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Abstract In the paper [Large-amplitude periodic solutions for di�erential equations

with delayed monotone positive feedback, JDDE 23 (2011), no. 4, 727�790], we have

constructed large-amplitude periodic orbits for an equation with delayed monotone

positive feedback. We have shown that the unstable sets of the large-amplitude

periodic orbits constitute the global attractor besides spindle-like structures. In this

paper we focus on a large-amplitude periodic orbit Op with two Floquet multipli-

ers outside the unit circle, and we intend to characterize the geometric structure

of its unstable set Wu (Op). We prove that Wu (Op) is a three-dimensional C1-

submanifold of the phase space and admits a smooth global graph representation.

WithinWu (Op), there exist heteroclinic connections from Op to three di�erent peri-
odic orbits. These connecting sets are two-dimensional C1-submanifolds ofWu (Op)
and homeomorphic to the two-dimensional open annulus. They form C1-smooth

separatrices in the sense that they divide the points of Wu (Op) into three subsets

according to their ω-limit sets.
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1. Introduction

Consider the delay di�erential equation

(1.1) ẋ (t) = −µx (t) + f (x (t− 1)) ,

where µ is a positive constant and f : R→ R is a smooth monotone nonlinearity.
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The natural phase space for Eq. (1.1) is C = C ([−1, 0] ,R) equipped with the

supremum norm. For any ϕ ∈ C, there is a unique solution xϕ : [−1,∞) → R of

(1.1). For each t ≥ 0, xϕt ∈ C is de�ned by xϕt (s) = xϕ (t+ s), −1 ≤ s ≤ 0. Then

the map

Φ : [−1,∞)× C 3 (t, ϕ) 7→ xϕt ∈ C

is a continuous semi�ow.

In [8], the authors of this paper have studied Eq. (1.1) under the subsequent

hypothesis:

(H1) µ > 0, f ∈ C1 (R,R) with f ′ (ξ) > 0 for all ξ ∈ R, and

ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ξ2

are �ve consecutive zeros of R 3 ξ 7→ −µξ+f (ξ) ∈ R with f ′ (ξj) < µ <

f ′ (ξk) for j ∈ {−2, 0, 2} and k ∈ {−1, 1} (see Fig. 1).

Figure 1. A feedback function satisfying condition (H1).

Under hypothesis (H1), ξ̂j ∈ C, de�ned by ξ̂j (s) = ξj, −1 ≤ s ≤ 0, is an

equilibrium point of Φ for all j ∈ {−2,−1, 0, 1, 2}, furthermore ξ̂−2, ξ̂0 and ξ̂2 are

stable, and ξ̂−1 and ξ̂1 are unstable. By the monotonicity property of f , the subsets

C−2,2 = {ϕ ∈ C : ξ−2 ≤ ϕ (s) ≤ ξ2 for all s ∈ [−1, 0]} ,

C−2,0 = {ϕ ∈ C : ξ−2 ≤ ϕ (s) ≤ 0 for all s ∈ [−1, 0]} ,

C0,2 = {ϕ ∈ C : 0 ≤ ϕ (s) ≤ ξ2 for all s ∈ [−1, 0]}

of the phase space C are positively invariant under the semi�ow Φ (see Proposition

2.4 in Section 2).

Let A, A−2,0 and A0,2 denote the global attractors of the restrictions Φ|[0,∞)×C−2,2 ,

Φ|[0,∞)×C−2,0 and Φ|[0,∞)×C0,2 , respectively. If (H1) holds and ξ−2, ξ−1, 0, ξ1, ξ2 are the

only zeros of −µξ+f (ξ), then A is the global attractor of Φ. The structures of A−2,0

and A0,2 are (at least partially) well understood, see e.g. [5, 6, 7, 9, 10, 11]. A−2,0

and A0,2 admit Morse decompositions [18]. Further technical conditions regarding
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f ensure that A−2,0 and A0,2 have spindle-like structures [5, 9, 10, 11]: A0,2 is the

closure of the unstable set of ξ̂1 containing the equilibrium points ξ̂0, ξ̂1, ξ̂2, periodic

orbits in C0,2 and heteroclinic orbits among them. In other cases A0,2 is larger than

the the closure of the unstable set of ξ̂1. The structure of A−2,0 is similar. See Fig.

2 for a simple situation.

Figure 2. A spindle-like structure

The monograph [10] of Krisztin, Walther and Wu has addressed the question

whether the equality A = A−2,0 ∪ A0,2 holds under hypothesis (H1). The authors

of this paper have constructed an example in [8] so that (H1) holds, and Eq. (1.1)

admits periodic orbits in A \ (A−2,0 ∪ A0,2), that is, besides the spindle-like struc-

tures. The periodic solutions de�ning these periodic orbits oscillate slowly about 0

and have large amplitudes in the following sense.

A periodic solution r : R → R of Eq. (1.1) is called a large amplitude periodic

solution if r(R) ⊃ (ξ−1, ξ1). A solution r : R → R is slowly oscillatory if for

each t, the restriction r|[t−1,t] has one or two sign changes. Note that here slow

oscillation is di�erent from the usual one used for equations with negative feedback

condition [2, 21]. A large-amplitude slowly oscillatory periodic solution r : R → R
is abbreviated as an LSOP solution. We say that an LSOP solution r : R → R is

normalized if r(−1) = 0, and for some η > 0, r(s) > 0 for all s ∈ (−1,−1 + η).

The �rst main result of [8] is as follows.

Theorem A. There exist µ and f satisfying (H1) such that Eq. (1.1) has exactly

two normalized LSOP solutions p : R→ R and q : R→ R. For the ranges of p and

q, (ξ−1, ξ1) ⊂ p(R) ⊂ q(R) ⊂ (ξ−2, ξ2) holds. The corresponding periodic orbits

Op = {pt : t ∈ R} and Oq = {qt : t ∈ R}
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are hyperbolic and unstable. Op admits two di�erent Floquet multipliers outside the

unit circle, which are real and simple. Oq has one real simple Floquet multiplier

outside the unit circle.

Note that although Theorem 1.1 in [8] does not mention that the Floquet multi-

pliers found outside the unit circle are simple and real, these properties are veri�ed

in Section 4 of the same paper.

In the proof of the theorem, µ = 1 and f is close to the step function

fK,0 (x) =


−K if x < −1,

0 if |x| ≤ 1,

K if x > 1,

where K > 0 is chosen large enough.

In their paper [3], Fiedler, Rocha and Wolfrum considered a special class of one-

dimensional parabolic partial di�erential equations and obtained a catalogue listing

the possible structures of the global attractor. In particular, the result of Theorem

A motivated Fiedler, Rocha and Wolfrum to �nd an analogous con�guration for

their equation. It is an interesting question whether all the structures found by

them have counterparts in the theory of Eq. (1.1).

Let Wu (Op) and Wu (Oq) denote the unstable sets of Op and Oq, respectively.
A solution r : R → R is called slowly oscillatory about ξk, k ∈ {−1, 1}, if

R 3 t 7→ r(t)−ξk ∈ R admits one or two sign changes on each interval of length 1. As

it is described by Proposition 2.7 in [8], f and µ in Theorem A are set so that there

exist at least one periodic solution oscillating slowly about ξ1 with range in (0, ξ2),

furthermore there is a solution x1 : R → R among such periodic solutions that has

maximal range x1(R) in the sense that x1(R) ⊃ x(R) for all periodic solutions x

oscillating slowly about ξ1 with range in (0, ξ2). Similarly, there exists a maximal

periodic solution x−1 oscillating slowly about ξ−1 with range in (ξ−2, 0). Set

O1 =
{
x1
t : t ∈ R

}
and O−1 =

{
x−1
t : t ∈ R

}
.

Let ω (ϕ) denote the ω-limit set of any ϕ ∈ C. Introduce the connecting sets

Cp
j =

{
ϕ ∈ Wu (Op) : ω (ϕ) = ξ̂j

}
, j ∈ {−2, 0, 2} ,

Cp
k = {ϕ ∈ Wu (Op) : ω (ϕ) = Ok} , k ∈ {−1, 1} ,

and

Cp
q = {ϕ ∈ Wu (Op) : ω (ϕ) = Oq} .

Sets Cq
j , j ∈ {−2, 2}, are de�ned analogously.
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The next theorem has also been given in [8] and describes the dynamics in A \
(A−2,0 ∪ A0,2) .

Theorem B. One may set µ and f satisfying (H1) such that the statement of

Theorem A holds, and for the global attractor A we have the equality

A = A−2,0 ∪ A0,2 ∪Wu (Op) ∪Wu (Oq) .

Moreover, the dynamics onWu (Op) andWu (Oq) is as follows. The connecting sets
Cp
j , C

p
q , C

p
k , j ∈ {−2, 0, 2}, k ∈ {−1, 1}, are nonempty, and

Wu (Op) = Op ∪ Cp
−2 ∪ C

p
−1 ∪ C

p
0 ∪ C

p
1 ∪ C

p
2 ∪ Cp

q .

The connecting sets Cq
−2 and Cq

2 are nonempty, and

Wu (Oq) = Oq ∪ Cq
−2 ∪ C

q
2 .

The system of heteroclinic connections is represented in Fig. 3.

2
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Figure 3. Connecting orbits: the dashed arrows represent hetero-
clinic connections in A−2,0 and in A0,2, while the solid ones represent
connecting orbits given by Theorem B.

Hereinafter we �x µ = 1 and set f in Eq. (1.1) so that Theorems A and B hold.

The purpose of this paper is to characterize the geometrical properties of Wu (Op)
and the connecting sets within Wu (Op).
We say that a subset W of C admits global graph representation, if there exists

a splitting C = G⊕ E with closed subspaces G and E of C, a subset U of G and a

map w : U → E such that

W = {χ+ w (χ) : χ ∈ U} .

W is said to have a smooth global graph representation if in the above de�nition U is

open in G and w is C1-smooth on U . Note that in this case W is a C1-submanifold
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of C in the usual sense with dimension dimG, see e.g. the de�nition of Lang in

[12]. W is said to admit a smooth global graph representation with boundary if G

is n dimensional with some integer n ≥ 1, U is the closure of an open set U0, w

is C1-smooth on U0, the boundary bdU of U in G is an (n − 1)-dimensional C1-

submanifold of G, and all points of bdU have an open neighborhood in G on which

w can be extended to a C1-smooth function. In this case W is an n-dimensional

C1-submanifold of C with boundary in the usual sense [12].

The �rst result of this paper is the following.

Theorem 1.1. Wu (Op), Cp
−2, C

p
0 and Cp

2 are three-dimensional C1-submanifolds

of C admitting smooth global graph representations.

The next objects of our study are the connecting sets Cp
q , C

p
−1, C

p
1 containing the

heteroclinic orbits from Op to Oq, O−1, O1, respectively. We actually get a detailed

picture of the structure of Wu (Op) by characterizing the unions

S−1 = Cp
−1 ∪ Op ∪ Cp

q and S1 = Cp
1 ∪ Op ∪ Cp

q .

A solution x : R → R is said to oscillate about ξi, i ∈ {−2,−1, 0, 1, 2}, if the set
x−1 (ξi) ⊂ R is not bounded from above. It is a direct consequence of Theorem B

that for k ∈ {−1, 1},

(1.2) Sk = {ϕ ∈ Wu (Op) : xϕ oscillates about ξk} .

We say that a subset W of Wu (Op) is above Sk, k ∈ {−1, 1}, if to each ϕ ∈ W
there corresponds an element ψ of Sk with ψ � ϕ (that is, ψ (s) < ϕ (s) for all

s ∈ [−1, 0]). Similarly, a subset W of Wu (Op) is below Sk, k ∈ {−1, 1}, if for all
ϕ ∈ W there exists ψ ∈ Sk with ϕ� ψ. W is between S−1 and S1 if it is below S1

and above S−1.

Our main result o�ers geometrical and topological descriptions of Cp
q , C

p
−1, C

p
1 ,

S−1 and S1, and their closures in C. It shows that S−1 and S1 separate the points

of Wu (Op) into three groups according to their ω-limit sets. Thereby, S−1 and S1

play a key role in the dynamics of the equation.

Theorem 1.2.

(i) The sets Cp
q , C

p
−1, C

p
1 , S−1 and S1 are two-dimensional C1-submanifolds of

Wu (Op) with smooth global graph representations. They are homeomorphic to the

open annulus

A(1,2) =
{
u ∈ R2 : 1 < |u| < 2

}
.

(ii) The equalities

Cp
q = Op ∪ Cp

q ∪ Oq, Cp
k = Op ∪ Cp

k ∪ Ok
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and

Sk = Ok ∪ Sk ∪ Oq = Ok ∪ Cp
k ∪ Op ∪ C

p
q ∪ Oq

hold for both k ∈ {−1, 1}. The sets Cp
q , C

p
−1, C

p
1 , S−1 and S1 admit smooth

global graph representations with boundary, and thereby they are two-dimensional

C1-submanifolds of C with boundary. In addition, they are homeomorphic to the

closed annulus

A[1,2] =
{
u ∈ R2 : 1 ≤ |u| ≤ 2

}
.

(iii) S−1 and S1 are separatrices in the sense that Cp
2 is above S1, C

p
0 is between S−1

and S1, furthermore Cp
−2 is below S−1.

Fig. 4 visualizes the structure of the closure Wu (Op) of Wu (Op) in C. To get

an overview of the above results regarding Wu (Op), see the inner part of Fig. 4,

drawn in black. We emphasize a particular consequence of Theorem 1.2: the tangent

spaces of S−1 and S1 coincide along Op, see Fig. 5.

Figure 4. Wu (Op) can be visualized as a �tulip� rotated around the
vertical axis: the dots correspond to equilibria and periodic orbits,
the thick arrows symbolize two-dimensional heteroclinic connecting
sets, and the three groups of thin arrows represent three-dimensional
connecting sets. The elements of Wu (Op) are drawn in black. Grey
is used for the boundary of Wu (Op).

Let Wu (O1) and Wu (O−1) denote the unstable sets of O1 and O−1, respectively,

de�ned as the forward extension of a one-dimensional local unstable manifold of
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Figure 5. The tangent spaces of S−1 and S1 coincide along Op.

a return map (corresponding to the only Floquet multiplier outside the unit circle

which is real and simple), see (3.5). We expect Wu (Oq), Wu (O−1) and Wu (O1)

to be two-dimensional C1-submanifolds of C. We conjecture that for the closure

Wu (Op) of Wu (Op) in C, the equality

Wu (Op) =Wu (Op) ∪Wu (Oq) ∪Wu (O1) ∪Wu (O−1) ∪
{
ξ̂−2, 0̂, ξ̂2

}
holds, as it represented in Fig. 4. Moreover, all points of Wu (Oq) ∪ Wu (O1) ∪
Wu (O−1) have an open neighborhood on which the C1-map in the graph represen-

tation of Wu (Op) can be smoothly extended.

