof of Theorem [2.1}(ii) cannot
be read without knowing the details of Section @l In Section [§ we explain
why the statements of Theorem [2.I] remain true for small perturbations of the
nonlinearity. We close the paper with discussing open questions in Section [9]

3. Preliminaries
We fix ¢ to be 1 in the rest of the paper and consider the equation

G(t) = —ax(t)+ f(z(t—1)). (3.1)

The results of the paper can be easily modified for other choices of u as well.
It is natural to use the pointwise ordering on C'. For ¢,9 € C, we say that

o o < if p(s) < Y(s) for all s € [-1,0],

e p <9 if o <y and p(0) < 1(0).
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Relations “>” and “>” are defined analogously. The semiflow induced by equa-
tion (3.1) is monotone if f is nondecreasing.

3.1. Assume (H1). Let ¢ and 1) be elements of C with ¢ < (p < ). Then
z?(t) < a¥(t) (2%(t) <a¥(t)) for allt > 0.

Proof. If ¥ : [-1,00) — R is a solution of equation (3.1) with x5 = ¢, then z¥
can computed recursively on [0, 00) using the variation-of-constants formula:

t
z¢ (t) = z% (n)e ") + / e 8 f (2% (s —1))ds

for all nonnegative integers n and ¢ € [n,n + 1]. The proposition follows from

this formula. O

The next two propositions have appeared in the paper [18] of Mallet-Paret
and Sell for the case f' (u) >0, u € R.

3.2. Assume that (H1) holds, and p : R — R is a periodic solution of
with minimal period w > 0. Fiz ty < t; < tg + w so0 that p (tg) = mingeg p(t)
and p (t1) = maxgcg p(t). Then

(i) p is of monotone type in the sense that p is nondecreasing on [tg,t1] and
nonincreasing on [t1,to + w];

(i1) if p oscillates about a fized point x of f, then p(ty) < x < p(t1).

Proof. Statement (i) is proven in [I§] only if f' > 0. For the proof of statement
(i) under hypothesis (H1), see Proposition 5.1 in [I1].

The proof of statement (ii) under (H1). Note that as u = 1, ¥ is an equi-
librium. It is clear that p(t9) < x < p(t1). If p(to) = x, then with ¢ = x and
1) = pg, we have ¢ < 1, and

x=z(t) < z¥(t) =p(t+1t1) forallt >0

by Proposition This is impossible as p oscillates about . Similarly, p (1) >
X O

3.3. It follows immediately that if (H1) holds, and p: R — R is a periodic
solution of with minimal period w € (1,2), then p is slowly oscillatory:
On the one hand, Proposition [3.1] easily gives that for all fixed points x of f in
p(R), the map ¢ — p(t) — x has at least one sign change on each interval of
length 1. On the other hand, Proposition implies that ¢ — p () — x has at
most two sign changes on each interval of length w, hence also on each interval
of length 1.

For a simple closed curve ¢ : [a,b] — R?, let int (c[a, b]) denote the interior,
i.e., the bounded component of R? \ ¢ ([a, b]).

3.4. Assume (H1).
(i) T3 : C > o= (©(0),0(—1)) € R maps nonconstant periodic orbits and
equilibria of (3.1) into simple closed curves and points in R?, respectively. The
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images of different (nonconstant and constant) periodic orbits are disjoint in
R2.

(i) A periodic solution p : R — R of with minimal period w > 0
oscillates about a fixed point x of f if and only if max € int(my0,), where
Op ={p:: t €[0,w]}.

(iii) In consequence, if p': R — R and p*: R — R are periodic solutions of
equation , and E; is the set of fized points of f about which p' oscillates
for both i € {1,2}, then either

E, CE; and pi(R)Cp(R),

or
E, CE; and p>(R)Cp (R),

OT‘ElﬂEQZQ.

Proof. The paper [I8] verifies (i) in the case f' > 0, while [II] gives a proof in
the slightly more general case f' > 0. See Proposition 2.4 of [I1].

In order to prove (ii), first assume that p oscillates about a fixed point x
of f. Let w denote the minimal period of p. Set points tg < t; < to + w such
that p(to) = minser p(t) and p (t1) = maxier p(t). Then p (to) < x < p(t1) by
Proposition [3.2(ii).

According to Proposition [3.2](i), the set of zeros of ¢ — p (t) — x in (to,t1)
is an interval:

{t € (to, 1) : p(t) = x} = [20,, 1]
with tg < 29 < 21 < t;. One may also set z3 and z3 so that [z9, 23] C (t1,t0 + w),
p(t) = x for t € [22,,23] and p(t) # x for t € (t1,t0 + w) \ [22,,23]. Of course,
Zop = z1 Or z9 = z3 is possible.

Consider the curve T : [tg,to +w] 3 t = mp; € R2. By property (i), ' is a
simple closed curve, and I' () # max = (x, x) for t € [to, to + w].

For t € (z1,t1], p(t) > x, p(t) > 0, hence f (p(t — 1)) = p(t) + p(t) > x and
necessarily p(t — 1) > x. We claim that p (¢t — 1) > x holds also for ¢ € [z, z1].
If not, then there exists z* € [zp,, 21] so that p (2* — 1) = x, which contradicts
[ (2*) # max. Therefore

L(t) € {(u,v) ER*:u>x,v>x} fort € [z,t].

It can be verified in a similar manner that p(t — 1) < x holds for ¢ € 23, + w]
and thus

L(t) € {(u,v) €ER* :u < x,v < x} fort € [2,t0 +w].

Since I is a simple closed curve and there exists no ¢ € [tg, to + w] \ ([0, 21] U [22, 23])

such that T'(t) is in {(x,v) € R? : v € R}, we obtain that mx = (x,Xx) €
int (F [to,to + (,U])

The reverse statement is easy. If p does not oscillate about a fixed point x
of f, then p(t) > x or p(t) < x for all ¢t € R, and

I(t) € {(u,v) ER*:u>x,v>x} foralteR

10
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or
I(t) € {(u,v) ER*:u<x,v<x} foralteR,

respectively. This means that (x, x) ¢ int (T [to, to + w]).
Statement (iii) follows at once from (i) and (ii). O

4. Construction of a single periodic solution
Let K > 1. We define F (K) as the class of functions f € C! (R, R) with
e f(u) € [-K,K]forue (-1,1),
e f(u) = Ksgn(u) for |u| > 1.

The elements of F (K) are not required to satisfy (H1) or (H2).

4.1. There exists a threshold number Kq > 1 such that for all K > Ky and
f € F(K), the equation

zt)=—z({)+ f(z(t—-1)) (3.1)

has a periodic solution p : R — R with the following properties: The minimal
period of p is in (1,2), maxer p (t) € (1, K) and min,erp(t) € (—K, —1).

We prove Proposition [£.I] by determining a suitable periodic solution ex-
plicitly. The paper [1I] has already described two significantly different pe-
riodic solutions in the special case when f € F(K) and f(z) = 0 for all
xz € [-1+¢,1 —¢] with some small ¢ > 0. Section 3.1 of [I1] has determined
the first periodic solution that we now denote by p;. Section 3.2 of [I1I] has
given the second one p,. The construction below is a generalization of the one
that has been published for ps in Section 3.2.

In paper [II], the initial functions of p; and p, were determined as fixed
points of three-dimensional maps. Here we not only generalize but also simplify
the calculations regarding p, because now we obtain the initial function of the
periodic solution as the fixed point of a one-dimensional map. The construction
of p; is indeed three-dimensional, and at this point we cannot extend it to all
feF(K).

In the following we assume that f € F (K), where K > 1.

Step 0. Preliminary observations
For both ¢ € {—K, K}, consider the map

O, RxR>(s,2") =i+ (z"—i)e * R
If tp < t1, and z is a solution of equation (3.1) on [ty — 1,00) with z (¢t — 1) >
1 for all ¢ € (tg,t1), then equation (3.1) reduces to the ordinary differential

equation
z(t)=—-z(t)+ K

11
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on the interval (to,t1), and thus
z(t) = @k (t — to,z (o)) for all ¢ € [to, t1] - (4.1)

Similarly, if tg < 1, « is a solution of equation (3.1)) on [ty — 1,00), and z (t — 1) <
—1 for all ¢ € (tp,t1), then

CU(t) = q),K (t — to,ﬂ? (to)) for all ¢t € [to,tl] . (42)

We say that a function z : [tg,t1] = R is of type (K) (or (—K)) on [to, 1], if
[@1) (or ([@2)) holds.

If z : [to — 1,00) — R is a solution of equation (8.1), and z is type of (i) on
[to — 1,t1 — 1] with some i € {—K, K}, then the equality

2 (t) = 3 (to) et + e~ / e (; (s — t, 7)) ds (4.3)

to
holds for all ¢ € [to,#1] with j = 2 (o — 1). This observation motivates the next
definition. A function z : [tg,t1] — Ris of type (¢,7) on [tg, t1] withi € {—K, K}
and j € R if (4.3) holds for all t € [tg,t1].

Let T} denote the time needed by a function of type (—K) to decrease from
1to —1. As K > 1, T} is well-defined, and

K+1

Tl :an—]_

Then T is the time needed by a function of type (K) to increase from —1 to 1.
Set T5 to be the time needed by a function of type (K) to increase from —1 to
o K+1
n—p—-

As the reader will see from the rest of the section, we search for a periodic
solution p that is of type (K) when it increases from —1 to 1, and of type (—K)
when it decreases from 1 to —1. Hence, if J is a subinterval of R mapped by p
onto [—1, 1], then the length of J is T, furthermore p is of type (K,—1) or of
type (=K,1)on J+1={t+1:te J}.

T2:1

Step 1. A C'-submanifold of initial functions

We introduce a one-dimensional C'-submanifold of the phase space C. This
manifold will contain the initial segment of the periodic solution.

If K is large enough, then U! = (0,1 — Ty — T%) is a nontrivial open interval.
For given a € U1, set s; = s;(a), i € {0,1,2}, and s3 as

S():—l,

s1=8 +a=-1+a,
82281+T1:—1+G+T1,
83:—T2.

12



The definitions of U', T} and T imply that
—1 =53 <51 <89 <s3<0.

355 For all a € U!, define the function h (a) € C! (R, R) by

K: ift<817

ha) @) = 4 F @-x(t=s1), s <t <s,
a =

_K7 if S S t< 83,

f(®x (t —s3,—1)) ifss <t

See Figure for the plot of h (a). Then define the map ¥ : U — C by

Y(a)(t) =e" /t e’h(a) (s)ds forall —1<t<0. (4.4)

-1

It is clear that ¥ is continuous on U! because U! 3 a + h(a) € C (R,R) is
continuous. Notice that ¥ (a) is the unique solution of the initial value problem

y(t) = —y (¢t h t -1<t<0
)=y +h@)(®), -1<t<0, ws)
y(-1)=0
o
-k
Figure 4.1: The plot of h (a).
360 The next characterization of ¥ (U 1) reveals the idea behind the above defi-

nitions. See also Figure for the plot of a typical element of ¥ (U 1).

4.2. A function ¢ € C belongs to X (Ul) if and only if there exists s; €
(=1,-Ty —Ty) so that with s3 = s; + T} and s3 = —T5,
(i) (1) =0,
365 (ii) ¢ is of type (K) on [—1, s1],
(iii) ¢ is of type (—K,1) on [sq, sa],
(iv) ¢ is of type (—K) on [s2, s3],
(v) ¢ is of type (K,—1) on [ss5,0].

13
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375

380

(a)

T

Figure 4.2: The plot of an element of X (Ul) and of the corresponding solution.

We need to examine the smoothness of X. For each fixed a € U', the map
R >t h(a)(t) € Ris C'-smooth with derivative h' (a). Fix t* € (sq,s3). If

a € U! and |4] is small enough, then
h(a)(t—90) ift<t*,

h(a+96)(t) = =
(a+9)(®) {h(a)(t) if > ¢

It follows that

5 [-n(@) @) ifte[-1,17,
—h(a)(t) = {0 if t € (t*,0].

