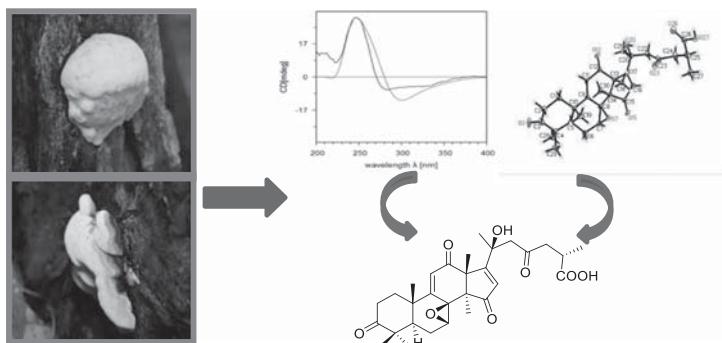


Graphical Abstracts/Fitoterapia 119 (2017) e1-e9

Highly oxygenated lanostane-type triterpenoids and their bioactivity from the fruiting body of *Ganoderma gibbosum*

Fitoterapia 119 (2017) pp. 1-7

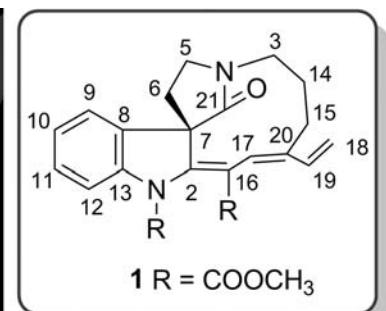

De-Bing Pu^{a,d,1}, Xi Zheng^{b,1}, Jun-Bo Gao^{a,d}, Xing-Jie Zhang^c, Yan Qi^b,
Xiao-Si Li^b, Yong-Mei Wang^{a,d}, Xiao-Nian Li^a, Xiao-Li Li^{c,*},
Chun-Ping Wan^{b,*}, Wei-Lie Xiao^{a,c,*}

^aState Key Laboratory of Phytochemistry and Plant Resources in West China,
Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201,
PR China

^bCentral Laboratory, The No. 1 Affiliated Hospital of Yunnan University of
Traditional Chinese Medicine, Kunming 650021, PR China

^cKey Laboratory of Medicinal Chemistry for Natural Resource, Ministry of
Education, School of Chemical Science and Technology, and State Key
Laboratory for Conservation and Utilization of Bio-Resources in Yunnan,
Yunnan University, Kunming 650091, PR China

^dUniversity of Chinese Academy of Sciences, Beijing 100049, PR China

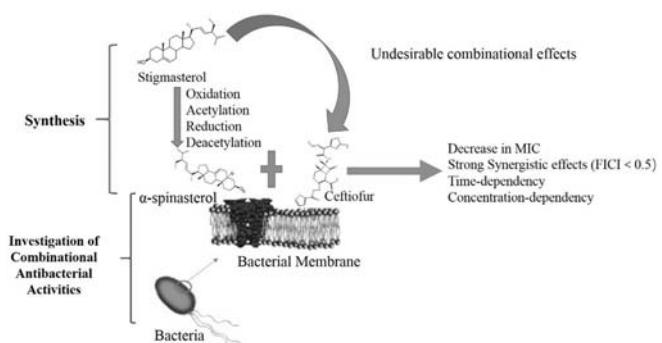

Three novel indole alkaloids from *Kopsia officinalis*

Fitoterapia 119 (2017) pp. 8-11

Zhi-Wei Wang^{a,*1}, Xiao-Jian Shi^{b,1}, Yan Mu^a,
Lei Fang^a, Yue Chen^a, Yun-Liang Lin^a

^aShandong Key Laboratory of TCM Quality Control
Technology, Shandong Analysis and Test Center, Shandong
Academy of Sciences, 19 Keyuan Street, Jinan, Shandong
250014, China

^bShanghai Institute of Materia Medica, Chinese Academy of
Sciences, Haik Road 501, Shanghai 201203, China


A novel method for synthesis of α -spinasterol and its antibacterial activities in combination with ceftiofur

Fitoterapia 119 (2017) pp. 12-19

Xiaomin Yang^a, Jianyu Zhou^a, Tao Wang^b, Ling Zhao^a, Gang Ye^a, Fei Shi^a,
Yinglun Li^{a,*}, Huaqiao Tang^a, Qi Dong^a, Xuerong Zhou^a, Min Xu^a, Qian Rong^a,
Helin Chen^a, Xiaoyu Yang^a, Yu Cai^a