It also remains an open question whether A \ (A−2,0 ∪ A0,2) is homeomorphic to

the three-dimensional body

B3 ((0, 0, 0) , 2) \ {B3 ((0, 0, 1) , 1) ∪ B3 ((0, 0,−1) , 1)} ⊂ R3,

where B3 ((a1, a2, a3) , r) denotes the three-dimensional closed ball with center (a1, a2, a3)

and radius r.

The proofs of Theorems 1.1�1.2 apply general results on delay di�erential equa-

tions, the Floquet theory (Appendix VII of [10], [14]), results on local invariant

manifolds for maps in Banach spaces (Appendices I-II of [10]), correspondences be-

tween di�erent return maps (Appendices I and V of [10]), a result from transversality

theory [1] and also a discrete Lyapunov functional of Mallet-Paret and Sell counting

the sign changes of the elements of C (Appendix VI of [10], [16]).

This paper is organized as follows. Section 2 o�ers a general overview of the

theoretical background and introduces the discrete Lyapunov functional. As the

Floquet theory and certain results on local invariant manifolds of return maps play

essential role in this work, Section 3 is devoted to the discussion of these concepts.

Sections 4 and 5 contain the proofs of Theorems 1.1 and 1.2, respectively.

The proof of Theorem 1.1 in Section 4 takes advantage of the fact that the unsta-

ble set of a hyperbolic periodic orbit is the forward continuation of a local unstable

manifold of a Poincaré map by the semi�ow. In consequence, by using the smooth-

ness of the local unstable manifold and the injectivity of the derivative of the solution

operator, we prove that all points ϕ of Wu (Op) belong to a subset Wϕ of Wu (Op)
that is a three-dimensional C1-submanifold of C. This means that Wu (Op) is an
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immersed submanifold of C. In general, an immersed submanifold is not necessarily

an embedded submanifold of the phase space. In order to prove that Wu (Op) is

embedded in C, we have to show that for any ϕ in Wu (Op), there is no sequence

in Wu (Op) \Wϕ converging to ϕ. We de�ne a projection π3 from C into R3. Us-

ing well-known properties of the discrete Lyapunov functional, we show that π3 is

injective on Wu (Op) and on the tangent spaces of Wϕ. This implies that π3Wϕ is

open in R3. If a sequence (ϕn)∞n=0 in Wu (Op) \Wϕ converges to ϕ as n→∞, then

π3ϕ
n → π3ϕ as n→∞, and π3ϕ

n ∈ π3Wϕ for all n large enough. The injectivity of

π3 on Wu (Op) then implies that ϕn ∈ Wϕ, which is a contradiction. So Wu (Op) is
a three-dimensional embedded C1-submanifold of the phase space. The description

of Wu (Op) is rounded up by giving a graph representation for Wu (Op) in order to

present the simplicity of its structure. The smoothness of the sets Cp
−2, C

p
0 and Cp

2

then follows at once because they are open subsets ofWu (Op). We also obtain as an

important consequence that the semi�ow de�ned by the solution operator extends

to a C1-�ow on Wu (Op) with injective derivatives.

The proof of Theorem 1.2 in Section 5 is built from several steps, and it is orga-

nized into �ve subsections.

In Subsection 5.1 we list preliminary results regarding the closure Sk of Sk in C,

k ∈ {−1, 1}. We introduce in particular a projection π2 from C into R2, and �

using the special properties of the discrete Lyapunov functional � we show that π2 is

injective on Sk. The injectivity of π2|Sk
is already su�cient to give a two-dimensional

graph representation for any subsetW of Sk (without smoothness properties): there

is an isomorphism J2 : R2 → C such that P2 = J2 ◦ π2 : C → C is a projection

onto a two-dimensional subspace G2 of C, and there exists a map wk de�ned on the

image set P2Sk with range in P−1
2 (0) such that for any subset W ⊆ Sk,

W = {χ+ wk (χ) : χ ∈ P2W} .

The smoothness of wk and the properties of its domain P2Sk ⊂ G2 are investigated

later. Subsection 5.1 is closed with showing that π2|Sk
is a homeomorphism onto its

image, furthermore π2 maps the nonzero tangent vectors of Sk to nonzero vectors in

R2.

It is clear that (Ok ∪ Sk ∪ Oq) ⊆ Sk for both k ∈ {−1, 1}. The inclusion Sk ⊆
(Ok ∪ Sk ∪ Oq) is proved in Subsection 5.2 based on the previously obtained result

that Sk is mapped injectively into R2. Then it follows easily that Cp
k , k ∈ {−1, 1} ,

and Cp
q are not larger than the unions Op ∪Cp

k ∪Ok and Op ∪Cp
q ∪Oq, respectively.

It is a more challenging task to show that Cp
q and Cp

k , k ∈ {−1, 1} , are C1-

submanifolds ofWu (Op) (as stated by Theorem 1.2.(i)). The proof of this assertion

is contained in Subsection 5.3. It is partly based on transversality [1]; we verify that

Wu (Op) intersects transversally a local center-stable manifold of a Poincaré return
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map at a point of Ok and a local stable manifold of a Poincaré return map at a point

of Oq, and thereby the intersections � subsets of Cp
q and Cp

k � are one-dimensional

submanifolds of Wu (Op). The main di�culty in this task is that the hyperbolicity

of Ok is not known. Krisztin, Walther and Wu have proved transversality in a

similar situation [10]. Then we apply techniques that already appeared in Section

4. The injectivity of the derivative of the �ow induced by the solution operator

on Wu (Op) guarantees that each point ϕ in Cp
q or Cp

k belongs to a �small� subset

of Cp
q or Cp

k , respectively, that is a two-dimensional C1-submanifold of Wu (Op).
Therefore, Cp

q and Cp
k are immersed C1-submanifolds of Wu (Op). In order to prove

that Cp
q and Cp

k are embedded in Wu (Op), we repeat an argument from the proof

of Theorem 1.1 with π2 in the role of π3. Based on the property that Cp
q and Cp

k

are C1-submanifolds of Wu (Op), we prove at the end of Subsection 5.3 that wk is

continuously di�erentiable on the open sets P2C
p
q and P2C

p
k , i.e., the representations

Cp
q =

{
χ+ wk (χ) : χ ∈ P2C

p
q

}
and Cp

k = {χ+ wk (χ) : χ ∈ P2C
p
k} .

are smooth.

Next we verify in Subsection 5.4 that the images of Cp
q , C

p
k and Sk, k ∈ {−1, 1} ,

under π2 are topologically equivalent to the open annulus, and the images of their

closures are topologically equivalent to the closed annulus.

As

Sk = {χ+ wk (χ) : χ ∈ P2Sk} and P2Sk = P2C
p
k ∪ P2Op ∪ P2C

p
q ,

we have a smooth representation for Sk if we show that P2Sk is open in G2 and wk is

smooth at the points of P2Op. This is done in Subsection 5.5. It follows immediately

that Sk is a C1-submanifold of Wu (Op). Simultaneously, we verify that all points

of P2Ok ∪ P2Oq have open neighborhoods on which wk can be extended to C1-

functions. As P2Ok ∪ P2Oq is the boundary of P2Sk, this step guarantees that Sk
has a smooth representation with boundary, and thereby Sk is a C1-submanifold of

C with boundary. The same reasonings yield the analogous results for Cp
q and Cp

k .

Summing up, the proofs of Theorem 1.2.(i) and (ii) are completed in Subsection 5.5.

It remains to show that S−1 and S1 are indeed separatrices in the sense described

by Theorem 1.2.(iii). It is easy to see that the assertion restricted to a local unstable

manifold of Op holds. Then we use the monotonicity of the semi�ow to extend the

statement for Wu (Op) .
Several techniques applied here have already appeared in the monograph [10] of

Krisztin, Walther and Wu. The novelty of this paper compared to [10] is that here

we describe the unstable set of a periodic orbit, while [10] considers the unstable set

of an equilibrium point.
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2. Preliminaries

We �x µ = 1 and set f in Eq. (1.1) so that Theorems A and B hold. In this

section we give a summary of the theoretical background. In particular, we discuss

the di�erentiability of the semi�ow, the basic properties of the global attractor, the

discrete Lyapunov functional of Mallet-Paret and Sell, and we list some technical

results. The discussion of the Floquet theory and the Poincaré return maps is left

to the next section.

Phase space, solution, segment. The natural phase space for Eq. (1.1) is the

Banach space C = C ([−1, 0] ,R) of continuous real functions de�ned on [−1, 0]

equipped with the supremum norm

‖ϕ‖ = sup
−1≤s≤0

|ϕ (s)| .

If J is an interval, u : J → R is continuous and [t− 1, t] ⊆ J , then the segment

ut ∈ C is de�ned by ut (s) = u (t+ s), −1 ≤ s ≤ 0.

Let C1 denote the subspace of C containing the continuously di�erentiable func-

tions. Then C1 is also a Banach space with the norm ‖ϕ‖C1 = ‖ϕ‖+ ‖ϕ′‖ .
For all ξ ∈ R, ξ̂ ∈ C is de�ned by ξ̂ (s) = ξ for all s ∈ [−1, 0].

A solution of Eq. (1.1) is either a continuous function on [t0 − 1,∞), t0 ∈ R,
which is di�erentiable for t > t0 and satis�es equation Eq. (1.1) on (t0,∞), or a

continuously di�erentiable function on R satisfying the equation for all t ∈ R. To

all ϕ ∈ C, there corresponds a unique solution xϕ : [−1,∞) → R of Eq. (1.1) with

xϕ0 = ϕ. On (0,∞), xϕ is given by the variation-of-constants formula for ordinary

di�erential equations repeated on successive intervals of length 1:

(2.1) xϕ (t) = en−txϕ (n) +

ˆ t

n

es−tf (xϕ (s− 1)) ds for all n ∈ N, n ≤ t ≤ n+ 1.

Semi�ow. The solutions of Eq. (1.1) de�ne the continuous semi�ow

Φ : R+ × C 3 (t, ϕ) 7→ xϕt ∈ C.
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All maps Φ (t, ·) : C → C, t ≥ 1, are compact [4]. As f ′ > 0 on R, all maps

Φ (t, ·) : C → C, t ≥ 0, are injective [10]. It follows that for every ϕ ∈ C there is

at most one solution x : R → R of Eq. (1.1) with x0 = ϕ. Whenever such solution

exists, we denote it also by xϕ.

For �xed ϕ ∈ C, the map (1,∞) 3 t 7→ Φ(t, ϕ) ∈ C is continuously di�erentiable

with D1Φ (t, ϕ) 1 = ẋt
ϕ for all t > 1. For all t ≥ 0 �xed, C 3 ϕ 7→ Φ(t, ϕ) ∈ C

is continuously di�erentiable, and D2Φ(t, ϕ)η = vηt , where v
η : [−1,∞) → R is the

solution of the linear variational equation

v̇(t) = −v(t) + f ′ (xϕ (t− 1)) v (t− 1)(2.2)

with vη0 = η. So the restriction of Φ to the open set (1,∞) × C is continuously

di�erentiable.

Proposition 2.1. Suppose that η ∈ C, b : R→ R is positive, and the problemv̇(t) = −v(t) + b(t)v (t− 1)

v0 = η

has a solution vη either on [t0 − 1,∞) with t0 ≤ 0 or on R (i.e., there is a continuous

function vη : [t0 − 1,∞) → R with vη0 = η that is di�erentiable and satis�es the

equation for t > t0, or there exists a di�erentiable function vη : R→ R with vη0 = η

satisfying the equation for all real t, respectively). Then vη is unique.

Proof. As the solution on [0,∞) is determined by a variation-of-constants formula

analogous to (2.1), the uniqueness in forward time is clear. For t < 0, the uniqueness

follows from v (t− 1) = (v̇ (t) + v (t)) /b (t). �

In particular, the solution operator D2Φ(t, ϕ) corresponding to the variational

equation (2.2) is injective for all ϕ ∈ C and t ≥ 0.

A function ξ̂ ∈ C is an equilibrium point (or stationary point) of Φ if and only if

ξ̂ (s) = ξ for all −1 ≤ s ≤ 0 with ξ ∈ R satisfying −ξ + f (ξ) = 0. Then xξ̂ (t) = ξ

for all t ∈ R. As it is described in Chapter 2 of [10], condition f ′ (ξ) < 1 implies that

ξ̂ is stable and locally attractive. If f ′ (ξ) > 1, then ξ̂ is unstable. So hypothesis

(H1) with µ = 1 implies that ξ̂−2, ξ̂0 and ξ̂2 are stable, and ξ̂−1 and ξ̂1 are unstable.

Limit sets. If ϕ ∈ C and xϕ : [−1,∞)→ R is a bounded solution of Eq. (1.1), then

the ω-limit set

ω (ϕ) = {ψ ∈ C : there exists a sequence (tn)∞0 in [0,∞)

with tn →∞ and Φ (tn, ϕ)→ ψ as n→∞}
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is nonempty, compact, connected and invariant. For a solution x : R→ R such that

x|(−∞,0] is bounded, the α-limit set

α (x) = {ψ ∈ C : there exists a sequence (tn)∞0 in R

with tn → −∞ and xtn → ψ as n→∞}

is also nonempty, compact, connected and invariant.

According to the Poincaré�Bendixson theorem of Mallet-Paret and Sell [17], for

all

ϕ ∈ C−2,2 = {ϕ ∈ C : ξ−2 ≤ ϕ (s) ≤ ξ2 for all s ∈ [−1, 0]} ,

the set ω (ϕ) is either a single nonconstant periodic orbit, or for each ψ ∈ ω (ϕ),

α
(
xψ
)
∪ ω (ψ) ⊆

{
ξ̂−2, ξ̂−1, ξ̂0, ξ̂1, ξ̂2

}
.

An analogous result holds for α (x) in case x is de�ned on R and {xt : t ≤ 0} ⊂
C−2,2.

By Theorem 4.1 in Chapter 5 of [20], there is an open and dense set of initial

functions in C−2,2 so that the corresponding solutions converge to equilibria.

Note that there is no homoclinic orbit to ξ̂j, j ∈ {−2, 0, 2}, as these equilibria are
stable. It follows from Proposition 3.1 in [7] that there exists no homoclinic orbits

to the unstable equilibria ξ̂−1 and ξ̂1.

The global attractor. The global attractor A of the restriction Φ|[0,∞)×C−2,2 is a

nonempty, compact set in C, that is invariant in the sense that Φ (t,A) = A for

all t ≥ 0, and that attracts bounded sets in the sense that for every bounded set

B ⊂ C−2,2 and for every open set U ⊃ A, there exists t ≥ 0 with Φ ([t,∞)×B) ⊂ U .