Define the nontrivial element ¢ = 1 (a) € C' by

t
Y (t) = e*t/ eszh (a) (s)ds for all t € [-1,0].
1 60

4.3. The map U' > a = Y (a) € C is C'-smooth with DX (a)1 = 1) for all
a€ UL

Proof. ¥ (a) is the unique solution of the initial value problem (4.5). Hence
the proposition follows from the differentiability of the solutions of ordinary
differential equations with respect to the parameters. O

It follows that ¥ (U 1) is a one-dimensional C''-submanifold of C. We look
for a periodic solution with initial segment in X (Ul).

We are going to need the exact values of X (a) at s; = s;(a), i € {1,2,3},
and at 0 for all @ € U'. Let

T
o = /0 e“f(P_k (u,1))du.

Note that c¢; is independent of a. Then using the definitions of ¥ and h, we
deduce that

Y(a)(s1) =e ™ /_811 Kefds=K (1—e™"), (4.6)

14



Y (a)(s2) =e /52 e’h (a) (s)ds

-1

s @ e [Cer@ e

— ¢ T (S (a) (1) + 1)

K1 »
:rﬂ(K(l_e )+Cl),
83

5 (a) (53) = e~ / el (a) (s) ds

—1
s3
=e*2" %% (a) (s9) + € / (=K)e’ds
52 (4.8)
= 6_1+a+Tl+T2 (E (a) (52) + K) - K
cc K+1

=e 'YK +1) <1++

) —e " (K+1)-K
K K—1> e (K41

s and

0 0
S (a) (0)=/ e*h (a) () ds = % (a) (53)+/ ¢ f (Brc (5 — 55, —1)) ds.

—1 s3
(4.9)
We see that X (a) (s;), ¢ € {1,2,3}, and X (a) (0) are continuously differentiable
functions of a € U'.

Step 2. Construction of a one-dimensional return map
Let

U?={a€U": £(a)(s) >1fors € [s1,s2] and X (a) (s) < —1 for s € [s3,0]} .

w It is easy to see from Proposition [£.3]that U? is an open subset of U'. Later we
shall see that U? is nonempty if K is large enough.
For a € U?, there exist

1<t <51 <89 <ty <13 < 83
such that
Y(a)(t1) =X (a)(t2) =1 and Y (a) (t3) = -1,

see Figure[d.2] As X (a) is of type (K) on [—1,s1] and of type (—K) on [s3, s3],
ws it is strictly monotone on these intervals. Hence t1,t> and t3 are unique. For t;

we have .
1

—h Kefds =1 dthus t; = —141

€ B e ds , an us fy +nK_1

(4.10)

Similarly,

t2 t2
1=e 12 / e*h(a) (s)ds = e*272% (a) (s55) — Ke 2 / e’ds

—1 52

15
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410

and

t3 t3
—l=e¢'s / e*h(a) (s)ds = 273X (a) (s3) — Ke™'s / e’ds,

—1 82
from which
K+ XY (a) (s: K+XY(a)(s
ty = S5+ 1n # and t3 = sy +1In % (4.11)

follows. Note that t3 — ¢, = T} and ts,t3 are Cl-smooth functions of a.
Let us introduce the notation

T
e :/ ¢ f (@ (u,—1)) du.
0

For a € U?, consider the solution z = z*(*): [~1,00) — R of equation (3.1).
We need the following result before defining a further open subset of U*.

4.4. (i) The maps
U25am- 25t +1)=e S (a) (s3) +e ey € R

and

K

2 E(a) 1=K
U°sa— 2™ (ty +1) +—K—|—E(a)(82)

(;EE(“) (t +1) — K) e eR

are continuously differentiable.
(i) The map

[]2 Sat» $Z(a)|[07t1+1] eC ([O,tl + 1] ,R)
18 continuous.

Proof. Statement (i). As Ty and ¢ are independent of a, K + X (a) (s2) > 0
and ¥ (a) (s2) and ¥ (a) (s3) are C'-smooth functions on U2, one has to show
only that the stated equalities indeed hold. As ¥ (a)(—1) = 0 and X (a) is of
type (K) on [—1,#;] (see Remark , z = 2% is of type (K,0) on [0,#; + 1].
By (13 and (&)

¢
2 (t) =2 (0) et + e—t/ ¢ f (B (5,0)) ds
0
0 ¢
=e*7'Y (a) (s3) + e_t/ e’ f(Px (s —s3,—1))ds + e_t/ e’ f (Px (s,0))ds
83 0
for all ¢ € [0, + 1]. It follows immediately from the definition of ®x and from
s3=—Ty, =In(K/(K + 1)) that

Dy (s —s3,—1) =Pk (s,0) for all s € R.

16



Therefore

2(0) = S (@) (s2) + e [ f (R (5 = sa-1) ds
— ¢S5ty (a) (83) + 683—t/0 - et f (‘I’K (’LL, _1)) du, t e [O;tl + 1] .
(4.12)

We see from the definition of s3 and (4.10) that

K K _
K—1 “K+1_

Hence with ¢ = t; + 1 gives the formula for = (¢; + 1).
By Remark and the definition of U2, ¥ (a) strictly increases on [—1, s1],
Y (a)(t) > 1forall t € [s1, 2], and X (a) strictly decreases on [sq, s3]. It follows
a5 that X (a) (¢) > 1 for all t € (t1,¢2), hence x is of type (K) on the interval
[tl + 1,20 + 1], and thus

t1+1—83=1n Tl.

Q?(tz + ]_) = K+ (.’L‘(tl +].) —K)etlitz.

By (4.10) and (4.11) and the definition of ss,

K

ti—to=ln ——M—
LR TR TS @) (s0)

— Q.

We obtain that the formula for z (¢ + 1) indeed holds.
Statement (ii). We see from (4.12) that for all a; € U? and ay € U2,

Z(lll) t) — E(az) t ‘ — s3—t E _E
(e |® (t) — 2= (1) pax e X (a1) (s3) — X (az) (s3)]

< e [X(ay) (s3) — X (az) (s3)]-
Statement (ii) hence follows from the continuity of U2 3 a +— X (a) (s3) € R. O

420 Now let

U = {a ceU?: 2”@ (t) < —1forall t € [0,¢; + 1] and 2”@ (8, + 1) > 0} .

From Proposition [4.4]it is clear that U? is an open subset of R. Later we shall
see that U? is nonempty.
Figure shows an element of X (Ug).

4.5. Observe that the elements of ¥ (U?) can be characterized as follows. A
2 function ¢ € C belongs to X (U?) if and only if there exists s; € (=1, =T} — T5)
so that with s, = s; + T} and s3 = —T%, properties (i)-(v) of Remark [£.2] hold,
furthermore
(vi) ¢ (t) > 1 for all t € [s1, 2],
(vii) if =1 < t; < s with ¢ (¢;) = 1, then 2% (¢t) < —1 for all ¢ € [s3,t; + 1],
430 (viil) if s2 < t2 < s3 with ¢ (t2) = 1, then z¥ (t5 + 1) > 0.

17
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For a € U?, z = 2”@ is of type (K) on [t; + 1,t5 4 1], hence it is strictly
increasing on [t; + 1,y + 1]. So there exists unique ¢4 and 7 with ¢; +1 < t4 <
T <ty + 1 such that = (t4) = —1 and z (7) = 0, see Figure

As ¥ (a) strictly decreases on [ts, s3], = (t) < —1 for all ¢ € [s3,t; + 1] by
Remark and z strictly increases on [t; + 1,t2 + 1], we deduce that

z(t) < —1fort € (t5,t4) and =z (t) € (—1,0) for ¢t € (t4,7). (4.13)
4.6. The map

K—l‘(tl-f-].)

Usa—71=1In 1

€(0,1) (4.14)
is continuously differentiable.

Proof. As z is of type (K) on the interval [t; + 1,%2 4+ 1], we have
O=z(r)=K+ (@t +1)—K)e'™ 7,

from which the formula easily follows with the aid of (4.10). It is clear that
7 € (0,1) because 7 € (t; +1,t2+1) C (0,1). The smoothness of 7 is a
consequence of the smoothness of x (t; + 1). O

Similarly,
1=z (t4) =K+ (.Z’ (tl + 1) _ K) et1tl—ta

and (4.10) together yield that

K(K—w(t1+1))-

4.1
T 1 (4.15)

t4=1n

As the next result shows, solutions with initial functions in X (U 3) return
to ¥ (UY).

4.7. Suppose a € U? and define ty and 7 as above. Then x4, € ¥ (U') and
Trp =Xtz +1-71).

Proof. Tt is clear from the above construction (to be more precise, from the
definitions of 7, t2, t3, t4, the fact that = is of type (K) on [t; + 1,5 + 1], property
(iv) of Remark [£.2] and the observation (#.13)) that

(i) z (1) =0,

(ii) z is of type (K) on [r,ts + 1],

(iii) z is of type (—K,1) on [ty + 1,¢5 + 1],

(iv) z is of type (—K) on [ts + 1,t4 + 1],

(v) and z is of type (K,—1) on [ty + 1,7 + 1].

So by Remark 2] it suffices to show that

(a) §1:= (tg + 1) - (T-l- ].) =ty —Tisin (—]., =T — Tg),

(b) §2 = (t3 —+ ].) — (7' + ].) = t3 — T equals §1 +T1,

(c) $3:=(t4+1)— (1 +1) =t4 — 7 equals —T5.
Property (c) comes from and ({.15)). By the definition of 51, property (b)
is equivalent to t3 = t, 4+ T, which follows from (£11). It is clear that §; > —1.
Hence (a) comes from § = § — Ty < 3 — Ty = —T» — T3. O

18
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The above results motivate us to define the map
F:U> -Rby F(a)=ts+1—1.

The next proposition is an immediate consequence of the smoothness of ¢; and
T as functions of a.

4.8. F is C'-smooth.

Note that if a € U and F(a) = a, then 2% = % (a), and 2”@ is a

periodic solution of equation (3.1) with minimal period 7 + 1.

Step 3. The map F has a unique fixed point

A trivial upper bound for the absolute values of ¢; and ¢ is the following:

h 2K
<K Ydu = ——. 4.1
allel <K [ eau= 225 (116)
If K > 1is fixed, then ¢; and ¢y are uniformly bounded for all f € F (K).
We will use a further technical result which holds for more general feedback
functions.

4.9. Suppose that f: R — R is continuous, K1 € R, Ky € R, f(u) € [K1, Ks]
for allu € R, to € R, and = : [to —1,00) — R is a solution of (3.1) with
x (to) € (K1, K3). Then x (t) € (K1, K2) for allt > to.

Proof. We prove the upper bound for x. Let y : R — R be the solution of the
initial value problem

y(t) = —y(t) + K2, teR,
y (to) = = (to) -

Then y (t) = Koy + (z (to) — K2) e~ < K, for t € R. We know that @ () <
—x(t) + K, for all ¢ € R. Theorem 6.1 of Chapter 1.6 in [5] hence implies that
for t > tg, z (t) <y (t) < K.