^aDepartment of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural
University, Chengdu, Sichuan 611130, China

^bChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China

Four new bi-2-(2-phenylethyl)chromone derivatives of agarwood from *Aquilaria crassna*

Yang Yang^a, Wen-Li Mei^b, Fan-Dong Kong^b,
Hui-Qin Chen^b, Wei Li^b, Zhi-Bao Chen^{a,*},
Hao-Fu Dai^{b,**}

^aCollege of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, China
^bKey Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China

Chemical structures of four new bi-2-(2-phenylethyl)chromone derivatives (1, 2, 3, 4) are shown. Structure 1 has a 2-hydroxychromone core with a 2-(2-phenylethyl) group and a 7-OCH₃ group. Structure 2 has a 2-hydroxychromone core with a 2-(2-phenylethyl) group and a 7-OH group. Structure 3 has a 2-hydroxychromone core with a 2-(2-phenylethyl) group and a 7-OH group. Structure 4 has a 2-hydroxychromone core with a 2-(2-phenylethyl) group and a 7-OCH₃ group. A photograph of a piece of agarwood is shown next to a ruler for scale.

Inhibition of human CYP3A4 and CYP3A5 enzymes by gomisin C and gomisin G, two lignan analogs derived from *Schisandra chinensis*

Jin Zhao^a, Tao Sun^b, Jing-Jing Wu^{c,d},
Yun-Feng Cao^{c,e}, Zhong-Ze Fang^{d,f}, Hong-Zhi Sun^d,
Zhi-Tu Zhu^d, Kun Yang^f, Yong-Zhe Liu^f,
Frank J. Gonzalez^g, Jun Yin^{a,*}

^aSchool of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
^bDepartment of Breast Medicine, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
^cDalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
^dKey Laboratory of Liaoning Tumor Clinical Metabolomics (KLLTCM), Jinzhou, Liaoning, China.
^eKey Laboratory of Contraceptives and Devices Research (NPFFPC), Shanghai Engineer and Technology Research Center of Reproductive Health Drug and Devices, Shanghai Institute of Planned Parenthood Research, Shanghai, China
^fDepartment of Toxicology, School of Public Health, Tianjin Medical University, 22 Qixiangtai Road, Heping District, Tianjin 300070, China
^gLaboratory of Metabolism, Center for Cancer Research, National Institutes of Health, Building 37, Room 3106, Bethesda, MD 20892, USA

Chemical structures of Gomisin C (GC) and Gomisin G (GG) are shown. Both structures are tricyclic lignans with a central trisubstituted cyclohexene ring and two hydroxyl groups. Inhibition curves for CYP3A4 and CYP3A5 are plotted against Log (GC, μ M) and Log (GG, μ M). The curves show a concentration-dependent inhibition of both enzymes.

A new cineol derivative, polyphenols and norterpenoids from Saharan myrtle tea (*Myrtus nivellei*): Isolation, structure determination, quantitative determination and antioxidant activity

Amira Mansour^a, Rita Celano^b, Teresa Mencherini^b, Patrizia Picerno^b, Anna Lisa Piccinelli^b, Yazid Foudil-Cherif^a, Dezső Csúpor^c, Ghania Rahili^{d,e}, Nassima Yahi^e, Seyed Mohammad Nabavi^f, Rita Patrizia Aquino^b, Luca Rastrelli^{b,*}

^aUSTHB, University of Sciences and Technology Houari Boumediene, Faculty of Chemistry, BP 32 El-Alia, Bab Ezzouar, 16111, Algiers, Algeria
^bDipartimento di Farmacia, University of Salerno, Via Giovanni Paolo II, 132 84084 Fisciano, SA, Italy
^cUniversity of Szeged, Faculty of Pharmacy, Department of Pharmacognosy, 6720 Szeged, Eötvös u. 6, Magyarország, Hungary
^dINRF National Institute of Forest Research, BP 37 Bainem, Algeria
^eUSTHB, University of Sciences and Technology Houari Boumediene, Faculty of Biological Sciences, BP 32 El-Alia, Bab-Ezzouar, 16111, Algiers, Algeria
^fApplied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran

Myrtus nivellei leaves decoction and infusion

UHPLC-ESI-HRMS profile and NMR analysis

myricetin derivatives content and antioxidant activity

Fitoterapia 119 (2017) pp. 32–39

Scubatines A–F, new cytotoxic neo-clerodane diterpenoids from *Scutellaria barbata* D. Don