Global attractors are uniquely determined [4]. It can be shown that

A = {ϕ ∈ C−2,2 : there is a bounded solution x : R→ R

of Eq. (1.1) so that ϕ = x0} ,

see [9, 14, 18].

The compactness of A, its invariance property and the injectivity of the maps

Φ (t, ·) : C → C, t ≥ 0, combined permit to verify that the map

[0,∞)×A 3 (t, ϕ) 7→ Φ (t, ϕ) ∈ A

extends to a continuous �ow ΦA : R×A → A; for every ϕ ∈ A and for all t ∈ R we

have ΦA (t, ϕ) = xϕt with the uniquely determined solution xϕ : R → R of Eq. (1.1)

satisfying xϕ0 = ϕ.

Note that we have A = Φ (1,A) ⊂ C1; A is a closed subset of C1. Using the �ow

ΦA and the continuity of the map

C 3 ϕ 7→ Φ (1, ϕ) ∈ C1,
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one obtains that C and C1 de�ne the same topology on A.

A discrete Lyapunov functional. Following Mallet-Paret and Sell in [16], we use

a discrete Lyapunov functional V : C \
{

0̂
}
→ 2N ∪ {∞}. For ϕ ∈ C \

{
0̂
}
, set

sc (ϕ) = 0 if ϕ ≥ 0̂ or ϕ ≤ 0̂ (i.e., ϕ (s) ≥ 0 for all s ∈ [−1, 0] or ϕ (s) ≤ 0 for all

s ∈ [−1, 0], respectively), otherwise de�ne

sc (ϕ) = sup
{
k ∈ N \ {0} : there exist a strictly increasing sequence

(si)
k
0 ⊆ [−1, 0] with ϕ (si−1)ϕ (si) < 0 for i ∈ {1, 2, .., k}

}
.

Then set

V (ϕ) =

{
sc (ϕ) , if sc (ϕ) is even or ∞,
sc (ϕ) + 1, if sc (ϕ) is odd.

Also de�ne

R =
{
ϕ ∈ C1 : ϕ (0) 6= 0 or ϕ̇ (0)ϕ (−1) > 0,

ϕ (−1) 6= 0 or ϕ̇ (−1)ϕ (0) < 0, all zeros of ϕ are simple} .

V has the following lower semi-continuity and continuity property (for a proof,

see [10, 16]).

Lemma 2.2. For each ϕ ∈ C \
{

0̂
}
and (ϕn)∞0 ⊂ C \

{
0̂
}
with ϕn → ϕ as n →

∞, V (ϕ) ≤ lim infn→∞ V (ϕn). For each ϕ ∈ R and (ϕn)∞0 ⊂ C1 \
{

0̂
}

with

‖ϕn − ϕ‖C1 → 0 as n→∞, V (ϕ) = limn→∞ V (ϕn) <∞.

The next result explains why V is called a Lyapunov functional (for a proof, see

[10, 16] again). For an interval J ⊂ R, we use the notation

J + [−1, 0] = {t ∈ R : t = t1 + t2 with t1 ∈ J, t2 ∈ [−1, 0]} .

Lemma 2.3. Assume that µ ≥ 0, J ⊂ R is an interval, a : J → R is positive and

continuous, z : J + [−1, 0] → R is continuous, z (t) 6= 0 for some t ∈ J + [−1, 0],

and z is di�erentiable on J . Suppose that

(2.3) ż (t) = −µz (t) + a (t) z (t− 1)

holds for all t > inf J in J . Then the following statements hold.

(i) If t1, t2 ∈ J with t1 < t2 , then V (zt1) ≥ V (zt2).

(ii) If t, t−2 ∈ J , z (t− 1) = z (t) = 0, then either V (zt) =∞ or V (zt−2) > V (zt).

(iii) If t ∈ J , t− 3 ∈ J , and V (zt−3) = V (zt) <∞, then zt ∈ R.

If f is a C1-smooth function with f ′ > 0 on R, x, x̂ : J+[−1, 0]→ R are solutions

of Eq. (1.1) and c ∈ R \ {0}, then Lemma 2.3 can be applied for z = (x− x̂) /c with
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the positive continuous function

a : J 3 t 7→
ˆ 1

0

f ′ (sx (t− 1) + (1− s) x̂ (t− 1)) ds ∈ [0,∞) .

Further notations and preliminary results. A solution x is oscillatory about

an equilibrium ξ̂ (or a constant ξ) if x−1 (ξ) is not bounded from above. It is slowly

oscillatory about ξ̂ (or ξ) if t→ x (t)−ξ has one or two sign changes on each interval

of length 1.

B (ϕ, r), ϕ ∈ C , r > 0, denotes the open ball in C with center ϕ and radius r.

We use the notation S1
C for the set {z ∈ C : |z| = 1}.

For a simple closed curve c : [a, b] → R2, int (c [a, b]) and ext (c [a, b]) denote the

interior and exterior, i.e., the bounded and unbounded components of R2 \ c ([a, b]),

respectively. We use the same notations for closed curves c : [a, b]→ G2, where G2

is any two-dimensional real Banach space.

We say ϕ ≤ ψ for ϕ, ψ ∈ C if ϕ (s) ≤ ψ (s) for all s ∈ [−1, 0]. Relation ϕ < ψ

holds if ϕ ≤ ψ and ϕ 6= ψ. In addition, ϕ � ψ if ϕ (s) < ψ (s) for all s ∈ [−1, 0].

Relations �≥�, �>� and ��� are de�ned analogously.

The semi�ow Φ is monotone in the following sense.

Proposition 2.4. If ϕ, ψ ∈ C with ϕ ≤ ψ (ϕ ≥ ψ), then xϕt ≤ xψt

(
xϕt ≥ xψt

)
for

all t ≥ 0. If ϕ < ψ (ϕ > ψ), then xϕt � xψt

(
xϕt � xψt

)
for all t ≥ 2. If ϕ � ψ

(ϕ� ψ), then xϕt � xψt

(
xϕt � xψt

)
for all t ≥ 0.

The assertion follows easily from the variation-of-constant formula. For a proof

we refer to [20]. Note that Proposition 2.4 guarantees the positive invariance of

C−2,0, C0,2 and C−2,2.

The periodic solutions have nice monotonicity properties (see Theorem 7.1 in [17])

as follows.

Proposition 2.5. Suppose r : R→ R is a periodic solution of Eq. (1.1) with minimal

period ω > 0. Then r is of monotone type in the following sense: if t0 < t1 < t0 +ω

are �xed so that r (t0) = mint∈R r(t) and r (t1) = maxt∈R r(t), then ṙ (t) > 0 for

t ∈ (t0, t1) and ṙ (t) < 0 for t ∈ (t1, t0 + ω).

We also need the next technical results. The �rst one is the direct consequence

of Lemmas VI.4, VI.5 and VI.6 in [10].

Lemma 2.6. Let µ ≥ 0, α0 > 0 and α1 ≥ α0. Let sequences of continuous real

functions an on R and continuously di�erentiable real functions zn on R, n ≥ 0, be

given such that for all n ≥ 0, α0 ≤ an (t) ≤ α1 for all t ∈ R, zn (t) 6= 0 for some

t ∈ R, V (znt ) ≤ 2 for all t ∈ R, and zn satis�es

żn (t) = −µzn (t) + an (t) zn (t− 1)
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on R. Let a further continuous real function a on R be given so that an → a as

n → ∞ uniformly on compact subsets of R. Then a continuously di�erentiable

function z : R → R and a subsequence (znk)∞k=0 of (zn)∞n=0 can be given such that

znk → z and żnk → ż as k →∞ uniformly on compact subsets of R, moreover

ż (t) = −µz (t) + a (t) z (t− 1)

for all t ∈ R.

The subsequent result shows that Lyapunov functionals can be used e�ectively to

show that solutions of linear equations cannot decay too fast at ∞. For a proof, see

Lemma VI.3 in [10].

Lemma 2.7. Let µ ≥ 0, α0 > 0 and α1 ≥ α0. Assume that t0 ∈ R, a : [t0 − 5, t0]→
R is continuous with α0 ≤ a (t) ≤ α1 for all t ∈ [t0 − 5, t0], z : [t0 − 6, t0] → R
is continuous, di�erentiable for t0 − 5 < t ≤ t0 and satis�es (2.3) for t0 − 5 <

t ≤ t0. In addition, assume that zt0−5 6= 0 and V (zt0−5) ≤ 2. Then there exists

K = K (µ, α0, α1) > 0 such that

‖zt0−1‖ ≤ K ‖zt0‖ .

The last result of this section is Lemma I.8 in [10]. It will be used to abbreviate

proofs of smoothness of submanifolds.

Proposition 2.8. Let g be a C1-map from an m-dimensional C1-manifold M into

a C1-manifold N modeled over a Banach space. If for some p ∈ M , the derivative

Dg (p) of g at p is injective, then p has an open neighborhood U in M so that for

all open sets V in U , g (V ) is an m-dimensional C1-submanifold of N .

3. Floquet multipliers and a Poincaré return map

In this section we give a brief introduction to the Floquet theory regarding peri-

odic solutions which are slowly oscillatory about an equilibrium. Then we de�ne a

Poincaré map and collect the most important properties of its local invariant man-

ifolds. At last we apply these results to p, q, x1 and x−1. The section is closed by

showing that the unstable space of the monodromy operator corresponding to the

periodic orbit Ok is one-dimensional for both k ∈ {−1, 1}.

3.1. Floquet multipliers. Suppose r : R → R is a periodic solution of Eq. (1.1)

with minimal period ω > 0. If r is slowly oscillatory about an equilibrium (as p, q,

x1 or x−1 are), then Proposition 2.5 implies that ω ∈ (1, 2). Assume that this is the

case.

Consider the period map Q = Φ (ω, ·) with �xed point r0 and its derivative M =

D2Φ (ω, r0) at r0. Then Mϕ = uϕω for all ϕ ∈ C, where uϕ : [−1,∞) → R is the
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solution of the linear variational equation

u̇(t) = −u(t) + f ′ (r (t− 1))u (t− 1)(3.1)

with uϕ0 = ϕ. M is called the monodromy operator.

M is a compact operator, 0 belongs to its spectrum σ = σ (M), and its eigenvalues

of �nite multiplicity � the so called Floquet multipliers � form σ (M) \ {0}. The

importance of M lies in the fact that we obtain information about the stability

properties of the orbit Or = {rt : t ∈ R} from σ (M).

As ṙ is a nonzero solution of the variational equation (3.1), 1 is a Floquet mul-

tiplier with eigenfunction ṙ0. The periodic orbit Or is said to be hyperbolic if the

generalized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional,

furthermore there are no Floquet multipliers on the unit circle besides 1.

The paper [16] of Mallet-Paret and Sell and Appendix VII of the monograph [10] of

Krisztin, Walther and Wu con�rm the subsequent properties. Or has a real Floquet
multiplier λ1 > 1 with a strictly positive eigenvector v1. The reali�ed generalized

eigenspace C<λ1 associated with the spectral set {z ∈ σ : |z| < λ1} satis�es

(3.2) C<λ1 ∩ V −1 (0) = ∅.

Let C≤ρ, ρ > 0, denote the reali�ed generalized eigenspace of M associated with the

spectral set {z ∈ σ : |z| ≤ ρ}. The set{
ρ ∈ (0,∞) : σ (M) ∩ ρS1

C 6= ∅, C≤ρ ∩ V −1 ({0, 2}) = ∅
}

is nonempty and has a maximum rM . Then

(3.3) C≤rM ∩ V −1 ({0, 2}) = ∅, CrM< \
{

0̂
}
⊂ V −1 ({0, 2}) and dimCrM< ≤ 3,

where CrM< is the reali�ed generalized eigenspace ofM associated with the nonempty

spectral set {z ∈ σ : |z| > rM}. It will easily follow from the results of this paper

that dimCrM< = 3 for the periodic solutions p, q, x−1 and x1, see Remark 3.7. Re-

cently Mallet-Paret and Nussbaum have shown that the equality dimCrM< = 3 holds

in general [15].

Let Cs, Cc and Cu be the closed subspaces of C chosen so that C = Cs ⊕ Cc ⊕
Cu, Cs, Cc and Cu are invariant under M , and the spectra σs (M), σc (M) and

σu (M) of the induced maps Cs 3 x 7→ Mx ∈ Cs, Cc 3 x 7→ Mx ∈ Cc, and

Cu 3 x 7→ Mx ∈ Cu are contained in {µ ∈ C : |µ| < 1}, {µ ∈ C : |µ| = 1} and

{µ ∈ C : |µ| > 1}, respectively.
As Or has a real Floquet multiplier λ1 > 1, Cu is nontrivial.

Cc is also nontrivial because ṙ0 ∈ Cc. It is easy to see that the monotonicity

property of r described in Proposition 2.5 and ω ∈ (1, 2) imply the existence of

t ∈ R with V (ṙt) = 2. As R 3 t → ṙt ∈ C is periodic, and R 3 t → V (ṙt) is
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monotone decreasing by Lemma 2.3, it follows that V (ṙt) = 2 for all real t. In

particular, V (ṙ0) = 2. Hence (3.3) gives that rM < 1, moreover (3.2) and (3.3)

together give that Cc \
{

0̂
}
⊂ V −1 (2). The nontriviality of Cu and dimCrM< ≤ 3 in

addition imply that Cc is at most two-dimensional in our case:

Cc =

{
Rṙ0, if Or is hyperbolic,
Rṙ0 ⊕ Rξ, otherwise,

where ξ ∈ Cc \ Rṙ0 provided that Or is nonhyperbolic.

3.2. A Poincaré return map. As above, let r : R → R be any periodic solution

of Eq. (1.1) which oscillates slowly about an equilibrium, and let ω ∈ (1, 2) denote

its minimal period.

Fix a ξ ∈ Cc \ Rṙ0 in case Or is nonhyperbolic and de�ne

Y =

{
Cs ⊕ Cu, if Or is hyperbolic,
Cs ⊕ Rξ ⊕ Cu, if Or is nonhyperbolic.

Then Y ⊂ C is a hyperplane with codimension 1. Choose e∗ to be a continuous linear

functional with null space (e∗)−1 (0) = Y . The Hahn�Banach theorem guarantees

the existence of e∗. As D1Φ (ω, r0) 1 = ṙ0 /∈ Y , and thus e∗ (D1Φ (ω, r0) 1) 6= 0, the

implicit function theorem can be applied to the map

(t, ϕ) 7→ e∗ (Φ (t, ϕ)− r0)

in a neighborhood of (ω, r0). It yields a convex bounded open neighborhood N of

r0 in C, ε ∈ (0, ω) and a C1-map γ : N → (ω − ε, ω + ε) with γ (r0) = ω so that

for each (t, ϕ) ∈ (ω − ε, ω + ε) × N , the segment xϕt belongs to r0 + Y if and only

if t = γ(ϕ) (see [2], Appendix I in [10], [13]). In addition, by continuity we may

assume that D1Φ (γ(ϕ), ϕ) 1 /∈ Y for all ϕ ∈ N . The Poincaré return map PY is

de�ned by

PY : N ∩ (r0 + Y ) 3 ϕ 7→ Φ (γ(ϕ), ϕ) ∈ r0 + Y.