The lower bound can be verified analogously. O

Proof. [Proof of Proposition We show that if K > 1 is large enough and
f € F(K), then the map F has a unique fixed point in U3, namely there exists
a unique a € U? such that

t2+1—7':a. (417)

Substituting ({.11)), (4.14) and then the definitions of s, and 7} into equation
(4.17), we obtain that is equivalent to X (a) (s2) = —x (t1 +1). Then
using , , the formula for z (¢; + 1) in Proposition and again the
definition of T, we see that ¥ (a) (s2) = —x (t; + 1) is an equation of second
order in e“: it can be written in the form

az? +Bz+v=0, (4.18)
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500

where z = €%, the coefficients «, 3,7 are independent of a, and they are defined

as
2K c1
_ -1
a=e <1+P'>’

_Cl+02_ 1
B_K+1 e,
K
TTERYU

Observe that a > 0 for all K > 1 because of (4.16). As v < 0, it is clear that

v/ B% —4ary > |B]. This means that
3~ /P —dary
20

is a negative solution of (4.18). We conclude that for all K > 1 and f € F (K),
the map F has at most one fixed point a* in U3, and it is given by

¢ = V;f —day (4.19)

z =

It remains to show that if K is chosen sufficiently large, then a* determined
by ([.19) is indeed in U? for all f € F (K), that is, with the notation used
before,

(i) a* € (0,1 - Ty),
(i) X (a*) (¢ ) > 1 for ¢ € [s1, s2],
(i) EE“ (t) < -1 for all t € [s3,t1 +1],

)
(iv) &™) (2 + 1) >
Property (i). Applylng the bound (4.16) for |¢1| and |e1]|, we see that

lim  sup |a—26_1|=0, lim  sup |B+e 1|—0 lim sup |y+1]=0,
K—>OOfE]:(K) K—>00fe]:(K K—>OOf€]:(K)

and thus

lim sup |a*—In =0. (4.20)

K—xo fe}—(K)

14++/1+8e
4

As limg o (1 =Ty — T5) = 1, property (i) immediately follows for all large K
and for all f € F(K).
Property (ii). By the definition of ¥ and formula (4.6)),

t

Y (a*) (t) = et / e’h (a) (s)ds

-1

— eS17ty (a) (s1) + e_t/ e’ f(® g (s—s1,1))ds

81

t—s1
=M1l K (1 - e_“*) +es1t / e“f(?_k (u,1))du
0
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for all t € [s1, s2]. Hence

K-1

B(@) ()2 e K (1o ) e ol = Ty

K (1 —e*“*) — et
for all ¢ € [s1, s2] . Here we used that s, —s; = Ty. As |¢q| is bounded for K > 2,
and 1 — e~ has a positive limit as K — oo, we see that (ii) is satisfied for all
f e F(K)if K is large enough.

Property (iii). The definition of ¥ gives that for ¢ € [s3, 0],

t—83
Y (a*) (t) = e 'S (a*) (s3) + e ! / e f(®x (u,—1)) du. (4.21)
0
We see from (4.12) that (4.21) actually holds for all ¢ € [s3,¢1 + 1]. Regarding
the value ¥ (a*) (s3), observe that (4.8), the limit of a* in (4.20)), and the bound
for |c1| together yield that

3 (a”) (s3)

im =1
K- (\/1+86 _ 1) K

uniformly for f € F (K). As the denominator in the above fraction is negative,
Y (a*) (s3) < 0 if K is large enough, and it tends to —oc as K — oc.

By using formula (4.21)), ¥ (a*) (s3) < 0 and t; + 1 —s3 = T1, we now obtain
the upper bound

() (1) < B2

< K7+IE (a*) (s3) + |c2| forall ¢ € [s3,t1 +1].

As ¥ (a*) (s3) tends to —oo, and ¢ is bounded if K > 2, property (iii) also
holds for all F (K) if K is chosen sufficiently large.

Property (iv). Recall the formula given by Proposition [4.4{for z=(*7) (5 + 1).
With the equality ¥ (a*) (s2) = —2>(¢") (#; + 1) confirmed at the beginning of
this proof, we derive that

20 (1 +1) = K — Ke™® = £ (") (1) ,

and hence (iv) follows from (ii).

Define p : R — R as the (7 + 1)-periodic extension of z(*)|_; ;) to R.
Then it is clear from the construction that p is a solution of (3.1), the minimal
period of pis 74+ 1 € (1,2), max¢er p(t) > 1 and mingegr p (t) < —1. It follows
from Proposition [£.9] that p (t) € (—K, K) for all real t. O

Ezxtension of the result

An analogous result holds for a wider class of feedback functions. Consider
any C'!-nonlinearity defined on a finite closed subinterval of the real line. Next
we prove that we can extend this function to the real line such that a new
periodic solution appears. The range of this periodic solution contains the
original finite interval.
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4.10. Letn >A0, A1, Ay, B1,Bs € R with Ay < As, B; < B> and 2n < As — Ay
Assume that f € C ([Ay +n, Ay — ], R) is given, and

Blgf(u)ng forall Ay +n<u< Ay —n.
Consider the threshold number Ko > 1 from Proposition[{.1]. Let

_(A2_A1)K0+A1 +A2
2

K| < mln{ R Al, Bl, Al + Ay — BQ} (422)

and Ko = Ay + Ay — K. Let f be a C'-extension off to the real line with
f(u) =Ky foru< Ay, fu)=Ks foru> A,
and
f(u) € [K1,K>] foru € [Ay, As].

Then equation (3.1) with nonlinearity f has a periodic solution p: R — R such
that

(i) the minimal period of p is in (1,2),

(ZZ) HlaXteRp(t) S (AQ,KQ) and minteRp(t) € (Kl,Al).

See Figure [£.3| for a plot of f in the corollary.

o Y
K,
Figure 4.3: The plot of f in Corollary

Proof. First note that if (4.22) holds, then
K2 = A1 +A2 - K] > max{A2, B2}

This observation with (4.22) means that the intervals (K7, 4;) and (A,, K») in
assertion (ii) are indeed both nontrivial, furthermore, K; < By < By < Ka, s0
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it is possible to choose C'-extensions f of f such that f (u) € [K;, K5] for all
u € [Ala AQ]

Assume that f is a C'-function given as in the proposition.

Consider the linear transformation L of R that maps A; to —1 and A5 to 1:

_QU_Al_AQ

L(u)= LA for u € R.

Let L~! denote the inverse linear transformation. Define g: R — R by g (u) =
Lf(L7'u) for u € R. Then g € C'(R,R). As the above introduced linear
transformations are order preserving, we calculate that

2Ky — A — A,
u)=———=forallu < L(A;) =-1,
glu) = 2L < L(A)
2K2—A1—A2 2K1_A1_A2
= = — > =
g (u) 1, A 1A for all u > L (As) =1,
and
2K1—A1—A2 2K2—A1—A2
it S S D S} -1,1).
5 A <gu) < A for all w € (—1,1)

We conclude that g € F (K) with

B A1 + A2 — 2K1
K —_ W. (4.23)

The assumption (4.22) guarantees that K > K. By Proposition the
equation gy (t) = —y (¢t) + g (y (¢ — 1)) has a periodic solution ¢: R — R. The
minimal period of ¢ is in (1,2), furthermore,

I{gﬁ%q(t) € (1,K) and rtn€1]£q(t) € (-K,-1).

Define the periodic function p: R — R by p(t) = L™q(¢) for all t € R. Substi-
tuting p into equation (3.1)), one can see that p is a solution of (3.1) with the
above chosen nonlinearity f. It is clear that p has the desired properties. O

Note that the bounds B; and B; in the previous corollary are not necessarily

A

strict bounds for f.

5. Further auxiliary results

5.1. Two technical results

Set u = 1 as before, and consider equation (3.1). The first proposition in
this section studies the ranges of the large-amplitude periodic solutions.
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5.1. Suppose that (H1) holds, and f has ezactly 2N + 1 fized points

<& < <L<@..<év<(n

with N > 2, f'(¢;) < 1 for alli € {0,1,...,N} and f' (&) > 1 for all i €
{1,...,N}. Assume that p: R — R is an [i, j] periodic solution of equation (3.1)
with some integers 1 < i < j < N, namely p oscillates about the elements of

{&,&+1,...,&} but not about the elements of {&1,&, ..., &1 }U{&j11, ..., En}
Then
Gim1 <p(t) < for all t € R.

Proof. 1. Set tpin € R and ty4, € R such that p(¢min) = minger p(t) and
D (tmae) = maxger p (t). The proof is based on the observation that

f (P (tmin)) <P (tmin) and (0 (tmaz)) > P (tmaz) - (5.1)

The weaker inequalities f (p (tmin)) < P (tmin) and f (P (tmaz)) > P (tmaz) can
be seen from

0=p (tmm) =D (tmzn) + f (p (tmin - ]-)) >—p (tmm) + f (P (tmzn))
and

0 =9 (tmaz) = =P (tmaz) + (P (tmaz — 1)) < =D (tmaz) + f (P (tmaz)) -

Proposition (ii) in addition implies that there exist no equilibria x € C such

f (p (tmzn)) 7é p (tmm) and f (p (tmaw)) 7& p (tmaw) .

2. We show that p(t) > (;_; for all real ¢t. First suppose that ¢ = 1 and
(i—1 = (o- Note that by the assumptions of the proposition, f (u) > u for all
u € (—o0,(p], and thus excludes the possibility that p (tmin) < . Now
assume that ¢ > 1. Then p(t) > &_; for all real ¢, otherwise p oscillates about
& 1. As f(u) >uforu € (& 1,¢1) and f (1) = G1, shows that it
is impossible that p (tmin) € (&i-1,¢i—1]. Thus p(t) > (;—1 for all real ¢ in any
case ¢ > 1.

It is similar to verify that p () < (; for all ¢t € R. O

The following simple result will be used to exclude the existence of the
unwanted large-amplitude periodic solutions.

5.2. Suppose that f : R — R is continuous, and (—,&_,&+,(+ € R are fized
points of f with (_ < £_ < & < (4. Suppose that equation (3.1) admits a
periodic solution p such that (§_,&4) C p(R) C ((—,(4+). Then

G —& &G — ¢
AETA <1 and log f (. <1 (5.2)

log
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Proof. Let y : R — R be the solution of the initial value problem

{yu) = —y(t) + (4, tER,
y(0) =¢&_.

Then y (t) = (4 + (€&~ — () et for t € R. It is a straightforward calculation to
show that the unique solution of y (T') = &; is

G — &=
Cr =&+
that is, y needs T time to increase from £_ to ;.

We may assume (by considering a time shift of p if necessary) that p (0) = £_.
It is clear that

T =log

p(t) < —p(t) + [ () = —p(t) + ¢+
for all t € R. In consequence, Theorem 6.1 of Chapter 1.6 in [5] implies that for
t>0,p(t) <y().

Let t. > 0 be minimal with p(t.) = £4. Necessarily ¢, < 1, otherwise
p1 < & and thus p(t) < & for all ¢ > 1 by Proposition On the other
hand, the inequality p(t) < y(t) for ¢ > 0 yields that ¢, > T. Summing up,
T < t, <1, i.e., the first estimate in is true.

The second estimate can be verified in an analogous manner. O

The stability of the equilibria given by the fixed points (_ < £_ < &, < (1 is
irrelevant in the above proposition. However, in accordance with our previously
introduced conventions in notation, (_ and (; will always denote stable fixed
points of f in the forthcoming applications, while £ and &, will always denote
unstable fixed points.

We will also need the next technical condition for continuously differentiable
functions defined on R or on a subinterval of R. Let f' and f!| denote the left
hand and right hand derivatives of f, respectively.

(C) If (_ and (4 are the smallest and largest fixed points of f, respectively,
then f ((—) = f_ ((+) = 0. In addition, f has at least one unstable fixed
point in both intervals

¢+ ¢ -+ ¢
<<; 9 > and < 9 7<+> .

5.2. Nonlinearities generating the simplest configurations of large-amplitude pe-
riodic orbits.

Let p: [0,2] — R be a nondecreasing C'-function with fixed points 0, 1,2
such that p (u) < u for u € (0,1), p(u) > u for u € (1,2), p'(0) = p'(2) =0
and p’ (1) > 1. The function

p(u) =sin (g (u—l)) +1
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is a suitable choice.
For all M > 1, define

0 ifu <0,
fu:Roum Cp(u—2k)+2k ifué€[2k,2k+2) and k € {0,1,...,M — 1},
oM if u > 2.