Qing-Qing Yuan^{a,b}, Wei-Bin Song^a, Wen-Qiong Wang^a, Li-Jiang Xuan^{a,*}

^aState Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haik Road, Shanghai 201203, PR China
^bUniversity of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China

Scutellaria barbata D. Don

Fitoterapia 119 (2017) pp. 40–44

Neolignans and serratane triterpenoids with inhibitory effects on xanthine oxidase from *Palhinhaea cernua*

Jing Li^{a,b}, Ping-Sheng Xu^a, Lei-Hong Tan^b, Zhen-Xing Zou^{a,b}, Yi-Kun Wang^b, Hong-Ping Long^b, Gan Zhou^a, Guang Li^b, Kang-Ping Xu^{b,*}, Gui-Shan Tan^{a,b,**}

^aXiangya Hospital of Central South University, Changsha 410008, PR China
^bXiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, PR China

Palhinhaea cernua

Fitoterapia 119 (2017) pp. 45–50

Spatial profiling of maytansine during the germination process of *Maytenus senegalensis* seeds

Dennis Eckelmann, Souvik Kusari*, Michael Spiteller*

Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany

Fitoterapia 119 (2017) pp. 51–56

Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of *Pseudomonas aeruginosa*

Stefan J. Kaiser¹, Nico T. Mutters¹, Brigitte Blessing, Frank Günther*

Heidelberg University Hospital, Department of Infectious Diseases, Germany

Fitoterapia 119 (2017) pp. 57–63

Prenylated flavonoids from the stems and roots of *Tripterygium wilfordii*

Yang Chen^a, Jianping Zhao^b, Yixing Qiu^a, Hanwen Yuan^a, Shabana I. Khan^b, Nusrat Hussain^{a,c}, M. Iqbal Choudhary^c, Feng Zeng^d, De-An Guo^d, Ikhlas A. Khan^b, Wei Wang^{a,*}

^aTCM and Ethnomedicine Innovation & Development Laboratory, Sino-Pakistan TCM and Ethnomedicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, PR China

^bNational Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University of Mississippi, University, MS 38677, United States

^cH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

^dShanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Medica, CAS, Shanghai 201203, China

Fitoterapia 119 (2017) pp. 64–68

New ursane-type triterpenoids from *Clerodendranthus spicatus*

Yong Luo^{a,b,1}, Li-Zhi Cheng^{b,c,1}, Qi Luo^{b,d,1}, Yong-Ming Yan^b, Shu-Mei Wang^c, Qin Sun^{a,*}, Yong-Xian Cheng^{b,*}

^aSouthwest Medical University, Luzhou 646000, PR China
^bState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China
^cGuangdong Pharmaceutical University, Guangzhou 510069, PR China
^dUniversity of Chinese Academy of Sciences, Yuquan Road 19, Beijing 100049, PR China

Fitoterapia 119 (2017) pp. 69–74

Chemical structures of compounds 1-6 are shown, along with a photograph of the plant Clerodendranthus spicatus.

Six new sesquiterpenoids from *Nardostachys chinensis* Batal

Xiuyu Shen^a, Yang Yu^b, Guo-dong Chen^b, Hua Zhou^c, Jin-fang Luo^c, Yi-han Zuo^c, Xin-sheng Yao^{a,b,*}, Yi Dai^{b,**}

^aCollege of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
^bInstitute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
^cKey Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, People's Republic of China

Fitoterapia 119 (2017) pp. 75–82

Chemical structures of compounds 1-6 are shown, along with a photograph of the plant Nardostachys chinensis Batal (Valerianaceae) and a bar graph showing the effect of compounds 1-2, 4-6 on iNOS and COX-2 protein expression in LPS-stimulated RAW264.7 cells.

New amides from seeds of *Silybum marianum* with potential antioxidant and antidiabetic activities

Ning-bo Qin^{a,b}, Cui-cui Jia^{a,b}, Jun Xu^{a,b}, Da-hong Li^{a,b}, Fan-xing Xu^c, Jiao Bai^{a,b}, Zhan-lin Li^{a,b,*}, Hui-ming Hua^{a,b,*}

^aKey Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, People's Republic of China
^bSchool of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, People's Republic of China
^cWuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, People's Republic of China

Fitoterapia 119 (2017) pp. 83–89

Photograph of Silybum marianum seeds and chemical structures of the isolated amides.