Then PY is continuously di�erentiable with �xed point r0.

It is convenient to have a formula not only for the derivative DPY (ϕ) of PY at

ϕ ∈ N ∩ (r0 + Y ), but also for the derivatives of the iterates of PY . For all ϕ in the

domain of P j
Y , j ≥ 1, set

γj (ϕ) = Σj−1
k=0γ

(
P k
Y (ϕ)

)
.

Then

DP j
Y (ϕ) η = D1Φ (γj(ϕ), ϕ) γ′j (ϕ) η +D2Φ (γj(ϕ), ϕ) η

for all η ∈ Y . Di�erentiation of the equation e∗ (Φ (γj(ϕ), ϕ)− r0) = 0 yields that

γ′j (ϕ) η = −e
∗ (D2Φ (γj(ϕ), ϕ) η)

e∗ (D1Φ (γj(ϕ), ϕ) 1)
,
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and therefore

(3.4) DP j
Y (ϕ) η = D2Φ (γj(ϕ), ϕ) η − e∗ (D2Φ (γj(ϕ), ϕ) η)

e∗ (D1Φ (γj(ϕ), ϕ) 1)
D1Φ (γj(ϕ), ϕ) 1

for all η ∈ Y .
Let σ (PY ) and σ (M) denote the spectra of DPY (r0) : Y → Y and the mon-

odromy operator, respectively. We obtain the following result from Theorem XIV.4.5

in [2].

Lemma 3.1.

(i) σ (PY ) \ {0, 1} = σ (M) \ {0, 1}, and for every λ ∈ σ (M) \ {0, 1}, the projection

along Rṙ0 onto Y de�nes an isomorphism from the reali�ed generalized eigenspace

of λ and M onto the reali�ed generalized eigenspace of λ and DPY (r0).

(ii) If the generalized eigenspace G (1,M) associated with 1 andM is one-dimensional,

then 1 /∈ σ (PY ).

(iii) If dimG (1,M) > 1, then 1 ∈ σ (PY ), and the reali�ed generalized eigenspaces

GR (1,M) and GR (1, PY ) associated with 1 and M and with 1 and DPY (r0), respec-

tively, satisfy

GR (1, PY ) = Y ∩GR (1,M) and GR (1,M) = Rṙ0 ⊕GR (1, PY ) .

In our case, the special choice of Y implies the following corollary.

Corollary 3.2.

(i) Cs and Cu are invariant under DPY (r0), and the spectra σs (PY ) and σu (PY ) of

the induced maps Cs 3 x 7→ DPY (r0)x ∈ Cs and Cu 3 x 7→ DPY (r0)x ∈ Cu are

contained in {µ ∈ C : |µ| < 1} and {µ ∈ C : |µ| > 1}, respectively.
(ii) If M has an eigenfunction v corresponding to a simple eigenvalue λ ∈ σ (M) \
{0, 1}, then v is an eigenfunction of DPY (r0) corresponding to the same eigenvalue.

(iii) If Or is nonhyperbolic, then ξ is an eigenfunction of DPY (r0), and it corre-

sponds to an eigenvalue with absolute value 1.

In particular, if λ1 is a simple Floquet multiplier, then the strictly positive eigen-

function v1 of M corresponding to λ1 is also an eigenfunction of DPY (r0) corre-

sponding to λ1.

In case Or is hyperbolic, then according to Theorem I.3 in Appendix I of [10],

there exist convex open neighborhoods Ns, Nu of 0̂ in Cs, Cu, respectively, and a

C1-map wu : Nu → Cs with range in Ns so that wu
(
0̂
)

= 0̂, Dwu
(
0̂
)

= 0, and the

submanifold

Wu
loc (PY , r0) = {r0 + χ+ wu (χ) : χ ∈ Nu}
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of r0 + Y is equal to the set{
ϕ ∈ r0 +Ns +Nu : there is a trajectory (ϕn)0

−∞ of PY with ϕ0 = ϕ such that

ϕn ∈ r0 +Ns +Nu for all n ≤ 0 and ϕn → r0 as n→ −∞} .

Wu
loc (PY , r0) is called a local unstable manifold of PY at r0.

The unstable set of the orbit Or is de�ned as the forward extension ofWu
loc (PY , r0)

in time:

(3.5) Wu (Or) = Φ ([0,∞)×Wu
loc (PY , r0)) .

If Or is hyperbolic, then

Wu (Or) = {x0 : x : R→ R is a solution of (1.1), α (x) exists and α (x) = Or} .

If Or is hyperbolic, then by Theorem I.2 in [10], there are convex open neighbor-

hoods Ns, Nu of 0̂ in Cs, Cu, respectively, and a C1-map ws : Ns → Cu with range

in Nu such that ws
(
0̂
)

= 0̂, Dws
(
0̂
)

= 0, and

Ws
loc (PY , r0) = {r0 + χ+ ws (χ) : χ ∈ Ns}

is equal to

{ϕ ∈ r0 +Ns +Nu : there is a trajectory (ϕn)∞0 of PY in

r0 +Ns +Nu with ϕ0 = ϕ and ϕn → r0 as n→∞} .

Ws
loc (PY , r0) is a local stable manifold of PY at r0. It is a C1-submanifold of r0 + Y

with codimension dimCu, and it is a C1-submanifold of C with codimension dimCu+

1.

In case Or is nonhyperbolic, we need a local center-stable manifoldWsc
loc (PY , r0) of

PY at r0. According to Theorem II.1 in [10], there exist convex open neighborhoods

Nsc and Nu of 0̂ in Cs⊕Rξ and Cu, respectively, and a C1-map wsc : Nsc → Cu such

that wsc
(
0̂
)

= 0̂, Dwsc
(
0̂
)

= 0, wsc (Nsc) ⊂ Nu and the local center-stable manifold

Wsc
loc (PY , r0) = {r0 + χ+ wsc (χ) : χ ∈ Nsc}

satis�es
∞⋂
n=0

P−1
Y (r0 +Nsc +Nu) ⊂ Wsc

loc (PY , r0) .

Note thatWsc
loc (PY , r0) is also a C1-submanifold of r0 +Y with codimension dimCu,

and it is a C1-submanifold of C with codimension dimCu + 1.

Proposition 3.3. One may choose the neighborhoods Ns and Nsc so small in the def-

initions ofWs
loc (PY , r0),Wsc

loc (PY , r0), respectively, such that for all ϕ inWs
loc (PY , r0)∩

A and in Wsc
loc (PY , r0) ∩ A, ϕ̇ /∈ Y and V (ϕ̇) ≥ 2. Analogously, one may suppose

that ϕ̇ /∈ Y for all ϕ ∈ Wu
loc (PY , r0) ∩ A.
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Proof. Recall that the C-norm and the C1-norm are equivalent on the global at-

tractor A. Hence for all ϕ ∈ A with small ‖ϕ− r0‖, ϕ̇ /∈ Y follows from ṙ0 /∈ Y ,
furthermore V (ϕ̇) ≥ 2 follows from V (ṙ0) = 2 and the lower semicontinuity of

V . �

The next result is an immediate consequence of Proposition I.7 in [10] combined

with characterizations of the local stable and center-stable manifolds given by The-

orems I.2 and II.1 in [10].

Proposition 3.4. Let W denote a local stable manifold Ws
loc (PY , r0) if Or is hyper-

bolic, and let W be a local center-stable manifold Wsc
loc (PY , r0) otherwise. Let ϕ ∈ C

be given such that Φ (t, ϕ)→ Or as t→∞. Then there exist T ≥ 0 and a trajectory

(ϕn)∞n=0 of PY in W such that ϕ0 = Φ (T, ϕ) and ϕn → r0 as n→∞.

3.3. Examples. Consider the case when r is the LSOP solution p given by Theorem

A. Theorem A states that Op is hyperbolic, and has two real and simple Floquet

multipliers outside the unit circle. Hence Cc = Rṗ0 and

Cu = {c1v1 + c2v2 : c1, c2 ∈ R} ,

where v1 is a positive eigenfunction corresponding to M and the leading real eigen-

value λ1 > 1, and v2 is an eigenfunction corresponding to M and the eigenvalue

λ2 with 1 < λ2 < λ1. For the solution uv2 : [−1,∞) → R of the linear variational

equation (3.1) with initial segment v2, V (uv2t ) = 2 for all t ≥ 0. For both i ∈ {1, 2},
λi is an eigenvalue of DPY (p0) with the eigenvector vi.

The local unstable manifold Wu
loc (PY , p0) of the Poincaré map PY at p0 is a two-

dimensional C1-submanifold of p0 + Y .

We will use the subsequent technical result.

Proposition 3.5. One may choose Nu so small that the tangent space TϕWu
loc (PY , p0)

has a strictly positive element for all ϕ ∈ Wu
loc (PY , p0).

Proof. By decreasing Nu if necessary, we can achieve that v1 + Dwu (χ) v1 � 0̂ for

all χ ∈ Nu, where v1 is a �xed positive eigenfunction corresponding to the leading

eigenvalue λ1 of DPY (p0). Let ϕ ∈ Wu
loc (PY , p0) be arbitrary and choose χϕ ∈ Nu

with ϕ = p0 + χϕ + wu (χϕ). Then for all t in an open interval I ⊂ R containing 0,

γ (t) = p0 + χϕ + tv1 + wu (χϕ + tv1) is de�ned. Moreover, γ : I → Wu
loc (PY , p0) is

a C1-curve with γ (0) = ϕ and

TϕWu
loc (PY , p0) 3 γ′ (0) = v1 +Dwu (χϕ) v1 � 0̂.

�

We plan to consider other periodic orbits oscillating slowly about an equilibrium,

but keep the same notations for simplicity (ω for the minimal period, PY for the
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Poincaré map, λi, i ≥ 1, for the Floquet multipliers, vi, i ≥ 1, for eigenvectors, and

so on). It will be clear from the context which periodic orbit we refer to.

Theorem A gives a second LSOP solution q : R → R. Oq is hyperbolic, and

it has exactly one simple Floquet multiplier outside the unit circle, which is real

and greater than 1. This leading eigenvalue will be also denoted by λ1, but it

di�ers from the leading Floquet multiplier of Op. To λ1 there corresponds a positive

eigenfunction v1 (di�erent from the previous v1). Hence for r = q, Cc = Rq̇0 and

Cu = Rv1. The local stable manifold Ws
loc (PY , q0) of PY at q0 is a C1-submanifold

of q0 + Y with codimension 1, and a C1-submanifold of C with codimension 2. We

have the tangent space Tq0Ws
loc (PY , q0) = Cs at q0 in q0 + Y .

Recall that there exist periodic solutions x1 : R→ R and x−1 : R→ R of Eq. (1.1)

oscillating slowly about ξ1 and ξ−1 with ranges in (0, ξ2) and (ξ−2, 0), respectively,

so that the ranges x1(R) and x−1(R) are maximal in the sense that x1(R) ⊃ x(R)

for all periodic solutions x oscillating slowly about ξ1 with ranges in (0, ξ2); and

analogously for x−1. We do not know whether the corresponding periodic orbits, O1

and O−1, are hyperbolic or not.

Proposition 3.6. For both periodic orbits O1 and O−1, dimCu = 1.

Proof. We give a proof for O1. As O1 has a Floquet multiplier λ1 > 1, it is clear

that dimCu ≥ 1.

Let W denote the local stable manifold Ws
loc (PY , x

1
0) if O1 is hyperbolic, and

let W be the local center-stable manifold Wsc
loc (PY , x

1
0) otherwise. Then W is a C1-

submanifold of x1
0+Y with Tx10W = Cs if O1 is hyperbolic, and with Tx10W = Cs⊕Rξ

if O1 is nonhyperbolic.

By Theorem B, there exists η ∈ Wu (Op) so that xηt → O1 as t → ∞. Then

Proposition 3.4 guarantees the existence of a sequence (tn)∞n=0 in R with tn →∞ as

n→∞ such that xηtn ∈ W \ {x1
0} for all n ≥ 0 and xηtn → x1

0 as n→∞.

We introduce the notation yn : R → R, n ≥ 0, for the function obtained from

xη by time shift so that yn0 = xηtn . Then yn (t) → x1 (t) as n → ∞ for all t ∈ R
by the continuity of the �ow ΦA. Since xη is a bounded solution of Eq. (1.1), the

solutions yn are uniformly bounded on R, and Eq. (1.1) gives a uniform bound

for their derivatives. By applying the Arzelà�Ascoli theorem successively on the

intervals [−j, j], j ≥ 1, we obtain strictly increasing maps χj : N→ N, 1 ≤ j ∈ N, so
that for every integer j ≥ 1, the subsequence

(
yχ1◦...◦χj(k)

)∞
k=0

converges uniformly on

[−j, j]. By diagonalization, set χ (k) = χ1 ◦ . . .◦χk (k) and consider the subsequence

(ynk)∞k=0 =
(
yχ(k)

)∞
k=0

. Then ynk → x1 as k → ∞ uniformly on all compact subsets

of R.
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De�ne

zk (t) =
ynk (t)− x1 (t)∥∥∥xηtnk

− x1
0

∥∥∥ for all k ≥ 0 and t ∈ R.

Then zk, k ≥ 0, satis�es the equation żk (t) = −zk (t) + ak (t) zk (t− 1) on R, where
the coe�cient function ak is de�ned by

ak : R 3 t 7→
ˆ 1

0

f ′
(
synk (t− 1) + (1− s)x1 (t− 1)

)
ds ∈ R+, k ≥ 0.

Note that there are constants α1 ≥ α0 > 0 independent of k and t such that

α0 ≤ ak (t) ≤ α1 for all k ≥ 0 and t ∈ R, moreover, ak → a as k →∞ uniformly on

compact subsets of R, where

a : R 3 t 7→ f ′
(
x1 (t− 1)

)
∈ R+.

In addition, observe that for all k ≥ 0 and t ∈ R, zkt 6= 0̂ because ynk
0 = xηtnk

6= x1
0 and

the �ow ΦA is injective. Hence V
(
zkt
)
is de�ned and equals 2 for all k ≥ 0 and t ∈ R

by Proposition 8.3 in [8]. Lemma 2.6 then implies the existence of a continuously

di�erentiable function z : R → R and a subsequence
(
zkl
)∞
l=0

of
(
zk
)∞
k=0

such that

zkl → z and żkl → ż as k →∞ uniformly on compact subsets of R, moreover

(3.6) ż (t) = −z (t) + a (t) z (t− 1)

for all real t.