(5.3)
Then fys satisfies (H1)—(H?2). It has exactly M unstable fixed points

&Gh=2k—1, ke{l,2,...,M},

and it has M +1 stable fixed points (;, = 2k, k € {0,1,..., M}, with £}, ((x) =0
for all k € {0,1,..., M}. See Figure for the plot of fs.

Figure 5.1: The plot of f3.

5.3. Let M > 1. Equation (3.1) with nonlinearity f = far admits no large-
amplitude periodic solutions.

Proof. 1t is clear that if f = fi, then equation cannot have large-amplitude
periodic solutions. Suppose for contradiction that M > 1,1 <i < j < M, and
equation with nonlinearity f = fps has an [i, j] periodic solution p. Then
it follows from Proposition and the location of the equilibria that p(t) €
(27 — 2,2y) for all real t. We can apply Proposition with £& =&, = 2i — 1,
=& =2j—1,(_ =2i—2and (4 = 2j. The first inequality in already
gives that

1> log G 78 log(2(j —i)+1) > log3,
G — &+ j—iz1
which is impossible as log3 > 1. O

Observe that if y € (0, 1), then fas (u) < u for all u € (0,7) and far (u) > u
for all w € (2M —n,2M).

Let us introduce a new nonlinearity f3, for all M > 2 by modifying fj; on
(—00,n) U (2M — n,00). So let 5 € (0,1), and choose K1, Ks € R with

Ky <M(1-Ky) <0 and K,=2M — K, > 2M, (5.4)
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where Ky > 1 is the threshold number from Proposition Set

Kl if u S 0,
P1 (fM (U)) if u € (Oan)a
faurR3um— < far(u) ifuen2M—n, (5.5)
p2 (far (w) ifue (2M —n,2M),
K, if u> 2M,

where p; and p, are defined so that f5,: R — R fulfills (H1), furthermore

p1 (far (w)) < far (u) < wufor all w e (0,n) (5.6)

and
p2 (far (w)) > far (u) > wfor all u € (2M —n,2M). (5.7

See Figure for the plot of f5. One can easily check that the second-order
polynomials

. Kl 2 _ 2K1
P O S () 30 s +(1 fM(n)>v+K1€]R

and
-K, 2
(2M — far (2M —1))°
. <1+ 261 far (2M — ) 2>U
(2M — fm (2M —n))
K1f12\4 (2M —n)

- s €ER
(2M — far (2M — 1))

p2: (far M —n),2M) 3> v+

are suitable choices.

Two remarks regarding the above definition: We need condition (5.4) be-

cause we intend to apply Corollary Conditions ((5.6) and (5.7 will be used
to guarantee that f3, has no fixed points in (0,7) U (2M —n,2M).

5.4. For all M > 2, fr, satisfies (H1),(H2) and (C). The unstable fized points

of fi; are
& =2k—-1, ke{l,2,....M}.

In addition, f;; has M +1 stable fized points. The smallest stable fized point of
far is K1 <0, the largest one is Ko > 2M, and the others are

=2k, ke{l,2...,M—1}.

The derivative of fy; vanishes at its stable fized points.
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Figure 5.2: The plot of f5. Observe that f3 has to be modified for u < n and for u > 6 — 7.

Proof. As K; < 0 and f;; (u) = K; for all w < 0, K; is a stable fixed point
of fr;, and (f%;) (Ki) = 0. It is clear that f}, has no other fixed point in
(—00,0]. Similarly, Ko > 2M is the unique fixed point of f5, in [2M, 00),
and (f3;)' (K2) = 0. By the choices of p; and po, fi, has no fixed points in
(0,m) U (2M —n,2M), see (5.6) and (5.7). The assertions regarding the rest of
the fixed points follow from the fact that f5; (u) = fas (u) for all u € [n,2M — n].

The definition of f}, and the fact that fas satisfies (H1)—(H2) implies that
(H1)—(H?2) also hold for f;;.

Note that (K; + K3) /2 = M. So condition (C) holds with (- = K3, (4 =
Ko & =6 =1€(0,M)and &, = €3 = 2M — 1 € (M, 2M). O

5.5. Let M > 2. Equation (3.1) with nonlinearity f = f3; has a slowly oscil-
latory [1, M] periodic solution. It admits no [i,j] periodic solutions for indices
1<i<j<Mwithi>1orj<M.

Proof. Tt is clear from Proposition [5.4] that the number of unstable fixed points
of fr; is M, and all of them are found in (0, 2M1).

Consider equation with nonlinearity f = fi;, M > 2. We can apply
Corollary with Ky, Ko, n chosen as in the definition of f3,, A1 = 0,
As =2M, B; = 0 and B, = 2M. Corollary yields that there is a periodic
solution p : R — R such that (0,2M) C p(R) C (K7, K>), that is, p is a [1, M]
periodic solution. As the minimal period of p is in (1,2), it is necessarily slowly
oscillatory, see Remark [3.3]

Now consider any indices 4,7 with 1 <7 < 7 < M sothati > 1or j < M.
It remains to exclude the existence of an [i, j] periodic solution ¢: R — R. First
suppose that 1 < i < j < M. Then ¢(R) C (K3,2j) by Proposition and
we can use Proposition 5.2 with (- = Ky, ¢4 =24, & =& = 2i — 1 and
&4 =& =2j — 1. The first inequality in implies that

G —&

1> log
+— &+

— log (2j - (2i — 1)) > log3,
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which contradicts log3 > 1. Using the second inequality in (5.2) with (_ =
2i—2,¢ =2i—1and £ =2M — 1, the reader can see in an analogous way
that there exist no [i, M| periodic solutions for 1 < i < M. O

6. The proof of Theorem [2.1}(i)

This section is the proof of Theorem 2.1} (i).

We introduce the following partial order. A pair of parentheses in a par-
enthetical expression is of 1st level, if it is not nested in any other pair of
parentheses. For n > 2, a pair of parentheses is of nth level, if it is nested in an
(n — 1)th level pair, and not in any mth level pair for m > n.

An nth level subexpression is an nth level pair of parentheses, together with
all the numbers and parentheses enclosed by it.

Example. Consider the expression
(1(((23) 4) 5 (67) 89))10 (6.1)

of 10 numbers for example. Then (1 (((23)4) 5 (67) 89)) is a 1st level subexpres-
sion, while (((23)4)5(67)89) is of 2nd level, ((23)4) and (67) are of 3rd level,
and (23) is of 4th level. This example shows that a 1st level subexpression is
not necessarily the whole expression itself. We also see that not all 3rd level
subexpressions contain a 4th level subexpression.

Now suppose that a subexpression contains exactly the numbers ¢,i+1,.. ., j.
Suppose that f is a continuously differentiable, nondecreasing function that is
defined on R or on a subinterval of R, and it satisfies (H2). We say that f
generates the subexpression if

e f has exactly j —i 4+ 1 unstable fixed points & < &1 < ... < & giving
the unstable equilibria &, {41, ...,&;,

e for all i',5' € {i,...,j} with ¢/ < j', equation with nonlinearity
f admits an [i’, j'] periodic solution if and only if there exists a pair of
parentheses in the subexpression that encloses i',7' +1, ..., j" and no other
numbers,

e these periodic solutions can be chosen to be slowly oscillatory.

Functions generating the original parenthetical expression are defined in an anal-
ogous way.

Outline of the proof.

Set N > 2, and consider a parenthetical expression of N numbers. The proof
of Theorem [2.1](i) is already complete when this expression contains no paren-
theses: we know from Proposition [5.3] that fn generates the trivial expression
12... N. Otherwise fix m > 1 such that the expression contains at least one pair
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of parentheses of mth level, but none of (m + 1)th level. The proof proceeds
by mathematical induction on the levels of the subexpressions from the mth

=0 level to the 1st one: For all n decreasing from m to 1, and for each nth level
subexpression, we construct a nonlinear function that satisfies (H1), (H2), (C)
and generates the given subexpression. Then as last step of the proof, we obtain
a nonlinearity that satisfies (H1), (H2) and generates the original parenthetical
expression.

»s  Initial step.

Suppose that n = m. Any mth level subexpression has the form (i...j),
where 1 < ¢ < j < N. By Propositions and nonlinearity f7 ., defined
in (5.5) generates (i...j) and fulfills (H1), (H2) and (C).

Inductive step.

730 Now suppose that 1 < n < m, and there are functions that not only generate
the (n + 1)th level subexpressions, but also satisfy (H1), (H2) and (C). Fix a
subexpression of nth level. Let i,4 4+ 1,...,j denote the integers contained by
it.

If there exists no (n + 1)th level subexpression within the subexpression

725 under consideration (i.e., it has the form (i... j)), we are ready by Propositions
E.4 and B3

Otherwise we use the nonlinearities generating the (n + 1)th level subexpres-
sions and the functions fj; defined in as “building blocks” to determine a
nonlinearity f that generates the fixed nth level subexpression. The procedure

o0 is the following.

Step 1. We divide the real line into intervals.

Step 2. We introduce a C'-function f defined piecewise on these intervals such
that f' generates the ”inner part” of the considered nth level subexpres-
sion (that is, the whole nth level subexpression except for that pair of

745 parentheses that encloses all numbers i,7 + 1,...,j). Roughly speaking,
the restriction of f to any of these intervals will be either a transforma-
tion of far, M > 1, or of a nonlinearity generating an (n + 1)th level
subexpression.

Step 3. At last we modify f by using Corollary in order to get f generating
750 the given nth level subexpression.

Step 1. (Partition of the real line.)
Let £ > 1 denote the number of (n + 1)th level subexpressions nested in
the considered nth level pair of parentheses. Reading from the left, there is a
natural order among these subexpressions. We use this order and distinguish
755 1st, 2nd, ..., kth subexpression of (n + 1)th level.
We need to handle that there may exist integers among ¢,7+1, ..., j that are
not contained in any (n + 1)th level subexpression. Let 71 > 0 be the number
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of integers among i,7 + 1,...,j that are smaller than any integer in the 1st
subexpression of (n + 1)th level. For all [ € {2,...,k}, let r; > 0 denote the
number of integers that are greater than any integer contained in the (I — 1)th
subexpression and smaller than any integer in the Ith subexpression of (n + 1)th
level. At last, r;41 is the number of integers among i,i+1, ..., j that are greater
than any integer in the kth subexpression of (n + 1)th level.

Example. Let us return back to our previous example . Assume that
n = 2, that is, we look for a nonlinearity f generating the 2nd level subexpression
(((23)4)5(67)89). Theni=2and j =9. As ((23)4) and (67) are the 3rd level
subexpressions within this subexpression, k¥ = 2. In addition, ry = 0, r, = 1
and rg3 = 2.

Using k > 1 and r;, I € {1,...,k+ 1}, defined as above, we introduce
k + 2 subintervals of the real line spaced at distances 2r;. The first interval is
Iy = (=00, fp] with an arbitrary right end point S € R. The endpoints of the
next k intervals I} = [ay, f1], | € {1,...,k}, are defined as follows:

ap = [i_1 + 2rg and B = ay + 2.

The length of [; is 2 for each [ € {1,2,...,k}. At last, define the left end point
of the last interval I41 = [agy1,00) as

Qg1 = B + 2rg41-

With this procedure, we also obtain intervals J; = [fj_1,ai], L € {1,...,k + 1},
of length 2r;. J; may be trivial as r; = 0 is allowed.
_ The idea behind this definition is simple. We will set the auxiliary function
f so that f|7, will generate the lth subexpression of (n + 1)th level for all I €
{1,...,k}. Ifr;, > 0 for some [ € {1,...,k+1}, then f|; will generate the
trivial parenthetical expression (i.e., the expression containing no parentheses)
of r; numbers. The restrictions f|10 and f|1k+1 will be constant functions.

The length of the intervals I; and J; will play a key role later (in the proof

of Proposition .