Chlorajaponols A-F, sesquiterpenoids from *Chloranthus japonicus* and their *in vitro* anti-inflammatory and anti-tumor activities

Zhi-Guo Zhuo^{a,1}, Guo-Zhen Wu^{a,1}, Xin Fang^a, Xin-Hui Tian^a, Hong-Yuan Dong^a, Xi-Ke Xu^a, Hui-Liang Li^a, Ning Xie^c, Wei-Dong Zhang^{a,b,*}, Yun-Heng Shen^{a,b,*}

^aDepartment of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, PR China
^bShanghai Institute of Pharmaceutical Industry, Shanghai 200433, PR China
^cState Key Laboratory of Innovative Natural Medicine and TCM Injections, PR China

Fitoterapia 119 (2017) pp. 90–99

Chemical constituents from the whole plants of *Pilea cavaleriei* Lev. subsp. *cavaleriei*

Yong Zhou^{a,b}, Ling-Yu Li^c, Heng-Chun Ren^a, Ri-Dong Qin^a, Qin Li^a, Peng-Fei Tu^a, Gui-Fang Dou^b, Qing-Ying Zhang^{a,*}, Hong Liang^{a,*}

^aState Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, PR China
^bState Key Laboratory of Drug Metabolism, Laboratory of Hematological Pharmacology, Beijing Institute of Transfusion Medicine, Beijing 100850, PR China
^cInstitute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, PR China

Fitoterapia 119 (2017) pp. 100–107

Antibacterial secondary metabolites from an endophytic fungus, *Fusarium solani* JK10

James Oppong Kyekyeku^{a,b}, Souvik Kusari^{b,*}, Reimmel Kwame Adosraku^a, Anke Bullach^b, Christopher Golz^c, Carsten Strohmann^c, Michael Spiteller^{b,*}

^aDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
^bInstitute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Otto-Hahn-Straße 6, 44221 Dortmund, Germany
^cInorganic Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund, Otto-Hahn-Straße 6, D-44221 Dortmund, Germany

Fitoterapia 119 (2017) pp. 108–114

Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells

Lenka Roubalová^{a,b}, Albena T. Dinkova-Kostova^c, David Biedermann^d, Vladimír Křen^d, Jitka Ulrichová^{a,b}, Jiří Vrba^{a,b,*}

^aDepartment of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic

^bInstitute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic

^cJacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, Scotland, UK

^dInstitute of Microbiology, Laboratory of Biotransformation, Czech Academy of Sciences, Vídeňská 1083, Prague 14220, Czech Republic

Fitoterapia 119 (2017) pp. 115–120

Experimental and theoretical calculation studies on the structure elucidation and absolute configuration of calyxins from *Alpinia katsumadai*

Xiao-Bing Wang^a, Chang-Shui Yang^{a,b,c}, Jian-Guang Luo^a, Chao Zhang^a, Jun Luo^a, Ming-Hua Yang^a, Ling-Yi Kong^{a,*}

^aState Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China

^bMedical school, Yangzhou University, 11 Huaihai Ave., Yangzhou 225001, PR China

^cJiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 88 South University Ave., Yangzhou 225009, PR China

Fitoterapia 119 (2017) pp. 121–129

Triterpenoids and iridoids from *Patrinia scabiosaeifolia*

Zhen-Hua Liu^{a,b,c}, Rui-Jing Ma^{a,b,c}, Liu Yang^{a,c}, Jìn-Yu Li^{a,b,c}, Bo Hou^{a,b,c}, Jiang-Miao Hu^{a,c,*}, Jun Zhou^{a,c,*}

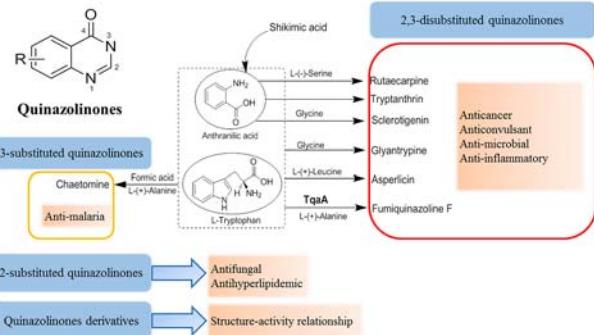
^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

^bUniversity of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^cYunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