We claim that z0 6= 0̂ and

z0 ∈ Tx10W =

{
Cs, if Or is hyperbolic,
Cs ⊕ Rξ, otherwise.

Consider the map w = ws if O1 is hyperbolic, and the map w = wsc otherwise.

Choose χl ∈ Tx10W , l ≥ 0, with χl → 0̂ as l → ∞ so that xηtnkl

= x1
0 + χl + w

(
χl
)

for all l ≥ 0. Then

z0 = lim
l→∞

zkl0 = lim
l→∞

xηtnkl

− x1
0∥∥∥xηtnkl

− x1
0

∥∥∥ = lim
l→∞

χl + w
(
χl
)

‖χl + w (χl)‖
.

As z0 is the limit of unit vectors, it is clearly nontrivial. Dw
(
0̂
)

= 0 implies that

liml→∞w
(
χl
)
/
∥∥χl∥∥ = 0̂ and thus

lim
l→∞

w
(
χl
)

‖χl + w (χl)‖
= lim

l→∞

w(χl)
‖χl‖∥∥∥∥ χl

‖χl‖ +
w(χl)
‖χl‖

∥∥∥∥ = 0̂
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and

lim
l→∞

∥∥χl∥∥
‖χl + w (χl)‖

= lim
l→∞

1∥∥∥∥ χl

‖χl‖ +
w(χl)
‖χl‖

∥∥∥∥ = 1.

We obtain that

χl + w
(
χl
)

‖χl + w (χl)‖︸ ︷︷ ︸
↓
z0

=
χl

‖χl‖

∥∥χl∥∥
‖χl + w (χl)‖︸ ︷︷ ︸

↓
1

+
w
(
χl
)

‖χl + w (χl)‖︸ ︷︷ ︸
↓
0

as l→∞. Then the limit liml→∞ χ
l/
∥∥χl∥∥ necessarily exists too, and

z0 = lim
l→∞

χl + w
(
χl
)

‖χl + w (χl)‖
= lim

l→∞

χl

‖χl‖
∈ Tx10W ⊂ Y.

Since V
(
zkl0

)
= 2 for all l ≥ 0, the lower-semicontinuity of V proved in Lemma

2.2 implies that V (z0) ≤ lim inf l→∞ V
(
zkl0

)
= 2. Recall that ẋ1

0 ∈ Cc also belongs

to V −1 ({0, 2}), moreover, ẋ1
0 /∈ Y . Thus ẋ1

0 and z0 are linearly independent elements

of (Cs ⊕ Cc) ∩ V −1 ({0, 2}). In consequence, result (3.3) gives that Cu is at most

one-dimensional.

The proof is analogous for O−1. �

The previous result implies that if Ok, k ∈ {−1, 1}, is hyperbolic, then the lo-

cal stable manifold Ws
loc

(
PY , x

k
0

)
of PY at xk0 is a C1-submanifold of xk0 + Y with

codimension 1 and with tangent space Txk0W
s
loc

(
PY , x

k
0

)
= Cs at xk0. It is a C1-

submanifold of C with codimension 2.

Similarly, if Ok, k ∈ {−1, 1}, is nonhyperbolic, then the local center-stable mani-

foldWsc
loc

(
PY , x

k
0

)
of PY at xk0 is a C

1-submanifold of xk0 +Y with codimension 1 and

with tangent space Txk0W
sc
loc

(
PY , x

k
0

)
= Cs ⊕ Rξ at xk0. It is also a C1-submanifold

of C with codimension 2.

Remark 3.7. We see from the proof of Proposition 3.6 that for r = xk, k ∈ {−1, 1},
CrM< admits at least three linearly independent elements: v1 ∈ Cu, ẋk0 ∈ Cc and

z0 ∈ Cs ⊕ Cc. As CrM is at most three-dimensional by (3.3), we conclude that

dimCrM< = 3. A similar reasoning con�rms the same equality for r = q. It is

obvious that the dimension of CrM< is maximal also in the case r = p, as Op has

two Floquet-multipliers outside the unit circle. These observations are in accordance

with the recent result [15] of Mallet-Paret and Nussbaum stating that dimCrM< = 3

in more general situations.
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4. The Proof of Theorem 1.1

Note that each ϕ in the unstable set Wu (Op) arises in the form ϕ = Φ (t, ψ),

where ψ ∈ Wu
loc (PY , p0) and t > 1. Indeed,

(3.5) Wu (Or) = Φ ([0,∞)×Wu
loc (PY , r0)) ,

and from each ψ ∈ Wu
loc (PY , p0) we can start a backward trajectory (ψn)0

−∞ of PY in

Wu
loc (PY , p0) converging to p0 as n→ −∞. As the �rst part of the proof of Theorem

1.1, we are going to show in Proposition 4.1 that for all t > 1 and ψ ∈ Wu
loc (PY , p0),

ϕ = Φ (t, ψ) belongs to a subset Wt,ψ,ε of Wu (Op) that is a three-dimensional

submanifold of C. This implies that Wu (Op) is an immersed submanifold of C.

The proof of Proposition 4.1 is based on (3.5), the di�erentiability of Φ|(1,∞)×C and

the injectivity of D2Φ (t, ϕ) for t ≥ 0.

However, it does not follow immediately thatWu (Op) is an embedded C1-submanifold

of C. We also need to show for any ϕ ∈ Wu (Op) the existence of a ball B in C

centered at ϕ such that

(4.1) Wu (Op) ∩B = Wt,ψ,ε ∩B.

To do this, we will give a sequence of further auxiliary results right after Proposition

4.1. We will introduce a projection π3 from C into R3, and use the special properties

of the Lyapunov functional V to show that π3 is injective on Wu (Op) and on the

tangent spaces of Wt,ψ,ε. These results will easily imply (4.1).

Afterwards we o�er a smooth global graph representation forWu (Op) in order to

indicate the simplicity of its structure. The smoothness of the sets Cp
−2, C

p
0 and Cp

2

then follows at once because they are open subsets ofWu (Op). At last we show that

the semi�ow induced by the solution operator Φ extends to a C1-�ow on Wu (Op).
This property will be applied later in the proof of Theorem 1.2.

Proposition 4.1. To each ψ ∈ Wu
loc (PY , p0) and t > 1, there corresponds an ε =

ε (ψ, t) ∈ (0, t− 1) so that the subset

Wt,ψ,ε = Φ ((t− ε, t+ ε)× (Wu
loc (PY , p0) ∩B (ψ, ε)))

of Wu (Op) is a three-dimensional C1-submanifold of C.

Proof. It is clear from (3.5) that Wt,ψ,ε de�ned as above is a subset of Wu (Op) for

all ε ∈ (0, t− 1) .

Consider the three-dimensional C1-submanifold (1,∞) ×Wu
loc (PY , p0) of R × C

and the continuously di�erentiable map

Σ : (1,∞)×Wu
loc (PY , p0) 3 (s, ϕ) 7→ Φ (s, ϕ) ∈ C.
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It su�ces to show by Proposition 2.8 that for all ψ ∈ Wu
loc (PY , p0) and t > 1, the

derivativeDΣ (t, ψ) is injective on the tangent space T(t,ψ) ((1,∞)×Wu
loc (PY , p0)) =

R× TψWu
loc (PY , p0). This space is spanned by the tangent vectors of the following

curves at 0:

(−1, 1) 3 s 7→ (t+ s, ψ) and (−1, 1) 3 s 7→ (t, γi (s)) , i ∈ {1, 2} ,

where

γi : (−1, 1)→Wu
loc (PY , p0) is a C1-curve,

γi (0) = ψ and Dγi (0) = ηi for both i ∈ {1, 2} ,

with η1 and η2 forming a basis of the two-dimensional tangent space TψWu
loc (PY , p0).

As η1 ∈ Y , η2 ∈ Y and ψ̇ /∈ Y by Proposition 3.3, the vectors η1, η2 and ψ̇ are linearly

independent. Clearly,

d
ds

Σ (t+ s, ψ) |s=0 =
d
ds

Φ (t+ s, ψ) |s=0 = D1Φ (t, ψ) 1 = ẋψt = D2Φ (t, ψ) ψ̇

and

d
ds

Σ (t, γi (s)) |s=0 =
d
ds

Φ (t, γi (s)) |s=0 = D2Φ (t, ψ) ηi, i ∈ {1, 2} .

As D2Φ (t, ψ) : C → C is injective (see Section 2) and η1, η2 and ψ̇ are linearly

independent, we deduce that the range DΣ (t, ψ) (R× TψWu
loc (PY , p0)) is three-

dimensional, and thus DΣ (t, ψ) is injective. �

Next we characterize Wu (Op) and its tangent vectors in terms of oscillation fre-

quencies.

Proposition 4.2. For all ϕ ∈ Wu (Op) and ψ ∈ Wu (Op) with ϕ 6= ψ, V (ψ − ϕ) ≤
2.

Proof. We distinguish three cases:

(i) both ϕ ∈ Op and ψ ∈ Op;
(ii) ϕ ∈ Op and ψ ∈ Wu (Op) \ Op (or vice verse);
(iii) both ϕ ∈ Wu (Op) \ Op and ψ ∈ Wu (Op) \ Op .
Let ω > 1 denote the minimal period of p. It is easy to deduce from Proposition

2.5 that

(4.2) V (pτ − pσ) = 2 for all τ ∈ [0, ω) and σ ∈ [0, ω) with τ 6= σ.

Hence the statement holds in case (i).

Case (ii). By de�nition, there exist σ ∈ [0, ω) and (tn)∞0 ⊂ R so that tn → −∞
and xψtn → pσ as n → ∞. As xϕtn ∈ Op for all n ≥ 0, we may also assume by

compactness that xϕtn → pτ as n → ∞ for some τ ∈ [0, ω). As the C-norm and

C1-norm are equivalent on the global attractor, xψtn → pσ and xϕtn → pτ as n → ∞
also in C1-norm.
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By Lemma 2.3 (iii) and property (4.2), pσ−pτ ∈ R for all τ ∈ [0, ω) and σ ∈ [0, ω)

with τ 6= σ. Hence if σ 6= τ , then Lemma 2.2 implies that

2 = V (pσ − pτ ) = lim
n→∞

V
(
xψtn − x

ϕ
tn

)
.

By the monotonicity of V we conclude that V
(
xψt − x

ϕ
t

)
≤ 2 for all real t. If σ = τ ,

then for all ε > 0 small, σ+ ε 6= τ and xψtn+ε → pσ+ε as n→∞ both in C-norm and

C1-norm. Therefore by Lemma 2.2 and by our previous reasoning,

V
(
xψt − x

ϕ
t

)
≤ lim inf

ε→0+
V
(
xψt+ε − x

ϕ
t

)
≤ 2

for all t ∈ R. In particular, V (ψ − ϕ) ≤ 2.

We omit the proof of case (iii), as it is analogous to the one given for (ii). �

As it is stated in the next proposition, the tangent vectors of Wu (Op) have at

most two sign changes. This result is a direct consequence of Proposition 4.2.

Proposition 4.3. Assume ϕ ∈ Wu (Op), γ : (−1, 1) → C is a C1-curve with

γ (0) = ϕ, and (sn)∞0 is a sequence in (−1, 1) \ {0} so that sn → 0 as n → ∞ and

γ (sn) ∈ Wu (Op) for all n ≥ 0. Also assume that γ′ (0) 6= 0̂. Then V (γ′ (0)) ≤ 2.

Proof. By Proposition 4.2,

V

(
γ (sn)− γ (0)

sn

)
≤ 2

for all su�ciently large n ≥ 0 (for all n with γ (sn) 6= γ (0)). Since (γ (sn)− γ (0)) /sn →
γ′ (0) in C as n→∞, the statement follows from the lower semi-continuity property

of V presented by Lemma 2.2. �

In order to get more information on the unstable set Wu (Op), we project it into
the three-dimensional Euclidean space. Introduce the linear map

π3 : C 3 ϕ 7→ (ϕ (0) , ϕ (−1) , I (ϕ)) ∈ R3,

where I (ϕ) =
´ 0

−1
ϕ (s) ds. The next statement can be obtained also from Proposi-

tion 4.2.

Proposition 4.4. π3 is injective on Wu (Op).

Proof. Suppose that there exist ϕ ∈ Wu (Op) and ψ ∈ Wu (Op) so that ϕ 6= ψ and

π3ϕ = π3ψ. Consider the solutions xϕ : R → R and xψ : R → R of Eq. (1.1). The

segments xϕt and x
ψ
t belong toWu (Op), and the injectivity of the semi�ow Φ implies

that xϕt 6= xψt for all t ∈ R. Hence V
(
xϕt − x

ψ
t

)
≤ 2 for all t ∈ R by Proposition 4.2.

Since ϕ (0)− ψ (0) = ϕ (−1)− ψ (−1) = 0, Lemma 2.3 (ii) gives that

V (ϕ− ψ) < V
(
xϕ−2 − x

ψ
−2

)
≤ 2,
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that is V (ϕ− ψ) = 0 and ϕ ≤ ψ or ψ ≤ ϕ. Using I (ϕ) = I (ψ) we conclude that

ϕ = ψ, which contradicts our initial assumption. �

We also need to know how π3 acts on the tangent vectors of Wu (Op) .

Proposition 4.5. If γ : (−1, 1) → C is a C1-curve with range in Wu (Op) and

γ′ (0) 6= 0̂, then π3γ
′ (0) 6= (0, 0, 0).

Proof. Let γ : (−1, 1)→ C be a C1-curve with range inWu (Op) and with γ′ (0) 6= 0̂.

Let x : R → R be the unique solution of Eq. (1.1) with x0 = γ (0) ∈ Wu (Op), and
set a : R 3 t 7→ f ′ (x (t− 1)) ∈ R+.

1. We claim that the problemẏ (t) = −y (t) + a (t) y (t− 1) , t ∈ R,

y0 = γ′ (0)

has a unique solution y : R→ R.
Fix a sequence (sn)∞n=0 in (−1, 1) \ {0} with sn → 0 as n→∞. As γ′ (0) 6= 0̂, we

may assume that γ (sn) 6= γ (0) for all n ≥ 0. Consider the solutions xn = xγ(sn) :

R → R. Then xnt ∈ Wu (Op) for all n ≥ 0 and t ∈ R, furthermore xn (t) → x (t)

as n → ∞ for all t ∈ R by the continuity of the �ow ΦA. Since all their segments

belong to the bounded global attractor, the solutions xn are uniformly bounded on

R, and Eq. (1.1) gives a uniform bound for their derivatives. Therefore by applying

the Arzelà�Ascoli theorem successively on the intervals [−j, j], j ≥ 1, and by using

a diagonalization process, we obtain that (xn)∞n=0 has a subsequence (xnk)∞k=0 such

that the convergence xnk → x is uniform on all compact subsets of R. Set

yk (t) =
xnk (t)− x (t)

snk

for all k ≥ 0 and t ∈ R.