Example. Consider example (6.1)) again, and suppose that we look for an f gen-
erating the 2nd level subexpression (((23)4)5 (67)89). Then Iy = (—o0, fy] =
(—O0,0], 11 = [Oél,ﬁl] = [0,2], IQ = [Oég,ﬁg] = [4,6], 13 = [Oég,OO) = [10, OO) are
good choices. Interval J; is trivial, Jo» = [B1,as] = [2,4] and J3 = [fa, a3] =

[6,10], see Figure

Step 2. (The augiliary function f.)
We need the subsequent transformations. For a,b,¢,d € R with a # ¢ and
b#d,let Lysperq: R — R denote the linear map with L (a) = band L (¢) = d:
u—c, u-

b+ 2"%  forueR.
a—=cC c—a

La—>b,c—>d (U) -
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Figure 6.1: The partition of the real line in our example.

Then L;i)b,c—nt = Ly—yq d—c is the inverse of L,—p c—q.

If x is a solution of equation (3.1)), then y, defined by y (t) = La—p,c—a (1)
for all ¢ in the domain of z, is a solution of

g =-y®) +gy(E-1), (6.2)

where
g: Roumrr La—>b,c—>df (Lb—m,d—wu) eR. (63)

In particular, L, .4 creates a bijection between the periodic solutions and
the equilibria of (3.1) and . It is easy to see that for x* = Ly b caX;
g (x*) = f'(x), and therefore the transformation preserves the stability of
the equilibria. It is also clear that a periodic function z oscillates (slowly)
about &;,&it+1,...,&; if and only if y = L, . qax oscillates (slowly) about
Lo—b,c—d&i, La—sb,c—dit1s - s Lasb,c—a€j. The parenthetical expression gen-
erated by g is the same as the one generated by f.

Emphasizing the dependence of g on a,b,c,d, in the following we use the
notation

Ta—>b,c—>df: R>uw— La—>b,c—>df (Lb—m,d—wu) € R.

We are ready to introduce the auxiliary function f .

Let g;, L € {1,...,k}, denote the nonlinearity that generates the ith subex-
pression of (n + 1)th level, furthermore satisfies (H1), (H2) and (C). By the
induction hypothesis, such g; exists. Let a; € R and b; € R denote the smallest
and largest fixed points of g; for each I € {1,...,k}.

We define f : R — R using the following three rules.

(R1) Let

f(u) =Tooah—p g (u) forallue l; =[oy,[] andl € {1,...,k}.

(R2) For all u € Iy = (—o0, o], set f (u) = Bo. For all u € Iy = [opqs, 00),
set f (u) = ok

(R3) Whenever r; > 0, i.e., J; = [§;_1, o] is nontrivial for some !l € {1,2,...,k+1},

let
f (u) = TO—>[3171,27‘1—>O¢lf7“l (u) fOr all u E Jl = [ﬂl—l:al]a

where f,,, defined by (5.3), denotes a nonlinearity that generates the trivial
parenthetical expression of r; numbers.
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It is easy to see the following proposition.
6.1. Function f satisfies (H1) and (H2).

Proof. As the above used functions g; and f,, satisfy (H1) and (H2), it suffices
to prove that f is differentiable at 8o, at a; and at f; for all [ € {1,...,k},
furthermore at ay+1. The next three observations guarantee the differentiability
of f at these points.

1. Recall that a; € R and b; € R denote the smallest and largest fixed points
of g; for each [ € {1,...,k}. By condition (C), (gl)l+ (a;) = (g1)" (by) = 0. Thus
by (R1), a; and j; are fixed points of f|1, with f—li- () = fr (8;) = 0 for all
le{l,...,k}. (This is the first place where condition (C') is used.)

2. By (R2), the points fy and aji1 are fixed points of f|;, and f|1k+1,
receptively, furthermore f. (o) = fjr (ag+1) = 0.

3. Regarding rule (R3), recall that 0 and 2r; are the smallest and largest
fixed points of f,,, respectively. We also know that f; (0) = f;, (2r;) = 0. Hence
if J, = [fi1—1, ] is nontrivial for some [ € {1,2,...,k+ 1}, then §;_; and o
are fixed points of f|;, with fA_"_ (Bi=1) = f" (ay) = 0. O
Example. We return back to our previous example. Suppose g; generates

((23)4) and g» generates (67). Actually, our procedure gives that g = f5,
where f5 is defined by (5.5). Now the auxiliary function f: R — R is given by

(0 if u<pBy=0,

Toy—05,—291 (v) ifuel; =[ag,p1] =10,2],
(u) = Toso254f1 (v)  ifu€Jy=[B1,a2] =[2,4],
Ty —abss692 (u) ifu €l =[az, f2] = [4,6],
To—ssa—10f2 (u) if u € J3 = [B2, 3] = [6,10],
10 if u> az =10,

see Figure [6.2]

It is clear that for any [ € {1,...,k}, there exists pair of parentheses enclos-
ing all the numbers within the [th subexpression of (n + 1)th level. In other
words, the equation

i (t) =~z (1) + (@ (t—1) (6.4)
admits at least one large-amplitude periodic solution ¢': R — R that oscillates
about all the unstable fixed points of g;. We know from Proposition [5.1] that
q¢' (R) C (a1, br).

Note that already g;],:(z) generates the Ith parenthetical subexpression. This
comes from the fact that if r is a periodic solution of , and r does not
oscillate about all unstable fixed points of g;, then r (R) € ¢' (R) by Proposition

B4
Define p': R — R by

p(t) = Lo —ar.b0—8 q (1) for all real ¢,

where a;, oy, by, 5; are defined as above. The following result is immediate.
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Figure 6.2: The plot of f in our example. On the interval [0,10], the graph of f lies in the
gray squares.

6.2. Foralll € {1,...,k}, p' (R) C intl; = (ay, B;). Function f|p ) generates
the lth parenthetical subexpression of (n + 1)th level.

At last, let us collect what we know about the fixed points of f .

(P1) It is obvious that fo and aj41 are the smallest and largest fixed points

855 of f, respectively, and f’ (Bo) = f' (ag+1) = 0. By construction, f has
j — 1+ 1 unstable fixed points in (8g, agy1)-

(P2) Consider any ! € {1,...,k+ 1} for which r, > 0. We know the exact
location of the fixed points of f in the interval J, = [f;_1, oy] because they
arise in the form Lo_g, ; 2r,—a,X, Where x is a fixed point of f,,. As the

860 length of J; is oy — fj—1 = 2r;, the transformation Lo_g, , 2r,—q, is only
a shift of the real line: it maps all u € R to ;1 + u. Since 2s — 1 is an
unstable fixed point of f,, for all s € {1,...,7}, we deduce that

Bi—1+2s—1, sef{l,...,m},
are the unstable fixed points of f in J;. Similarly,
Bi—1+2s, se€{0,1,...,7},
are the stable fixed point of f in J; with zero derivative.

ss  (P3) Regarding the fixed points of finl, e {1,...,k}, it is important to
note that as g; satisfies condition (C), f|5, satisfies (C') too.

Step 3. (The function f generating the considered nth level subexpression.)

Now, by modifying f , we can define a nonlinearity f that generates the
fixed nth level subexpression. In the following we apply Corollary [£.10] with
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A; = By = g and Ay = By = ap41. The constants 1, K1 and K3 have to be
chosen as given below. .

By (P1), By and agy1 are the smallest and largest fixed points of f, re-
spectively. Set n > 0 so small that all the other fixed points of f belong to
(Bo + n, a1 —n). By Proposition p' (R) C intl; C (Bo, cg+1) for all 1. So
by decreasing n > 0 if necessary, we can achieve that the range p' (R) of the
periodic solution p' is a subset of (By + 1, aps1 —n) for all 1 € {1,... k}.

Choose

— (aga1 — K
K1<min{ (@41 ﬁ0)20+ﬁo+ak+1,ﬁo}a

where K is the threshold number from Proposition 1] Let Ky = fo + apq1 —

K > Q1.
Set
u < Py
(f ) u € (Bo, Bo +n)
FiR3um < f(u), u € [Bo + 1, Q1 — 1] (6.5)
( ) u € (a1 — 1, Q1)
U > Oy,

where p; and ps are deﬁned so that f: R — R fulfills (H1), furthermore

pr (f () < f(w) for all u € (Bo, o +n) (6.6)

and
P2 (f (u)) > f(u) for all u € (apy1 — 0, pp1) - (6.7)

This choice of f is possible. The functions p; and ps can be selected as in the
definition of fj,.

Example. Figure demonstrates that in our example f has to be modified
on the interval (—oo,n) U (10 — n,00) with some 1 > 0 to get a function f
generating (((23)4) 5 (67) 89).

As f’ (Bo) = f’ (1) = 0, and as f has no fixed points in (8o, fo +n) U
(@g+1 — 1, Qpy1), it is true that

fu) <uforallue (Bo,B0+n) and f(u)>uforall u€ (apps —n,0p41).

This observation, and (6.7) together imply that f possesses no fixed points
in (Bo, fo +n)U(apt1 — 1, ax11). Next we summarize what else we know about
the fixed points of f.

6.3. Function f satisfies not only (H1) but also (H2) and (C). K; and K, are
the smallest and largest fized point of f, respectively, with f' (K1) = f' (K3) = 0.
Function f inherits allﬁa:ed points x of f in the interval [[3’0 +n, a1 —n) (that
is, all fized points of f besides By and a1 ) with f' (x) = f' (x). It has no other
fized points. It follows that f has exactly j — i + 1 unstable fixed points.
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Figure 6.3: The plot of f in our example.

Let & < &1 < ... <& denote the unstable fixed points of f and f.

Proof. We omit most of the proof as it is analogous to the proof of Proposition
We only verify that f satisfies (C) with (_ = K; and (4 = K>.

If r1 > 0, then the smallest unstable fixed point of both f and f 8§ =fo+1
(see property (P2)). If r; = 0, then the smallest unstable fixed point of f and f
is the one of f|;,. By property (P3), f|y, satisfies (C), so it has an unstable fixed
point smaller than (a; + 1) /2 = a1 + 1 = fp + 1. Summing up, & < fo + 1.
Similarly, & > apy1 — 1.

Next we show that agi1 — Bo > 4. Let |I| denote the length of an interval
I CR Ifk>2 then a1 — Bo > |L| + |L2] = 4. If k = 1, then (as no
multiple enclosing of the same sublist of numbers allowed in a correct paren-
thetical expression) either 74 > 0 or r5 > 0. Suppose r; > 0 for example. Then
a1 = Po 2 |Ni] + || > 4.

In order to verify (C), we need to confirm that & < (K7 + K1) /2 < §;. It
is enough to show that Sy +1 < (K7 + K1) /2 < a1 — 1. Actually, using the
equality Ky = 8o + ap1 — K1 and the inequality ag1 — o > 4, we obtain that

K+ K> _ Bo + 41
2 2

€ [Bo + 2, ap41 — 2].
O

By Corollary [f:10] the equation with this nonlinearity f has a periodic so-
lution p : R — R such that (fo,ar+1) C p(R) C (K1, K>3). Necessarily p is
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an [i,j] solution. Let us see what we know about the other large-amplitude
periodic solutions. The length of the intervals I; and J; becomes essential in the
proof of the following proposition.

6.4. Consider f: R — R obtained above. Assume that equation (3.1) has an
[i', 7] periodic solution q: R — R so that i < i’ < j' < j, and either i # i or
j# 7' Then anindexl € {1,...,k} can be given such that &, &y 41,...,&y € L.

Proof. We need to exclude the following cases:

(i) & € Jy, and & € I, with I,ly € {1,...,k}, 7, > 0 and [; < I,

(i4) & € Ji, and & € Jp, with ly,ls € {1,...,k+1} , 7, >0, 7, >0 and
ll S 127

(i4i) & € I, and & € Jp, with [y € {1,...,k}, b € {2,...,k+1}, 1, >0
and [; < s,

(iv) & € I, and & € I, with 11,1, € {1,...,k} and [, < I».