Fitoterapia 119 (2017) pp. 130–135

Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives

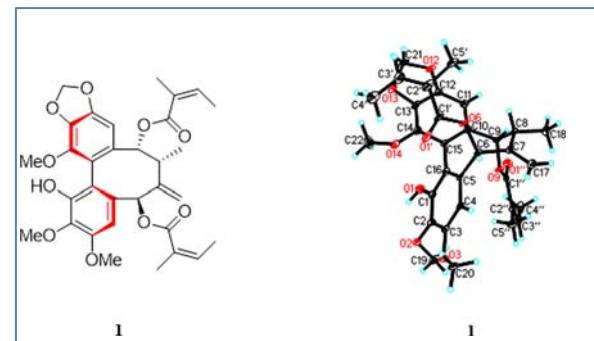

Dan He^a, Menglei Wang^a, Siyu Zhao^a, Yisong Shu^a, Honglian Zeng^a, Cheng Xiao^{b,*}, Cheng Lu^{c,d,**}, Yuanyan Liu^{a,*}

^aSchool of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China

^bInstitute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China

^cInstitute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China

^dSchool of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, S.A. 00825, China


Dibenzocyclooctadiene lignans from *Kadsura heteroclita*

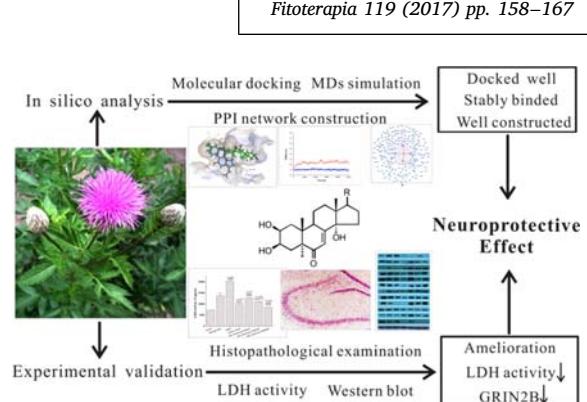
Yuan-Qing Luo^{a,b}, Miao Liu^{a,b}, Jin Wen^c, Wei-Guang Wang^a, Kun Hu^{a,b}, Xiao-Nian Li^a, Xue Du^a, Jian-Xin Pu^{a,*}, Han-Dong Sun^{a,*}

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, People's Republic of China

^bUniversity of the Chinese Academy of Sciences, Beijing 100049, People's Republic of China

^cYunnan Academy

Ecdysterones from *Rhaponticum carthamoides* (Willd.) Iljin reduce hippocampal excitotoxic cell loss and upregulate mTOR signaling in rats


Jiming Wu^a, Le Gao^a, Lei Shang^b, Guihua Wang^a, Nana Wei^a, Tiantian Chu^a, Suping Chen^a, Yujun Zhang^a, Jian Huang^{a,*}, Jinhui Wang^{a,c,*}, Ruichao Lin^{a,d,***}

^aSchool of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China

^bCollege of Basic Medical Science, Shenyang Medical College, Shenyang 110034, China

^cCollege of Pharmacy, Shihezi University, Shihezi 832002, China

^aSchool of Traditional Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China

Cyclooxygenase inhibitory compounds from *Gymnosporia heterophylla* aerial parts

Charles O. Ochieng^{a,*}, Sylvia A. Opiyo^a,
Edward W. Mureka^a, Ismail O. Ishola^b

^aDepartment of Chemistry, Maseno University, Private Bag 40105, Maseno, Kenya
^bDepartment of Pharmacology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, P.M.B. 12003 Lagos, Nigeria

Fitoterapia 119 (2017) pp. 168–174

Chemotaxonomic and biosynthetic relationships between flavonolignans produced by *Silybum marianum* populations

Sameh F. AbouZid^{a,*}, Hayam S. Ahmed^a, Abeer S. Moawad^a,
Asmaa I. Owis^a, Shao-Nong Chen^{b,c},
Amandine Nachtergael^c, James B. McAlpine^c,
J. Brent Friesen^{c,d}, Guido F. Pauli^{b,c}

^aDepartment of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62111, Egypt
^bUIC/NIH Center for Botanical Dietary Supplements Research, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., M/C 781, Chicago, IL 60612, United States
^cDepartment of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 S. Wood St., M/C 781, Chicago, IL 60612, United States
^dPhysical Sciences Department, Rosary College of Arts and Sciences, Dominican University, 7900 West Division Street, River Forest, IL 60305, United States

Fitoterapia 119 (2017) pp. 175–184