Then for all k ≥ 0 and t ∈ R, ykt 6= 0̂ by the injectivity of the �ow ΦA, and

V
(
ykt
)
≤ 2 by Proposition 4.2. In addition, yk, k ≥ 0, satis�es the equation

ẏk (t) = −yk (t) + ak (t) yk (t− 1) on R, where

ak : R 3 t 7→
ˆ 1

0

f ′ (sxnk (t− 1) + (1− s)x (t− 1)) ds ∈ R+, k ≥ 0.

It is clear that there are constants α1 ≥ α0 > 0 independent of k and t such that

α0 ≤ ak (t) ≤ α1 for all k ≥ 0 and t ∈ R. Also note that ak → a as k →∞ uniformly

on compact subsets of R. Therefore by Lemma 2.6, there exist a continuously

di�erentiable function y : R → R and a subsequence
(
ykl
)∞
l=0

of
(
yk
)∞
k=0

such that

ykl → y and ẏkl → ẏ as k →∞ uniformly on compact subsets of R, moreover

(4.3) ẏ (t) = −y (t) + a (t) y (t− 1)
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for all real t. It is clear from the construction that

y0 = lim
l→∞

x
nkl
0 − x0

snkl

= lim
l→∞

γ
(
snkl

)
− γ (0)

snkl

= γ′ (0) .

The uniqueness of y is guaranteed by Proposition 2.1.

2. Next we claim that (−1, 1) 3 s 7→ ΦA (−2, γ (s)) is di�erentiable at s = 0, and

d
ds

ΦA (−2, γ (s)) |s=0 = y−2.

If this is not true, then there exists a sequence (sn)∞n=0 in (−1, 1) \ {0} with sn → 0

as n→∞ such that for all n ≥ 0,

ΦA (−2, γ (sn))− ΦA (−2, γ (0))

sn

remains outside a �xed neighborhood of y−2 in C. So to verify the claim, it su�ces

to show that any sequence (sn)∞n=0 in (−1, 1) \ {0} with sn → 0 as n→∞ admits a

subsequence (snl
)∞l=0 for which

ΦA (−2, γ (snl
))− ΦA (−2, γ (0))

snl

→ y−2 as l→∞.

Indeed, by repeating the reasoning in the �rst part of the proof word by word, one

can show that the sequence (xn)∞n=0 formed by the solutions xn = xγ(sn) : R → R,
n ≥ 0, has a subsequence (xnl)∞l=0 such that (xnl − x) /snl

→ y as l →∞ uniformly

on compact subsets of R. In particular,

y−2 = lim
l→∞

x
n
l
−2 − x−2

snl

= lim
l→∞

ΦA (−2, γ (snl
))− ΦA (−2, γ (0))

sn
l

.

3. So y−2 is a tangent vector of Wu (Op) at x−2, and thus V (y−2) ≤ 2 by

Proposition 4.3.

4. To prove the assertion indirectly, suppose that

γ′ (0) (0) = γ′ (0) (−1) = I (γ′ (0)) = 0.

Then as y (0) = γ′ (0) (0) = 0 and y (−1) = γ′ (0) (−1) = 0, V (γ′ (0)) < V (y−2) ≤ 2

by Lemma 2.3 (ii). So V (γ′ (0)) = 0, that is γ′ (0) ≥ 0̂ or γ′ (0) ≤ 0̂. As we have

also assumed that I (γ′ (0)) = 0, necessarily γ′ (0) = 0̂ follows, a contradiction. The

proof is complete. �

Now we can verify Theorem 1.1.

Proof of Theorem 1.1.

1.The proof of the assertion that Wu (Op) is a three-dimensional C1-submanifold

of C. All ϕ ∈ Wu (Op) can be written in form ϕ = Φ (t, ψ), where t > 1 and

ψ ∈ Wu
loc (PY , p0). This property follows from relation (3.5) and the fact that to
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each ψ ∈ Wu
loc (PY , p0), there corresponds a trajectory (ψn)0

−∞ of PY inWu
loc (PY , p0)

with ψ0 = ψ and ψn → p0 as n → −∞. Hence Proposition 4.1 guarantees the

existence of ε > 0 so that the subset

Wt,ψ,ε = Φ ((t− ε, t+ ε)× (Wu
loc (PY , p0) ∩B (ψ, ε)))

of Wu (Op) containing ϕ is a three-dimensional C1-submanifold of C.

To show that Wu (Op) is a three-dimensional C1-submanifold of C, it su�ces to

exclude for all t > 1 and ψ ∈ Wu
loc (PY , p0) the existence of a sequence (ϕn)∞n=0

in Wu (Op) so that ϕn /∈ Wt,ψ,ε for n ≥ 0 and ϕn → ϕ = Φ (t, ψ) as n → ∞.

According to Proposition 4.5, Dπ3 (ϕ) = π3 is injective on the three-dimensional

tangent space TϕWt,ψ,ε, i.e. it de�nes an isomorphism from TϕWt,ψ,ε onto R3. Thus

the inverse mapping theorem yields a constant δ > 0 such that the restriction of π3

to Wt,ψ,ε ∩B (ϕ, δ) is a di�eomorphism from Wt,ψ,ε ∩B (ϕ, δ) onto an open set U in

R3. If a sequence (ϕn)∞n=0 inWu (Op) converges to ϕ as n→∞, then π3ϕ
n → π3ϕ as

n→∞, and π3ϕ
n ∈ U for all su�ciently large n. The injectivity of π3 on Wu (Op)

veri�ed in Proposition 4.4 then implies that ϕn ∈ Wt,ψ,ε.

2. Graph representation for Wu (Op). Choose ϕj ∈ C such that π3ϕj = ej,

j ∈ {1, 2, 3}, where e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). This is possible as

π3 : C 3 ϕ 7→ (ϕ (0) , ϕ (−1) , I (ϕ)) ∈ R3 is injective on the 3-dimensional tangent

spaces of Wu (Op), and hence it is surjective. Clearly ϕ1, ϕ2 and ϕ3 are linearly

independent.

Let J3 : R3 → C be the injective linear map for which J3ej = ϕj, j ∈ {1, 2, 3},
and let P3 = J3 ◦ π3. Then P3 : C → C is continuous, linear and P3ϕj = ϕj for all

j ∈ {1, 2, 3}. In consequence, P3 ◦ P3 = P3, which means that P3 is a projection.

The space

G3 = P3C = {c1ϕ1 + c2ϕ2 + c3ϕ3 : c1, c2, c3 ∈ R}

is 3-dimensional, and with E = P−1
3 (0), we have C = G3 ⊕E. As the restriction of

P3 to Wu (Op) is injective, the inverse P−1
3 of the map Wu (Op) 3 ϕ 7→ P3ϕ ∈ G3

exists. At last, introduce the map

w : P3Wu (Op) 3 χ 7→ (id− P3) ◦ P−1
3 (χ) ∈ E.

Then

Wu (Op) = {χ+ w (χ) : χ ∈ P3Wu (Op)} .

It remains to show that U3 = P3Wu (Op) is open in G3 and w is C1-smooth.

Let χ ∈ P3Wu (Op) be arbitrary. Then χ = P3ϕ with some ϕ ∈ Wu (Op). As the

restriction of π3 to TϕW (Op) is injective, DP3 (ϕ) = P3 de�nes an isomorphism

from TϕW (Op) to G3. Consequently the inverse mapping theorem implies that an

ε > 0 can be given such that P3 maps W (Op) ∩ B (ϕ, ε) one-to-one onto an open

neighborhood U ⊂ U3 of χ in G3, P3 is invertible on W (Op) ∩ B (ϕ, ε), and the
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inverse P̃−1
3 of the map

W (Op) ∩B (ϕ, ε) 3 ϕ 7→ P3ϕ ∈ U

is C1-smooth. As

w (χ) = (id− P3) ◦ P−1
3 (χ) = (id− P3) ◦ P̃−1

3 (χ)

for all χ ∈ U , the restriction of w to U is C1-smooth.

3. The characterization of Cp
j , j ∈ {−2, 0, 2}. Since the basin of attraction

of a stable equilibrium is open in C, the connecting set Cp
j , j ∈ {−2, 0, 2}, is an

open subset of Wu (Op). It follows immediately that Cp
j , j ∈ {−2, 0, 2}, is a three-

dimensional C1-submanifold of C and

Cp
j =

{
χ+ w (χ) : χ ∈ P3C

p
j

}
for all j ∈ {−2, 0, 2}. �

As Wu (Op) is a C1-submanifold of C, it makes sense to investigate the di�eren-

tiability of the map

ΦWu(Op) : R×Wu (Op) 3 (t, ϕ) 7→ ΦA (t, ϕ) ∈ Wu (Op) .

Suppose that η1 η2 and η3 form a basis of the three-dimensional tangent space

TϕWu (Op) of Wu (Op) at some ϕ ∈ Wu (Op). Then for all t ∈ R, the tangent space
T(t,ϕ) (R×Wu (Op)) of R ×Wu (Op) at (t, ϕ) is spanned by the tangent vectors of

the following curves at 0:

(−1, 1) 3 s 7→ (t+ s, ϕ) and (−1, 1) 3 s 7→ (t, γi (s)) , i ∈ {1, 2, 3} ,

where γi : (−1, 1)→Wu (Op) is a C1-curve with γi (0) = ϕ and Dγi (0) = ηi for all

i ∈ {1, 2, 3}.
We are going to apply the following assertion in the proof of Theorem 1.2.(i).

Proposition 4.6. The �ow ΦWu(Op) is C
1-smooth. For all t ∈ R and ϕ ∈ Wu (Op),

(4.4)
d

ds
ΦWu(Op) (t+ s, ϕ) |s=0 = ẋϕt .

For all ϕ ∈ Wu (Op) and η ∈ TϕWu (Op), the variational equation

v̇(t) = −v(t) + f ′ (xϕ (t− 1)) v (t− 1)(2.2)

has a unique solution vη : R→ R with vη0 = η. If t ∈ R and γ : (−1, 1)→Wu (Op)
is a C1-curve with γ (0) = ϕ and γ′ (0) = η, then

(4.5)
d

ds
ΦWu(Op) (t, γ (s)) |s=0 = vηt .
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Proof. 1. To prove the smoothness of ΦWu(Op), it is su�cient to show that for all

t ∈ R, the map

(4.6) (t,∞)×Wu (Op) 3 (s, ϕ) 7→ ΦA (s, ϕ) ∈ Wu (Op)

is continuously di�erentiable.

Let t ∈ R be given, and introduce the map

At :Wu (Op) 3 ϕ 7→ ΦA (t, ϕ) ∈ Wu (Op) .

For t ≥ 0, At is clearly C1-smooth as Φ (t, ·) is C1-smooth and maps Wu (Op) into

Wu (Op). For t < 0, the smoothness of At follows from the smoothness of the map

Φ (−t, ·), the injectivity of its derivative, the inclusion Φ (−t,Wu (Op)) ⊂ Wu (Op)
and the inverse mapping theorem.

For all (s, ϕ) ∈ (t,∞)×Wu (Op),

ΦA (s, ϕ) = Φ (s+ 1− t,ΦA (t− 1, ϕ)) = Φ (s+ 1− t, At−1 (ϕ)) .

So the C1-smoothness of the maps Φ|(1,∞)×C and

(t,∞)×Wu (Op) 3 (s, ϕ) 7→ (s+ 1− t, At−1 (ϕ)) ∈ (1,∞)× C

guarantee that (4.6) is also continuously di�erentiable.

2. Relation (4.4) is already known for t > 1. It can be easily obtained for t ≤ 1

from the de�nition of the Fréchet derivative.

3. We already now that initial value problems corresponding to the variational

equation (2.2) have unique solutions in forward time, moreover relation (4.5) holds

for t ≥ 0.

Fix t < 0. Note that if γ : (−1, 1) → Wu (Op) is a C1-curve with γ (0) = ϕ and

γ′ (0) = η, then
d
ds

ΦWu(Op) (t, γ (s)) |s=0 = DAt (ϕ) η.

By part 1, the map At is a C1-di�eomorphism with the inverse A−1
t = A−t. Hence

for all η ∈ TϕWu (Op), χ = DAt (ϕ) η exists and belongs to TΦA(t,ϕ)Wu (Op). Then

η = [DAt (ϕ)]−1 χ = DA−1
t (ΦA (t, ϕ))χ = DA−t (ΦA (t, ϕ))χ

= D2Φ (−t,ΦA (t, ϕ))χ = uχ−t,

where uχ : [−1,∞)→ R is the solution of

u̇ (s) = −u (s) + f ′
(
xΦA(t,ϕ) (s− 1)

)
u (s− 1)

= −u (s) + f ′ (xϕ (t+ s− 1))u (s− 1)
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with uχ0 = χ. With transformation v (s) = u (s− t) we obtain that the problem

(4.7)

v̇ (s) = −v (s) + f ′ (xϕ (s− 1)) v (s− 1)

v0 = η

has a solution vη on [t− 1,∞) satisfying vηt = χ = DAt (ϕ) η. As this reasoning

holds for any t < 0, we deduce � using Proposition 2.1 � that (4.7) admits a unique

solution vη : R→ R with vηt = DAt (ϕ) η for any t < 0. This completes the proof of

(4.5) for all t ∈ R. �

The formula (4.5) plays a key role in the proof of the subsequent corollary.

Corollary 4.7. For each �xed t ∈ R, the derivative of the map

At :Wu (Op) 3 ϕ 7→ ΦWu(Op) (t, ϕ) ∈ Wu (Op)

at any ϕ ∈ Wu (Op) is injective on TϕWu (Op).

Proof. Suppose there exist t ∈ R, ϕ ∈ Wu (Op) and η ∈ TϕWu (Op) with η 6= 0̂ such

that DAt (ϕ) η = 0̂. By the previous proposition, DAt (ϕ) η = vηt , where v
η : R→ R

is the solution of (2.2) with vη0 = η. So we assume that vηt = 0̂. Then the function

u : R → R de�ned by u (s) = vη (t+ s), s ∈ R, is a nontrivial solution of the

equation

u̇ (s) = −u (s) + f ′
(
x

ΦWu(Op)(t,ϕ)
(s− 1)

)
u (s− 1)

with u0 = 0̂. This implies a contradiction to Proposition 2.1. �

5. The Proof of Theorem 1.2

Fix index k ∈ {−1, 1} in the rest of the paper and consider the sets Cp
q , C

p
k and

Sk = Cp
k ∪ Op ∪ Cp

q .