Suppose for contradiction that we are in case (i).

1. We claim that é.j’ — é.i’ Z 2.

On the one hand, we show that éj/ Z Oélz-{-l. Let E1 and E2 = {5@’ s 51”-&-1; Ce ,fjr}

be the sets of those unstable fixed points of f about which p*> and ¢ oscillate,
respectively. It is clear that { € E;\E; and & € E; N E,. It follows from
Proposition that E; C Es, that is, the [i', j'] periodic solution ¢ oscillates
about all unstable fixed points of f in Ij,. In other words, {;  is the largest
unstable fixed point of f in I;,. Since f and f has the same unstable fixed
points by Proposition & is the largest unstable fixed point of f in I;,. As
the restriction of f to I, = [ay,, Bi,] satisfies (C') by property (P3), we deduce
that ny
«

& 2 %
(Note that this is the second place, where condition (C) is crucial.)

On the other hand, we prove that & < oy, — 1. Since 8,1 + 2s — 1,
s€{l,...,r,}, are the unstable fixed points of f in .J;, =[5, -1, ;] by (P2)
and Proposition @ a trivial upper bound for & is B;,—1 + 21, — 1=y, — 1.

As |y <y and thus a4, < ay,, we obtain that

=a, +1. (6.8)

€j’ — fi’ Z Oélz + 1 — (Oéll — 1) = 2 (69)

2. We divide case (i) into two subcases.

(a) First suppose that Iy < k or Iy = k and rgy; > 0. In either case
B, = sup I, is smaller than a1, hence f;, is a stable fixed point not only of
fbut also of f. As K is also a fixed point of f, and K; < & < & < B,
Proposition guarantees that the range ¢ (R) of the [i’, j'] periodic solution
q is a subset of (Ki,0;,). So we can apply Proposition with (. = Kj,
G+ = By, é- = & and & = . The first inequality in Proposition [5.2] gives

that 5 ¢ ¢ ¢
1> log P2 75" <1 J'_"> ) 6.10
=18 B—& o " B - 37 (610
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As fi, — ap, = 2, estimate gives that 3, — & < 1. This observation
together with implies that the right hand side of inequality is not
smaller than log 3, which is a contradiction.

(b) Now suppose that Iy = k and 743 = 0. Recall from the beginning of
this proof that &;: is the largest unstable fixed point of f in I, = [y, Bx]. As
11 = 0, we have ag1 = Sk, which means that f has no unstable fixed points
greater than ;. We conclude that {; is the largest unstable fixed point of f,
i.e., j' = j. Then necessarily i’ > i by our initial assumption.

We claim that & — 1 is a stable fixed point of f. This follows simply
from property (P2) and Proposition if Iy > 2. If l; = 1, the claim is the
consequence of (P2), Proposition d the fact that & is not the smallest
unstable fixed point f.

We can apply Proposition [5.2] with (- = & — 1, (¢ = Ky, §& = & and
&4+ = &. The second inequality in Proposition [5.2] with implies that

£ — (& —1)

1 DS Ay T
12 log & — (& — 1)

> log3,
which is a contradiction again.

Handling the cases (i4) — (iv) is analogous. In each case we can prove that
&y — & > 2. In each case we can apply Proposition with £ =&, &4 =&y
and with (_ , {; chosen so that (4 —&y <1ifj' <j,and §& — (- < 1if ' > .
We omit the details. O

Now it is easy to see the following.
6.5. Function f generates the nth level subexpression under consideration.

Proof. 1. First of all, by Proposition [6.3] f has j — i + 1 unstable fixed points
&< <. <& in (Bo, agy1)-

2. Consider the pair of parentheses in the subexpression that encloses all the
integers 4,...,j (that is, the nth level pair of parentheses). It has been already
mentioned that the equation with the above constructed nonlinearity f has a
periodic solution p : R — R such that (8o, ar4+1) C p(R) C (K1, K2). This
comes from Corollary Necessarily p is an [i, j] solution. As the minimal
period of p is in (1,2), it is slowly oscillatory, see Remark

3. Assume that a given pair of parentheses in our nth level subexpression
encloses exactly the numbers i',i' + 1,...j', where i < i’ < j' < j, and either
i #1 or j # j'. Then thereis ! € {1,...,k} such that this pair of parentheses
is included the Ith subexpression of (n 4+ 1)th level. Recall from the definition
of f that

f|[50+7770¢k+1—77] = f|{ﬂo+77704k+1_77}7
and hence f|ym) = f|p1(R). So by Proposition , flprm) generates the [th
subexpression of (n + 1)th level. This means that (3.1) with feedback function
f admits a periodic solution ¢: R — R oscillating slowly about &/, & 41, ..., & -

Conversely, suppose ¢: R — R is an [i’, j'] periodic solution of (3.1) so that
i<i' <j' <j,andi#4i or j# j. By Proposition[6.4] an index ! € {1,...,k}
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can be given such that &,&r11,...,& € I;. Then either ¢ oscillates about
all unstable fixed points of f in I;, or ¢ (R) C p!' (R) by Proposition As
flpw = f|pl(R) generates the Ith subexpression of (n + 1)th level, we see in
both cases that there exists a pair of parentheses that encloses only the numbers

Eiry§irg1ye ey &jre
Summing up, f generates the considered nth level subexpression. O
Final step.

Assume that there are functions that generate the 1st level subexpressions,
furthermore satisfy (H1), (H2) and (C). It remains to show that the original
parenthetical expression can be generated. Repeat Steps 1 and 2 with n = 0.
Let f = f, where f is obtained in Step 2. It is clear that f fulfills (H1), (H2)
and admits IV unstable fixed points. One needs to repeat the argument in the
proof of Proposition with ¢ = 1 and j = N to show that if ¢: R = R is an
[i', 7] periodic solution with 1 < ¢’ < j' < N or with 1 < ¢/ < j' < N, then
an index ! € {1,...,k} can be given such that & ,&y1,...,& € I;. Then it
is easy to see — as in the proof of Corollary [6.5] - that f generates the original
parenthetical expression of N numbers. We omit the details of this part.

The proof of Theorem(i) is complete. Note that all the periodic solutions
we constructed are slowly oscillatory. This property is needed to verify Theorem

R3] (i)

7. On the Floquet multipliers (The proof of Theorem [2.1}(ii))

Let us recall some facts from Floquet theory. Let 4 = 1 and suppose f: R —
R satisfies (H1). Suppose p : R — R is a nonconstant periodic solution of

equation
z(t)=—z(t)+ f(z(t-1)) (3.1)

with minimal period w € (1,2).

Consider the monodromy operator M = Ds® (w, pg). It is well-known that
Mo = z¢ for all ¢ € C, where z¥ : [-1,00) — R is the solution of the linear
variational equation

Ht)=—z()+ f(p(t—1)z(t—-1) (7.1)

with z§ = ¢. The solutions of (7.I)) are given by the variation-of-constants
formula:

2% (t) = e" 2% (n) + / e (p(s—1)) 2% (s —1)ds (7.2)

for all nonnegative integers n and ¢ € [n,n + 1].

As mentioned in the introduction, M is a compact operator, and 0 belongs
to its spectrum ¢ = o (M). Eigenvalues of finite multiplicity form o (M) \ {0}.
These eigenvalues are called Floquet multipliers. As p is a nonzero solution of
the variational equation (7.I), 1 is a Floquet multiplier with eigenfunction po.
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The periodic orbit O, = {p;: ¢t € [0,w)} is said to be hyperbolic if the gener-
alized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional,
furthermore there are no Floquet multipliers on the unit circle besides 1.

The Floquet multipliers are invariant under the time shifts of p. If a # ¢
and b # d, then the Floquet multipliers are also invariant under the linear
transformation L, .4 .q mapping a to ¢ and b to d: Consider the periodic
function ¢: R — R defined by ¢ (t) = Ly—p,c—qp (t), t € R. Then q is a periodic
solution of g (t) = —y (t) + g (y (¢ — 1)), where

g: Rouw— La~>b,c~>df (Lb%a,d%cu) eR.

As ¢’ (q(t—1)) = f'(p(t—1)) for all t € R, we see that the monodromy op-
erator corresponding to ¢ and g is also determined by the linear variational
equation , i.e., it is the same as the monodromy operator corresponding to
pand f.

Let

D:={peC:p(s)>0forall sel01]} and  D:={peD:p(0)>0}.
The interior of D is

Bz{goec:cp(s)>0foralls€[0,1]}.

The formula shows that M (D) C D and M (5) C D. Furthermore, we
see from that for each ¢ € D, the function [0,00) 3 t — €2 (t) € R is
nondecreasing. In particular, z¥ (t) > e ¢ (0) for all ¢ € D and t > 0.

We know from paper [I7] of Mallet-Paret and Sell or from Appendix VII
of monograph [14] of Krisztin, Walther and Wu that O, has a real Floquet
multiplier A; > 1 with a strictly positive eigenvector vy if f'(u) > 0 for all
u € R. Modifying the argument shown in [14], one can prove the same assertion
under the weaker assumption f' (u) > 0, u € R. Here we give the proof only for
the sake of completeness.

7.1. Assume that f: R — R satisfies (H1), and p: R — R is a periodic solution
of equation (3.1) with minimal period w € (1,2). Then there exists A > 1 and

@ € D such that My = Ap.

Proof. The first step of the proof is to show that A > 0 and ¢ € D can be given
with My = Ap. Consider the closed, convex and bounded set

A={peD: p(0)=1, [-1,0] >t —~ e'p(t) € R is nondecreasing} C D.

If p € A, then My = 2% € D, and [-1,0] 5 t — e'2¢ (t) € R is nondecreasing.
So the map

1
T: Asp—» ——MpeC
2% (w)

40



1055

1060

1065

1070

1075

1080

1085

is continuous and has range in A. Using the variation-of-constants formula
(7:2), one can derive a uniform bound for all |2¢ (t)|, t € [-1,w], ¢ € A. Then
equation yields a uniform bound for |2% (¢)|, t € [0,w], » € A. Also note
that z¥ (w) > e~“. Hence the derivatives

C1e) (1) =

2¥ (t A, te[-1,0
@) (t+w), e tel[-10],
are also uniformly bounded. By the Arzela—Ascoli theorem, T'(A) C A is pre-
compact. The Schauder fixed point theorem yields that 7" has a fixed point,
that is, there exists ¢ € A so that My = 2% (w) ¢. Set A = 2% (w). We have
already pointed out that A > 0. In addition,

1 o

The next step is to verify that A > 1. First assume that A € (0,1). Then
@ +epo € D for some ¢ > 0 and M™ (p+epg) = A"p +¢epo — €po ¢ D
as n — oo, which contradicts the fact that M (D) C D. Next assume that
A = 1. We may suppose (by shifting p if necessary) that p(0) > 0. Choose

r > 0 such that ¢ + rpg € D\D, i.e., ¢ (s) +rpo (s) > 0 for all s € [-1,0] and
there exists s* € [—1,0] with ¢ (s*) + rpo (s*) = 0. Then, on the one hand,

M (¢ +rpo) = ¢+ rpo € D\D. On the other hand, ¢ (0) + rpo (0) > 0, hence

p+rpy € D and M (¢ + rpo) € D. We have obtained a contradiction. Therefore
A> 1 O

Regarding the location of the Floquet multipliers, Theorem (ii) states
more than Proposition [7.1]

We need Poincaré return maps. Let a closed linear subspace H C C of
codimension 1 be given so that py € H and pg ¢ H. As before, let & denote the
solution semiflow corresponding to (3.1), and let 2% denote the solution of
with initial segment . An application of the implicit function theorem yields a
convex bounded open neighborhood N of py in H, v € (0,w) and a C'-map ~ :
N = (w—v,w+ v) with v (pg) = w so that for each (t,¢) € (w —v,w + V)X N,
segment x7 belongs to H if and only if ¢ = v(¢) (see [3| 6] and Appendix I in
[14]). The Poincaré map P is given by

P:N>3p— @ (y(p),p) € H.

Then P is continuously differentiable, and pq is a fixed point of P. In addition,
P depends smoothly on the right hand side of [6].

Let o (DP (pg)) denote the spectrum of DP (pg) : H — H. We obtain from
Theorem XIV.4.5 in [3] that o (DP (po)) \ {0,1} = o (M) \ {0,1}. For every
A € 0 (M)\{0,1}, the projection along Rpy onto H defines an isomorphism from
the realified generalized eigenspace of A and M onto the realified generalized
eigenspace of A and DP (pg). This means that A\ # 1 is a simple Floquet
multiplier if and only if X is a simple eigenvalue of DP (pg). By Theorem
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XIV.4.5,1 ¢ o(DP (py)) if and only if the generalized eigenspace associated
with 1 and M is one-dimensional. It follows that O, is hyperbolic if and only if
DP (pg) has no eigenvalues on the unit circle.

The periodic solutions in the proof of Theorem [2.1] all arise in the form
Lo—sp,c—qp, where a # ¢, b # d, and p : R — R is given by Proposition
For this reason let us consider a nonlinearity f € F (K) with K > Ky and
the periodic solution p : R — R of Proposition [{.1] The initial function of p
is po = X (a*), where a* is defined by (£.19). In the following let us use any
other notation introduced in Section [ Recall that the minimal period of p
isw=7+4+1¢€ (1,2). By construction, po € H = {p € C: p(—1) =0} and
po ¢ H. Consider the corresponding Poincaré map P.

Since P is C'-smooth and has fixed point ¥ (a*), there exists a convex open
neighborhood N C N of py in H so that P2 = P o P is defined on N. We will
use the following observation regarding the range of P?2.

7.2. Consider the periodic solution p: R — R of Proposition[f.1l There exists
an open neighborhood V.C N of py in H so that if o € V, then P2 (p) € ¥ (U?).

Proof. If ¢ — pg in C-norm, then x{ — p; in C'-norm. Hence if ¢ € V, where
V is an appropriate open ball in H centered at pg, then #;,%5,%3,t4 € R can be
given close to tq,ts, 13,4, respectively, such that

—1 <t <ty <ts <0<t +1< 1y,

p(t) =@ (k) =1, ¢(ts) =2 (ta) = -1,
¢ (s) > 1for all s € (£1,%) and 2% (s) < —1forall s € (I3,14) .

It follows that z¥ is of type (K) on [t; +1,#3 4+ 1] and of type (—K) on
[ts + 1,24 + 1].

If V is small enough, then z¥ has a smallest positive zero T close to 7 €
(ta,t2 + 1) in the interval (f4,% +1). Moreover, since z¥ is of type (K) on
[t1,7] C [t1 + 1,8 + 1] and ¥ (£4) = —1, it is of type (K, —1) on [t4 + 1,7 + 1].

Observe that P (¢ ) = z£, |, and we have already verified that

(a) P(p)(=1) = )

(b) P (p) is oftype (K) on [-1,& — 7],
(¢) P(yp) is of type (—K) on [t3 — 7,14 — 7],

(d) P (¢) is of type (K,—1) on [t, —7,0].

If we set s = to — 7, s = t3 — 7 and s3 = t4 — T, properties (a) — (d)
resemble properties (i), (11), (iv) and (v) of Remark 4.2 - However, for any
small neighborhood V' of py in H, one can find ¢ € V so that the equality
s2 = s1 + T4 is not satisfied. Regarding condition (iii) in Remark we also
cannot guarantee that P () is of type (—K, 1) on [s1, s2]. Hence it may happen
that P (¢) ¢ X (U') and thus P (¢) ¢ = (U?).

By construction, p(t3+1) > 1 and p(t4 +1) < —1. Therefore we may
achieve, by shrinking the radius of V, that 2¥ (f3 + 1) > land 2% (4 + 1) < —1.
In other words, we may achieve that P (p) ({3 —7) > 1 and P (¢) (fa —7) <
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—1. For such initial function ¢, let J C [t5 — 7,%4 — 7] denote the subinterval
mapped by P (¢) onto [—1,1]. By property (c), P (¢) is of type (—=K) on J.
It follows that the length of J is 71, and 27(¥) is of type (—=K,1) on J 4+ 1 =
{t+1:te J}. Repeating the argument above, now it is easy to see that if
we take the neighborhood V small enough, then P? () satisfies all conditions
(i)-(v) of Remark

Using the smooth dependence of solutions on initial data and decreasing the
radius of V further, we can achieve that P? (p) satisfies conditions (vi)-(vii) of
Remark [1£.5] and thus P2 (¢) € X (U?). O

Let us recall Proposition 4.3 from [II].

7.3. Suppose that Uy and Uy are open subsets of R™, Uy C Uy and ug € Uy. Let
X be a real Banach space, Vy, V1 be open subsets of X with Vi C Vg, and let
xo € V1. Assume that the maps

Q:Uy —>R*" R:Uy—~ X, S:Vy—> X

are C'-smooth, Q (uo) = uo, R (uo) = zo, S (x0) = o, Q (Us) C Uy, S(V1) C
R(Uy) C Vo, moreover, DR (ug) € L (R™,X) is injective and S (R (u)) =
R(Q (u)) for all w € Uy. Then

0 (DS (z0)) = {0} Uo (DQ (uo)) ,

and for each A € o (DS (z0)) \ {0}, the corresponding generalized eigenspaces of
DS (zg) and DQ (ug) have the same dimension.

Now we are in position to complete the proof of Theorem [2.1]

Proof. [Proof of Theorem [2.1](ii)] Recall that all the periodic solutions deter-
mined in the proof of Theorem 2.1} (i) are slowly oscillatory. They can be written
in the form L,y c—qp, where a # ¢, b # d, and p : R = R is given by Proposi-
tion[£1] As the Floquet multipliers are invariant under such linear transforma-
tions, it suffices to prove that the periodic orbits given by Proposition are
hyperbolic and have exactly one real Floquet multiplier outside the unit circle.
We show that this Floquet multiplier is greater than 1 and simple.

Set X = H and m = 1. Choose ug to be the fixed point a* of F in U® given
by , and let 79 = pg = ¥ (a*). Let Uy be the open set on which F2 = FoF
is defined:

U ={aeU?: F(a) e U*}.

Choose Vy = V, where V is the open neighborhood of zg = py in H given by
Proposition [7.2} Set

Z/llz{aeugz F2(a)el/{0 andE(a)GVO}.

Then Uy C Uy is open and ug € Uy. Let Vi C Vy be an open ball with ¢ € V;
and P? (V1) C £ (Uy). This set exists because P? (zg) = zo € ¥ (Uy), P? is

43



1165

1170

1175

1180

1185

1190

1195

1200

continuous, P? maps V, into X (U3) by Proposition , and ¥ (U;) is an open
subset of X (U?).
Define

Q=F:Uy—R, R=Y:Uy—H, S=P:V,— H.

Proposition shows that @ is C''-smooth, Proposition gives that R is C'-
smooth and DR (up) is injective. The map S is also smooth. Clearly @ (up) =
ug, R(ug) = xo and S (xg) = xg, moreover, Q (Uy) C Uy, R(Uy) C Vo and
S (V1) C R(Uy) hold. Tt is also clear that S (R (u)) = R(Q (u)) for all v € U;.
As () is a one-dimensional map, Proposition yields that DS (zg) has
at most one nontrivial eigenvalue which is simple. It follows that DP (z,) =
DP (po) also has at most one nontrivial eigenvalue which is simple. (Indeed, if
u is an eigenvalue of DP (zg), then p? is an eigenvalue of DP (zg) o DP (xg) =
DP? (zg) = DS (z0), and the generalized eigenspace of DP () associated to
i is a subset of the generalized eigenspace of DS (x¢) associated to u2.) On the
other hand, from o (DP (pg))\ {0,1} = o (M) \ {0, 1} and from Proposition
it follows that DP (pg) has at least one real eigenvalue that is greater than 1.
Summing up, DP (pg) has exactly one nontrivial eigenvalue A, which is simple,
real and greater than 1. O

Notice that, although we used Proposition with Q = F?, we could avoid
calculating DF (a*) with the aid of Proposition

8. Perturbations of the feedback function

For U C R open, let C} (U,R) denote the space of bounded continuously
differentiable functions g : U — R with bounded first derivative. We consider
the usual C'-norm on C} (U,R). The nonlinearity constructed in the proof of
Theorem [2.1] belongs to C} (R, R).

The following proposition is a particular case of a more general theorem of
Lani-Wayda [6]. This result is the key to our second main theoerm considering
perturbed nonlinearities.

8.1. Assume that up >0, f € C,} (R,R) and p is a periodic solution of equation
with minimal period w > 1 such that O, = {p;: t € [0,w)} is hyperbolic.
Let a closed linear subspace H C C of codimension 1 be given so that py € H
and po ¢ H. Let U C R be open with {p(t) : t € [0,w)} C U. Then there exists
an open ball B C C}(U,R) centered at f, an open neighborhood V of po in H
and a C'-function x : B — V C H with x (f) = po such that for g € B, the
solution " of

E(t) = —pa(t) + g (z(t — 1)) (8.1)
with initial value x (g) is periodic (and therefore can be defined on R). The
minimal period of 2 is in (w—v,w+v) with somev >0. If g € B, and ¢ €
V' is the initial segment of any periodic solution of with minimal period in
(w—v,w+v), then o = x(9)- If llg = Fllczwm — 0, then x(9) = x (f) =po
in C.
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The hyperbolicity of the periodic orbits implies that Theorem remains
true for certain perturbations of the feedback function. The second main result
of the paper is the following.

8.2. Fiz a parenthetical expression of N numbers, where N > 2. Set u and f
so that (HO), (HO) and (H2) are satisfied, and Theorem [2.1] holds. Then there
ezists an open subset U C R and an open ball B C C}(U,R) centered at f such
that Theorem [2.1) remains true for all nondecreasing g € B.

Proof. Consider a parenthetical expression of N > 2 numbers, y and f as given
in the theorem.

Even if we do not distinguish those periodic solutions that can be obtained
from each other by translation of time, we cannot exclude that equation has
an infinite number of large-amplitude slowly oscillatory periodic solutions. First
we select a finite number of them. Choose r > 0 and slowly oscillatory periodic
solutions p',p%,...,p": R = R so that whenever the numbers i,i + 1,...,
are enclosed by a pair of parentheses (not containing further numbers) in the
expression under consideration, then an index k € {1,2,...,r} can be given such
that p* is an [i, j] periodic solution. By our initial assumption, these solutions
can be chosen such that the corresponding orbits are hyperbolic and have one
real Floquet multiplier outside the unit circle, which is simple and greater than
1.

Fix an open subset U C R containing all the fixed points of f and including
the ranges of p',p?,...,p".