5.1 Preliminary results on Sk

In this subsection we de�ne a projection π2 from C into R2 and show that π2

is injective on the closure Sk of Sk in C, see Proposition 5.4. The proof of this

assertion is based on the special properties of the discrete Lyapunov functional V .

The injectivity of π2|Sk
enables us to give a graph representation for Sk (without

smoothness properties): there is an isomorphism J2 : R2 → C such that P2 =

J2 ◦ π2 : C → C is a projection onto a two-dimensional subspace G2 of C, and a

map wk : P2Sk → P−1
2 (0) can be de�ned such that

Sk =
{
χ+ wk (χ) : χ ∈ P2Sk

}
,

see Proposition 5.5. The di�erentiability of wk and the properties of its domain

P2Sk ⊂ G2 are studied only in Subsections 5.3 and 5.5. We also show at the end of
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this subsection that π2|Sk
is a homeomorphism onto its image (see Proposition 5.6),

moreover π2 maps the nonzero tangent vectors of Sk to nonzero vectors in R2 (see

Proposition 5.7).

Clearly, Sk is invariant under ΦA. Then it easily follows that Sk is invariant too.

Indeed, let ϕ ∈ Sk \Sk be arbitrary and choose a sequence (ϕn)∞n=0 in Sk converging

to ϕ as n → ∞. As the global attractor A is closed, ϕ ∈ A. By the continuity of

the �ow ΦA on R × A, Sk 3 xϕn
t → xϕt as n → ∞ for all t ∈ R, which means that

Sk is invariant under ΦA.

By Theorem B,

(1.2) Sk = {ϕ ∈ Wu (Op) : xϕ oscillates about ξk} .

Note that if xϕ is nonoscillatory about ξk for some ϕ ∈ C (i.e. there exists T ≥ 0

so that xϕT � ξ̂k or x
ϕ
T � ξ̂k ), then ϕ has an open neighborhood Uϕ in C such that

for all ψ ∈ Uϕ, xψ is nonoscillatory about ξk. Hence it comes immediately from (1.2)

that for all ϕ ∈ Sk, xϕ oscillates about ξk.

The next result states that the stable set of the unstable equilibrium ξ̂k contains

only nonordered elements with respect to the pointwise ordering. The proof follows

the �rst part of the proof of Proposition 3.1 in [10].

Proposition 5.1. There exist no ϕ ∈ C and ψ ∈ C with ϕ � ψ such that xϕt and

xψt both converge to ξ̂k as t→∞.

Proof. Suppose that ϕ ∈ C, ψ ∈ C, ϕ � ψ and both xϕt , x
ψ
t converge to ξ̂k as

t→∞. Then y := xψ − xϕ is positive on [−1,∞) by Proposition 2.4, it satis�es

ẏ(t) = −y(t) + b (t) y(t− 1)

for all t > 0, where

b : [0,∞) 3 t 7→
ˆ 1

0

f ′
(
sxψ (t− 1) + (1− s)xϕ (t− 1)

)
ds ∈ (0,∞) ,

furthermore b (t) → f ′ (ξk) as t → ∞. Since f ′ (ξk) > 1 by hypothesis (H1), the

number ε = (f ′ (ξk)− 1) e−1/2 is positive. So there exists T ≥ 0 such that b (t) ≥
f ′ (ξk)− ε for all t ≥ T . Observe that the positivity of y and b implies that

d
dt

(
ety (t)

)
= etb (t) y (t− 1) > 0 for all t > 0.

For this reason, et−1y (t− 1) < ety (t) for t ≥ 1, and

ẏ (t) ≥ −y (t) + (f ′ (ξk)− ε) y (t− 1)

≥ − (1 + εe) y (t) + f ′ (ξk) y (t− 1)
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for all t ≥ T + 1. The choice of ε ensures that

1 + εe =
1

2
+

1

2
f ′ (ξk) < f ′ (ξk) .

Hence the equation

λ+ (1 + εe) = f ′ (ξk) e
−λ

has a positive real solution λ. Choose δ > 0 so that y(t) > δeλt on [T, T + 1]. The

function z(t) = δeλt is a solution of the equation

ż (t) = − (1 + εe) z (t) + f ′ (ξk) z (t− 1)

on R. Set u = y − z. Then uT+1 � 0̂ and

u̇(t) ≥ − (1 + εe)u(t) + f ′ (ξk)u(t− 1) for all t ≥ T + 1.

If there existed t∗ > T + 1 so that u (t∗) = 0 and u is positive on [T, t∗), then

u̇ (t∗) would be nonpositive. On the other hand, the inequality for u combined with

u (t∗) = 0 and u (t∗ − 1) > 0 would yield that u̇ (t∗) > 0. So u(t) = y(t) − z(t) =

y(t)− δeλt > 0 for all t ≥ T , which contradicts the boundedness of y. �

The next proposition is the analogue of Proposition 3.1 in [10].

Proposition 5.2. (Nonordering of Sk) For all ϕ, ψ ∈ C with ϕ < ψ, either ϕ ∈
C\Sk or ψ ∈ C\Sk.

Proof. If there are ϕ̃ ∈ Sk and ψ̃ ∈ Sk satisfying ϕ̃ < ψ̃, then by Proposition 2.4

and the invariance of Sk, ϕ = xϕ̃2 ∈ Sk, ψ = xψ̃2 ∈ Sk and ϕ � ψ. Theorem 4.1 in

Chapter 5 of [20] proves that there is an open and dense set of initial functions in

C−2,2 so that the corresponding solutions converge to equilibria. Hence there exist

ϕ∗ ∈ C and ψ∗ ∈ C with ϕ � ϕ∗ � ψ∗ � ψ such that both xϕ
∗

t and xψ
∗

t tend to

equilibria as t→∞.

If xψ
∗

t → ξ̂ as t → ∞, where ξ̂ is any equilibrium with ξ > ξk, then there exists

T > 0 such that ξ̂k � xψ
∗

T . Then ξ̂k � xψ
∗

T � xψT by Proposition 2.4, which implies a

contradiction to the fact that the elements of Sk oscillate about ξk. If x
ψ∗

t → ξ̂ � ξ̂k

as t → ∞, and there exists T > 0 with xψ
∗

T � ξ̂k, then xϕT � xψ
∗

T � ξ̂k, which

contradicts ϕ ∈ Sk. Therefore, ω (ψ∗) =
{
ξ̂k

}
. Similarly, ω (ϕ∗) =

{
ξ̂k

}
. This is a

contradiction to Proposition 5.1. �

Proposition 5.3. If ϕ ∈ Sk, ψ ∈ Sk and ϕ 6= ψ, then V (ψ − ϕ) = 2.

Proof. If ϕ, ψ ∈ Sk and ϕ 6= ψ, then V (ψ − ϕ) ≤ 2 by Proposition 4.2. The

lower-semicontinuity of V (see Lemma 2.2) hence implies that V (ψ − ϕ) ≤ 2 for

all ϕ, ψ ∈ Sk satisfying ϕ 6= ψ. If V (ψ − ϕ) = 0, then ϕ < ψ or ψ < ϕ, which

contradicts Proposition 5.2. �
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The role of π3 in the proof of Theorem 1.1 is now taken over by the linear map

π2 : C 3 ϕ 7→ (ϕ (0) , ϕ (−1)) ∈ R2.

The next assertion is analogous to Proposition 4.4, and it will be used several times

in the subsequent proofs.

Proposition 5.4. π2 is injective on Sk.

Proof. Suppose that there exist ϕ ∈ Sk and ψ ∈ Sk so that ϕ 6= ψ and π2ϕ = π2ψ.

Consider the solutions xϕ : R → R and xψ : R → R. The invariance of Sk implies

that xϕt ∈ Sk and xψt ∈ Sk for all t ∈ R, and the the injectivity of the semi�ow

guarantees that xϕt 6= xψt for all t ∈ R. Hence V
(
xϕt − x

ψ
t

)
= 2 for all real t by

Proposition 5.3. The initial assumption ϕ (0) − ψ (0) = ϕ (−1) − ψ (−1) = 0 and

Lemma 2.3 (ii) however yield that

V (ϕ− ψ) < V
(
xϕ−2 − x

ψ
−2

)
,

which is a contradiction. �

The injectivity of π2|Sk
is su�cient to give a graph representation for Sk.

Proposition 5.5. Sk has a global graph representation: there exist a projection P2

from C onto a two-dimensional subspace G2 of C and a map wk : P2Sk → P−1
2 (0)

so that

(5.1) Sk =
{
χ+ wk (χ) : χ ∈ P2Sk

}
.

Proof. Let e1 = (1, 0, 0) and e2 = (0, 1, 0). Let ϕ1 and ϕ2 be the linearly independent

elements of C �xed in the proof of Theorem 1.1 with the property that π3ϕj = ej for

j ∈ {1, 2}. De�ne J2 : R2 → C to be the injective linear map for which J2 (1, 0) = ϕ1

and J2 (0, 1) = ϕ2, and set P2 = J2 ◦ π2 : C → C. Then P2 is continuous, linear and

P2ϕj = ϕj for both j ∈ {1, 2}. Hence P2 ◦ P2 = P2, and P2 is a projection. The

2-dimensional image space

G2 = P2C = {c1ϕ1 + c2ϕ2 : c1, c2 ∈ R}

is a subspace of G3 and C = G2⊕P−1
2 (0). (Note that P2 and G2 are both indepen-

dent of k.) As the restriction of P2 to Sk is injective by Proposition 5.4, the inverse(
P2|Sk

)−1
of the map Sk 3 ϕ 7→ P2ϕ ∈ G2 exists. With the map

wk : P2Sk 3 χ 7→ (id− P2) ◦
(
P2|Sk

)−1
(χ) ∈ P−1

2 (0)

we have (5.1). �

The smoothness of this representation will be veri�ed later. Observe that

w−1|P2(S−1∩S1) = w1|P2(S−1∩S1).
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Also note that now we have a global graph representation for any subset W of Sk:

W = {χ+ wk (χ) : χ ∈ P2W} .

Let π−1
2 : π2

(
Sk
)
→ C be the inverse of the injective map Sk 3 ϕ 7→ π2ϕ ∈ R2.

Proposition 5.6. π−1
2 is Lipschitz-continuous.

Proof. Suppose that π−1
2 is not Lipschitz-continuous, i.e., there are sequences of

solutions xn : R → R and yn : R → R, n ∈ N, so that xn0 6= yn0 for all n ≥ 0,

xn0 , y
n
0 ∈ Sk for all n ≥ 0, and

|π2 (xn0 − yn0 )|R2

‖xn0 − yn0 ‖
→ 0 as n→∞.

By the compactness of Sk, the solutions xn and yn are uniformly bounded, and

Eq. (1.1) gives a uniform bound for their derivatives. Therefore we can use the

Arzelà�Ascoli theorem successively on the intervals [−j, j], j ≥ 1, and apply a di-

agonalization process to get subsequences (xnm)∞m=0, (ynm)∞m=0 and continuous func-

tions x : R→ R, y : R→ R so that xnm → x and ynm → y as m→∞ uniformly on

compact subsets of R.
Set functions

zm : R 3 t 7→ xnm (t)− ynm (t)

‖xnm
0 − ynm

0 ‖
∈ R, m ∈ N.

Then V (zmt ) = 2 for all m ≥ 0 and t ∈ R by Proposition 5.3, ‖zm0 ‖ = 1 for all

m ≥ 0, and

|π2z
m
0 |R2 =

|π2 (xnm
0 − ynm

0 )|R2

‖xnm
0 − ynm

0 ‖
→ 0 as m→∞.

In addition, żm (t) = −zm (t) + am (t) zm (t− 1) for all m ≥ 0 and t ∈ R, where the
coe�cient functions

am : R 3 t 7→
ˆ 1

0

f ′ (sxnm (t− 1) + (1− s) ynm (t− 1)) ds ∈ R+, m ≥ 0,

converge to

a : R 3 t 7→
ˆ 1

0

f ′ (sx (t− 1) + (1− s) y (t− 1)) ds ∈ R+

uniformly on compact subsets of R. It is also obvious that there are constants

α1 ≥ α0 > 0 such that α0 ≤ am (t) ≤ α1 for all m ≥ 0 and t ∈ R.
Therefore Lemma 2.6 guarantees the existence of a subsequence (zml)∞l=0 of (zm)∞m=0

and a continuously di�erentiable function z : R→ R such that zml → z and żml → ż

as l→∞ uniformly on compact subsets of R, and z satis�es

ż (t) = −z (t) + a (t) z (t− 1) for all t ∈ R.

It is clear that ‖z0‖ = 1, and thus z0 6= 0̂. In addition, π2z0 = (0, 0).
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By Lemma 2.2,

V (zt) ≤ lim inf
l→∞

V (zml
t ) = 2 for all real t.

Hence Lemma 2.3 (ii) and property π2z0 = (0, 0) together give that V (z0) = 0. As

t 7→ V (zt) is monotone nonincreasing, V (z3) = 0. Lemma 2.3 (iii) then implies that

z3 belongs to the function class R, and the second statement of Lemma 2.2 gives

that

0 = V (z3) = lim
l→∞

V (zml
3 ) ,

which contradicts V (zml
3 ) = 2. �

We get the next result as a consequence, it is analogous to Proposition 4.5.

Proposition 5.7. Suppose that ϕ ∈ Sk, γ : (−1, 1)→ C is a C1-curve with γ (0) =

ϕ, and (sn)∞0 is a sequence in (−1, 1) \ {0} so that sn → 0 as n→∞ and γ (sn) ∈ Sk
for all n ≥ 0. If γ′ (0) 6= 0̂, then π2γ

′ (0) 6= (0, 0).

Proof. Let K > 0 be a Lipschitz-constant for π−1
2 . Proposition 5.6 guarantees that

such K exists. Then∥∥∥∥γ (sn)− γ (0)

sn

∥∥∥∥ ≤ K

∣∣∣∣π2γ (sn)− π2γ (0)

sn

∣∣∣∣
R2

for all n ≥ 0. Letting n→∞ we obtain that ‖γ′ (0)‖ ≤ K |π2γ
′ (0)|R2 . Therefore if

γ′ (0) 6= 0̂, then π2γ
′ (0) 6= (0, 0). �

5.2 The structure of Sk

It is obvious from the de�nition of Sk that (Ok ∪ Sk ∪ Oq) ⊆ Sk. The equality

Sk = Ok ∪ Sk ∪Oq is proved in this subsection based on the property that π2 maps

Sk injectively into R2. Then it will follow easily that Cp
q = Op ∪ Cp

q ∪ Oq and

Cp
k = Op ∪ Cp

k ∪ Ok.
Proposition 5.4 implies that π2 maps periodic orbits with segments in Sk into

simple closed curves in R2, and the images of di�erent periodic orbits are disjoint

curves in R2. Lemma 5.7 of [17] guarantees the same properties for all periodic

orbits. So

R 3 t 7→ π2pt ∈ R2, R 3 t 7→ π2qt ∈ R2

and

R 3 t 7→ π2x
k
t ∈ R2

are pairwise disjoint simple closed curves.