It is clear that if g € C} (U,R) is close to f in C}-norm, then has the
same amount of equilibria with the same stability properties. Moreover, if

§<&<.. <€y and @<E<...<&

denote the unstable fixed points of f and g, respectively, then

Let k € {1,2,...,r} be arbitrary. Set 1 < i < j < N such that p* is
an [i, ] periodic solution. As the minimal period of p* is greater than 1, and
the corresponding orbit is hyperbolic, it comes from Proposition and
that a ball B, C C}(U,R) centered at f can be given such that for all g €
By, equation also has a periodic solution p*9: R — R oscillating about

{60 4,-.-,¢&] and no other unstable fixed points of g. By Proposition

we may assume that the minimal period of p*9 is in (1,2). Remark shows
that if ¢ € By, is nondecreasing, then p*9 is slowly oscillatory. As the Floquet
multipliers depend continuously on the feedback function, we may also assume

& - &

—0 forallie{l,...,N} as |lg — f||C§(U7R) — 0. (8.2)

that Ope,s = {pf’g: te ]R} has exactly one Floquet multiplier outside the unit

circle, which is real, greater than 1, and simple.
It remains to exclude the existence of unrequested large-amplitude periodic
solutions. Suppose for contradiction that for some 1 <14 < j < N, the numbers
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1,7+ 1,...,7 are not enclosed by a pair of parentheses, and there exists a se-
quence (g").., of nondecreasing functions in N}_, By, such that for all n > 1,
lg" = fllc; < 1/n holds, and equation

& (t) = —px (t) + 9" (z (t = 1)) (8.3)

has a large-amplitude periodic solution ¢": R — R oscillating about ffn , ff_:l, e ,{fﬂ
and no other unstable fixed point of g".
We can easily confirm that the minimal period w™ > 0 of ¢" is smaller than
2 for each n > 1. Consider Proposition(i)f(ii) with p=¢" and x =&/ . We
may suppose, by considering a suitable time translate of ¢", that ¢" (t) > ff"
for t € [0,v™] and ¢" (¢) < §fn for t € (v",w™) with some v™ € (0,w"). Ifv™ >1
for some n, then Proposition would imply that ¢™ (t) > ffn for all ¢t > v™,
which is impossible. So v < 1. Similarly, w™ — v™ < 1. Summing up, w” < 2.
Since
suplg” (2) < llg"llcy < Mfllp +1, n2>1,
z€R

Proposition yields that [lg;"|| < [|fllc; +1 for all n > 1 and ¢ € R. Then

(8.3) gives a uniform upper bound for ||¢}||, » > 1, t € R. The Arzela—Ascoli
theorem hence implies the existence of a subsequence (q"k)zoz1 that converges
to a continuous function ¢ : R — R as k — oo uniformly on each compact subset
of R. As (w™),°, is bounded, we may suppose that w™ — w > 0 as k — oc.
It is easy to see (e.g., by using the variation-of-constant formula) that ¢ is a
periodic solution of with minimal period w. It is also clear that ¢ is an
[i, 7] periodic solution of . As f generates the parenthetical expression, we
arrived at a contradiction.

It follows that exists an open ball B C Ni_, B centered at f such that
equation admits exactly the required large-amplitude periodic solutions
for all nondecreasing g € B, i.e., Theorem [2.1] remains true for all nondecreasing
g€ B. O

9. Closing remarks

9.1. The unstable sets of the periodic orbits

Consider a strictly increasing nonlinear function ¢ € B and any large-
amplitude slowly oscillatory (LSOP) solution p: R — R given by Theorem
As the orbit O, = {p;: t € R} is hyperbolic, and it has exactly one Floquet
multiplier outside the unit circle, we expect the unstable set

W (0,) ={p € C: z¥ exists on R and z{ — O, as t - —oo}

to be a two-dimensional C'-submanifold of C. Let f, and CA+ denote the stable
equilibria with the property that {_ is the maximal fixed point of g with {_ <
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mingeg p (t) and ¢4 is the minimal fixed point of g with {y > maxyer p (t). We
claim that W* (O,p) \Op, is the union of the two-dimensional heteroclinic sets

C”i:{chW“(Op): ¥ = ast—>oo}

and .
Cf_:{QOEWU(Op): xf—)(+ast—>oo}.

9.2. The exact number of LSOP solutions

Let us call two periodic solutions p: R — R and ¢: R — R significantly
different if no constant T' € R can be given such that p(t +T) = ¢(t) for all
teR.

Our main results (Theorem 2.1 or Theorem have not discussed the exact
number of significantly different slowly oscillatory [i, j] periodic solutions in the
case when we do have [i,j] periodic solutions. In general we cannot expect
uniqueness. For N = 2, the paper [I1] has given two slowly oscillatory [1,2]
periodic solutions, and the periodic orbit corresponding to the first solution
has three Floquet multipliers outside the unit circle, while the second one has
only one. It is an open question whether there exist slowly oscillatory [1, j]
periodic solutions for 5 > 3 such that the corresponding orbit have more than
one Floquet multiplier outside the unit circle.

Although we cannot guarantee uniqueness, we can guarantee the existence
of an arbitrary number of [i,j] solutions. This statement can be formulated
precisely as follows. Fix N > 2 and a parenthetical expression of N num-
bers. Assign an arbitrary positive integer k; ; to all numbers ¢ and j such that
1 <i < j < N and the integers 7,7 + 1,...,j are enclosed by a pair of paren-
thesis not containing further numbers. Then there exists p and f satisfying
(HO0)—~(H2) such that Theorem [2.1]holds with the addition that if there is a pair

of parentheses in the expression that contains only the numbers i,¢+ 1,...,7,
then equation (|1.1) has at least k; ; significantly different [i, j] periodic solutions
P1,P2,- -5 Pk; ;-

We do not intend to give a rigorous proof. We indicate the idea by giving a
nonlinearity f* for all k > 1 such that f* satisfies (H1) and (H2), f* generates
(12...N), and equation has LSOP solutions py, pa, ..., pr With (&1,&n) C
p (R) € p2(R) € ... € pg (R). This construction goes by induction on k. If
k =1, then we are ready by Propositions [5.4 and [5.5] Suppose we have already
obtained the nonlinearity f* for some k& > 1. Then define f**! as

K, z < minpg (R) — 7

p1 (f¥(x)), =€ (minpy (R) — 7, minpy (R))
TR 20 < fF (2), z € pi (R)

p2 (f¥(2)), =€ (maxpy (R),maxpy (R) + n)

K, x > maxpy, (R) + 17,
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where 5 > 0 is small, and K, K5, p; and ps are defined so that f**': R = R
satisfies (H1) and (H2), furthermore

p1 (fk (z)) < f¥(z) < z for all z € (minp; (R) — 5, min py, (R))
and
p2 (f¥ (z)) > f* () > z for all z € (max py, (R) , maxpy, (R) + 7).

Using the techniques of this paper, it is easy to see that — with suitably chosen
n, K1, Ky, p1 and p, — function f**! possesses the required properties.

9.8. Further periodic solutions

A periodic solution of is said to have small amplitude if it oscillates
only about one unstable fixed point of f,: R 3 uw — f(u) /p € R. It is easy
to guarantee the existence of such solutions: We know that as f' (;) increases
for some ¢ € {1,..., N}, small-amplitude periodic solutions oscillating about &;
appear via a series of Hopf bifurcations [8], [14], [I5]. However, it is an open prob-
lem whether we can ensure their nonexistence for the nonlinearities discussed
in the paper. A related result on the nonexistence of small-amplitude periodic
solutions is found in [13].

This paper has not studied the existence of large-amplitude rapidly oscil-
latory periodic (LROP) solutions either. We call a solution z: [—1,00) = R
rapidly oscillatory if for any fixed point x of f, in the range z (R) of z, the
function [-1,00) 3 t = z (t) — x € R has at least three sign changes on each
interval of length 1. We conjecture that the existence of LROP solutions can
be excluded for the nondecreasing feedback functions in Theorems [2.3] and [8:2]
by refining our construction. It would suffice to show that if K > Kj is not too
large in Proposition and f € F (K) is nondecreasing, then equation
has no periodic solutions with minimal period smaller than 1.

Acknowledgments. Gabriella Vas was supported by the Postdoctoral Fel-
lowship Programme of the Hungarian Academy of Sciences and by the Hungar-
ian Scientific Research Fund, Grant No. K109782. The author would like to
thank Tibor Krisztin, for calling her attention to the problem discussed in the
paper. The author also thanks Judit Nagy-Gyorgy and Szabolcs Ivan, for deter-
mining formula for Cy.

[1] Brualdi, Richard A. Introductory combinatorics. Fifth edition.
Pearson Prentice Hall, Upper Saddle River, NJ, 2010.

[2] Y. Cao, Uniqueness of periodic solution for differential delay equa-
tions, J. Differential Equations 128 (1996), 46-57.

[3] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H.-
O. Walther, Delay equations. Functional, complex, and nonlinear
analysis, Springer-Verlag, New York, 1995. [7]

48



1345

1350

1355

1360

1365

1370

1375

1380

[4]

[12]

[13]

[14]

[15]

[16]

J. K. Hale, Asymptotic behavior of dissipative systems, American
Mathematical Society, Providence, RI, 1988. [2]

J. K. Hale, Ordinary differential equations, Interscience, New York,

1969. @, B.1]

B. Lani-Wayda, Persistence of Poincaré mappings in functional
differential equations (with application to structural stability of
complicated behavior), J. Dynam. Differential Equations 7 (1995),

1-71. [} B

G. Kiss, J.-P. Lessard, Computational fixed-point theory for dif-
ferential delay equations with multiple time lags, J. Differential
Equations 252 (2012), no. 4, 3093-3115.

T. Krisztin, Global dynamics of delay differential equations, Pe-
riod. Math. Hungar. 56 (2008), 83-95.

T. Krisztin, Unstable sets of periodic orbits and the global attrac-
tor for delayed feedback, in: T. Faria, P. Freitas (Eds.), Topics in
functional differential and difference equations, Fields Inst. Com-
mun., 29, Amer. Math. Soc., 2001.

T. Krisztin, The unstable set of zero and the global attractor for
delayed monotone positive feedback, Discrete Contin. Dynam. Sys-
tems, Added Volume (2000), 229-240.

T. Krisztin and G. Vas, Large-amplitude periodic solutions for dif-
ferential equations with delayed monotone positive feedback, J.
Dynam. Differential Equations 23 (2011), no. 4, 727-790.

B E 1 P-2

T. Krisztin and G. Vas, The unstable sets of periodic orbits for
delayed positive feedback, J. Dynam. Differential Equations, in
press, DOI: 10.1007/s10884-014-9375-0.

T. Krisztin and H.-O. Walther, Unique periodic orbits for delayed
positive feedback and the global attractor, J. Dynam. Differential

Equations 13 (2001), no. 1, 1-57.

T. Krisztin, H.-O. Walther, and J. Wu, Shape, smoothness and
invariant stratification of an attracting set for delayed monotone
positive feedback, Amer. Math. Soc., Providence, RI, 1999. [1} 2

@@ B-3

T. Krisztin and Wu J, The global structure of an attracting set, in

preparation. [T} 2] 0-3]

J.-P. Lessard, Recent advances about the uniqueness of the slowly
oscillating periodic solutions of Wright’s equation, J. Differential
Equations 248 (2010), no. 5, 992-1016.

49



1385

1390

1395

[17]

[22]

J. Mallet-Paret and G. R. Sell, Systems of differential delay equa-
tions: Floquet multipliers and discrete Lyapunov Functions. J. Dif-
ferential Equations 125 (1996), 385-440.

J. Mallet-Paret and G. R. Sell, The Poincaré—Bendixson theorem
for monotone cyclic feedback systems with delay. J. Differential

Equations 125 (1996), 441-489.

R.D. Nussbaum, Uniqueness and nonuniqueness for periodic solu-
tions of z/(t) = —g(x(t — 1)), J. Differential Equations 34 (1979),
25-54. [

R. Szczelina, A computer assisted proof of multiple periodic orbits
in some first order non-linear delay differential equation, Electron.
J. Qual. Theory Differ. Equ. (2016), no 83, 1-19.

R. Szczelina, P. Zgliczyniski, Algorithm for rigorous integration of
delay differential equations and the computer-assisted proof of pe-
riodic orbits in the Mackey—Glass equation, arXiv:1607.01080.

G. Vas, Infinite number of stable periodic solutions for an equa-
tion with negative feedback, Electron. J. Qual. Theory Differ. Equ.
(2011), no. 18, 1-20.

30