It comes from Proposition 7.3 of [17] that if a periodic solution r : R → R
oscillates about an equilibrium ξ̂, then π2ξ̂ ∈ int (π2Or), where Or = {rt : t ∈ R}.
If two periodic solutions r1 : R→ R and r2 : R→ R oscillate about an equilibrium
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ξ̂, then necessarily π2Or1 ⊂ int (π2Or2) or π2Or2 ⊂ int (π2Or1). These observations
imply the subsequent results. Since p oscillates about 0̂, and xk oscillates about ξ̂k,

we have π20̂ ∈ int (π2Op) and π2ξ̂k ∈ int (π2Ok). Note that as either the minimum

of p is smaller than the minimum of xk or the maximum of p is greater than the

maximum of xk, it is impossible that π2Op ⊂ int (π2Ok). As both p and xk oscillate
about ξ̂k, we obtain that π2Ok ⊂ int (π2Op). From p (R) ( q (R) it follows that

π2Op ⊂ int (π2Oq). As q (R) ⊂ (ξ−2, ξ2), it is clear that π2ξ̂−2 and π2ξ̂2 belong to

ext (π2Oq). See Fig. 6.
Let

Apk = ext (π2Ok) ∩ int (π2Op) , Apq = ext (π2Op) ∩ int (π2Oq)

and

Ak,q = ext (π2Ok) ∩ int (π2Oq) ,

see Fig. 6. Then by the Schön�ies theorem [19], Apk, A
p
q and Ak,q are homeomorphic

to the open annulus A(1,2) = {u ∈ R2 : 1 < |u| < 2}. For the closures Apk, A
p
q and

Ak,q of A
p
k, A

p
q and Ak,q in R2, respectively, we have

Apk = Apk ∪ π2Ok ∪ π2Op, Apq = Apq ∪ π2Op ∪ π2Oq

and

Ak,q = Ak,q ∪ π2Ok ∪ π2Oq.

Observe that for all ϕ ∈ Cp
q , π2ϕ ∈ Apq because t 7→ π2x

ϕ
t is continuous, π2x

ϕ
t →

π2Op as t → −∞, π2x
ϕ
t → π2Oq as t → ∞, Op ∪ Cp

q ∪ Oq ⊂ Sk, and π2 is injective

on Sk. For the same reason, π2C
p
k ⊆ Apk. Then it is clear that π2C

p
q = π2C

p
q ⊆ Apq

and π2C
p
k = π2C

p
k ⊆ Apk. As Op ⊆ Cp

q ∩ Cp
k , we conclude that

π2Op ⊆ π2

(
Cp
q ∩ Cp

k

)
⊆ π2C

p
q ∩ π2C

p
k ⊆ Apq ∩ Apk = π2Op,

that is, π2Op = π2

(
Cp
q ∩ Cp

k

)
. The injectivity of π2 on Sk then implies that

(5.2) Op = Cp
q ∩ Cp

k .

We also obtain from π2C
p
q ⊆ Apq and π2C

p
k ⊆ Apk that

π2Sk = π2C
p
k ∪ π2Op ∪ π2C

p
q ⊆ Apk ∪ π2Op ∪ Apq = Ak,q,

and hence π2Sk = π2Sk ⊆ Ak,q. Note that this means that ξ̂k /∈ Sk.

It has been already veri�ed that for all ϕ ∈ Sk, xϕ oscillates about ξk. We claim

that this oscillation is slow.

Proposition 5.8. V
(
ϕ− ξ̂k

)
= 2 for all ϕ ∈ Sk.
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Figure 6. The images of the equilibria and the periodic orbits under
π2, and the de�nitions of the open sets Ap1, A

p
q and A1,q.

Proof. 1. First we prove the assertion for the elements of Sk. Choose an arbitrary

element ϕ ∈ Sk and a sequence (tn)∞n=0 with tn → −∞ as n→∞ such that xϕtn → p0

as n → ∞. As the C-norm and C1-norm are equivalent on the global attractor,

xϕtn → p0 as n→∞ also in C1-norm. Note that p is slowly oscillatory about ξk (see

Proposition 8.2 in [8]), i.e., V
(
pt − ξ̂k

)
= 2 for all real t. Hence Lemma 2.3.(iii)

gives that p0 − ξ̂k ∈ R, and Lemma 2.2 implies that

2 = V
(
p0 − ξ̂k

)
= lim

n→∞
V
(
xϕtn − ξ̂k

)
.

Then by the monotonicity of V (see Lemma 2.3.(i)), V
(
xϕt − ξ̂k

)
≤ 2 for all t ∈ R.

If V
(
ϕ− ξ̂k

)
= 0 and ϕ < ξ̂k or ϕ > ξ̂k, then x

ϕ
2 � ξ̂k or xϕ2 � ξ̂k by Proposition

2.4, which contradicts the fact that xϕ oscillates about ξk.

2. Now choose any ϕ ∈ Sk and �x a sequence (ϕn)∞n=0 in Sk with ϕn → ϕ as

n → ∞. Since ξ̂k /∈ Sk, V
(
ϕ− ξ̂k

)
is de�ned. The lower semi-continuity of V

(see Lemma 2.2) and part 1 yield that V
(
ϕ− ξ̂k

)
≤ lim infn→∞ V

(
ϕn − ξ̂k

)
= 2.

Observe that assumption V
(
ϕ− ξ̂k

)
= 0 would lead to a contradiction just as in

the previous step. So V
(
ϕ− ξ̂k

)
= 2 for all ϕ ∈ Sk. �
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Now we are ready to con�rm the equalities regarding Cp
k , C

p
q and Sk in Theorem

1.2.(ii).

Proposition 5.9. Sk = Ok ∪ Sk ∪ Oq = Ok ∪ Cp
k ∪ Op ∪ Cp

q ∪ Oq.

Proof. Let us �x k = 1. It is clear from the de�nition of S1 that (O1 ∪ Oq) ⊂ S1,

and thus we only need to verify the inclusion S1 \ S1 ⊆ (O1 ∪ Oq). Let ϕ ∈ S1 \ S1

be arbitrary.

It is an immediate consequence of the oscillation of xϕ about ξ1 that ϕ /∈ Wu (Op),
otherwise ϕ would also belong to S1 by (1.2). It is also obvious that ϕ /∈ A−2,0.

There are two possibilities by Theorem B: either ϕ ∈ Wu (Oq) = Oq ∪ Cq
−2 ∪ C

q
2 or

ϕ ∈ A0,2. The solution xϕ cannot converge to any of the equilibria ξ̂−2, ξ̂2 because

it oscillates about ξ1. So if ϕ ∈
(
S1 \ S1

)
∩ Wu (Oq), then necessarily ϕ ∈ Oq. It

remains to show that the relation ϕ ∈
(
S1 \ S1

)
∩ A0,2 implies that ϕ ∈ O1.

A0,2 is a compact and invariant subset of C, hence ϕ ∈ A0,2 implies that xϕt ∈ A0,2

for all real t, moreover α (xϕ) and ω (ϕ) are also subsets of A0,2. On the other hand,

S1 is also compact and invariant, so α (xϕ)∪ω (ϕ) ⊂ S1, and V
(
ψ − ξ̂1

)
= 2 for all

ψ ∈ α (xϕ) ∪ ω (ϕ) by the previous proposition. The Poincaré�Bendixson Theorem

(see Section 2) then implies that ω (ϕ) is either a periodic orbit in A0,2 oscillating

slowly about ξ1, or for each ψ ∈ ω (ϕ), α
(
xψ
)

= ω (ψ) =
{
ξ̂1

}
. As there are no

homoclinic orbits to ξ̂1 (see Proposition 3.1 in [7]), ω (ϕ) =
{
ξ̂1

}
in the latter case.

Similarly, α (xϕ) is either
{
ξ̂1

}
or a periodic orbit in A0,2 oscillating slowly about

ξ1.

Recall that x1 is de�ned so that the range x1(R) is maximal in the sense that

x1(R) ⊃ r(R) for all periodic solutions r oscillating slowly about ξ1 with range in

(0, ξ2). So if r : R→ R is a periodic solution with segments in α (xϕ) ∪ ω (ϕ), then

π2rt ∈ π2O1 ∪ int (π2O1) for all t ∈ R. Recall that π2ξ̂1 also belongs to int (π2O1).

Hence

π2 (α (xϕ) ∪ ω (ϕ)) ⊂ π2O1 ∪ int (π2O1) .

On the other hand,

π2 (α (xϕ) ∪ ω (ϕ)) ⊂ π2S1 ⊆ A1,q ⊂ R2 \ int (π2O1) .

It follows that π2 (α (xϕ) ∪ ω (ϕ)) ⊆ π2O1 and thus α (xϕ) = ω (ϕ) = O1. If xϕ

is not the time translation of x1, then this is only possible if the curve t → π2x
ϕ
t

is self-intersecting, which contradicts the injectivity of π2 on S1. Hence relation

ϕ ∈
(
S1 \ S1

)
∩ A0,2 implies that ϕ ∈ O1.

We have veri�ed that each ϕ ∈ S1 \ S1 belongs to O1 ∪ Oq, that is

S1 = O1 ∪ Cp
1 ∪ Op ∪ Cp

q ∪ Oq.
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Handling the case k = −1 is completely analogous. �

Corollary 5.10. S−1∩S1 = Op∪Cp
q ∪Oq, C

p
q = Op∪Cp

q ∪Oq and C
p
k = Op∪Cp

k∪Ok.

Proof. The �rst equality follows immediately from Proposition 5.9. The second and

third equalities come from

Op ∪ Cp
q ∪ Oq ⊆ Cp

q ⊆ Sk = Ok ∪ Cp
k ∪ Op ∪ C

p
q ∪ Oq,

Ok ∪ Cp
k ∪ Op ⊆ Cp

k ⊆ Sk = Ok ∪ Cp
k ∪ Op ∪ C

p
q ∪ Oq

and (5.2). �

5.3 The smoothness of Cp
q and Cp

k

Suppose r is one of the periodic solutions q or xk with minimal period ω > 1, and

let Cp
r be the heteroclinic connection from Op to Or = {rt : t ∈ R}.

Next we con�rm that Cp
r is a C1-submanifold of Wu (Op). First we verify that

Wu (Op) intersects transversally a local stable or a local center-stable manifold of a

Poincaré map at a point of Or. It follows that the intersection is a one-dimensional

C1-submanifold of Wu (Op). Then we apply the injectivity of the derivative of the

�ow induced by the solution operator onWu (Op) (see Proposition 4.6 and Corollary

4.7) to con�rm that each point ϕ in Cp
r belongs to a �small� subset Wϕ of Cp

r that is

a two-dimensional C1-submanifold of Wu (Op). This means that Cp
r is an immersed

C1-submanifold of Wu (Op). In order to prove that Cp
r is embedded in Wu (Op), we

have to show that for any ϕ in Cp
r , there is no sequence in Cp

r \Wϕ converging to

ϕ. According to results of Subsection 5.1, π2 is injective on Cp
r and on the tangent

spaces of Cp
r , which implies that π2Wϕ is open in R2. If a sequence (ϕn)∞n=0 from the

rest of the connecting set converges to ϕ as n → ∞, then π2ϕ
n → π2ϕ as n → ∞,

and π2ϕ
n ∈ π2Wϕ for all n large enough. The injectivity of π2 on Sk then implies

that ϕn ∈ Wϕ, which is a contradiction. So Cp
r is embedded in Wu (Op). With the

projection P2 and the map wk from Proposition 5.5,

Cp
r = {χ+ wk (χ) : χ ∈ P2C

p
r } .

Using the previously obtained result that Cp
r is a C1-submanifold of Wu (Op), we

prove at the end of this subsection that wk is continuously di�erentiable on the open

set P2C
p
r , i.e., this representation for Cp

r is smooth.

Section 3 has introduced a hyperplane Y , a convex bounded open neighborhood

N of r0 in C, ε ∈ (0, ω) and a C1-map γ : N → (ω − ε, ω + ε) with γ (r0) = ω so

that for each (t, ϕ) ∈ (ω − ε, ω + ε) × N , the segment xϕt belongs to r0 + Y if and

only if t = γ(ϕ). A Poincaré return map PY has been de�ned as

PY : N ∩ (r0 + Y ) 3 ϕ 7→ Φ (γ(ϕ), ϕ) ∈ r0 + Y.
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LetW denote a local stable manifoldWs
loc (PY , r0) of PY at r0 if Or is hyperbolic,

and let W be a local center-stable manifold Wsc
loc (PY , r0) of PY at r0 otherwise.

By Section 3, W is a C1-submanifold of r0 + Y with codimension 1, and it is a

C1-submanifold of C with codimension 2.

The subsequent proposition is an important step toward the proof of the assertion

that Cp
q and Cp

k are two-dimensional C1-submanifolds of Wu (Op).

Proposition 5.11. Wu (Op)∩W is a one-dimensional C1-submanifold of Wu (Op).

Proof. 1. Theorem B and Proposition 3.4 imply that Wu (Op) ∩ W is nonempty.

It su�ces to verify that the inclusion map i : Wu (Op) 3 ϕ 7→ ϕ ∈ C and W are

transversal. Then it follows that i−1 (W) = Wu (Op) ∩ W is a C1-submanifold of

Wu (Op), furthermore it has the same codimension in Wu (Op) as W in C (see e.g.

Corollary 17.2 in [1]). Accordingly we show that the inclusion map i : Wu (Op) 3
ϕ 7→ ϕ ∈ C and W are transversal. This means that for all ϕ ∈ Wu (Op) with

ϕ = i (ϕ) ∈ W ,

(i) the inverse image (Di (ϕ))−1 Ti(ϕ)W = TϕWu (Op)∩ TϕW splits in TϕWu (Op)
(it has a closed complementary subspace in TϕWu (Op)), and
(ii) the space Di (ϕ)TϕWu (Op) = TϕWu (Op) contains a closed complement to

Ti(ϕ)W = TϕW in C.

Property (i) holds because dimTϕWu (Op) = 3 < ∞. In the following we con�rm

(ii).

2. Let ϕ ∈ Wu (Op) ∩ W . First note that the invariance of Wu (Op) ensures

that ϕ̇ ∈ TϕWu (Op). On the other hand, Proposition 3.3 gives that ϕ̇ /∈ Y can be

assumed. Therefore ϕ̇ ∈ TϕWu (Op) \ TϕW .

We claim that TϕWu (Op) contains a sign-preserving element χ. Let Z be the

hyperplane in C with C = Rṗ0⊕Z and de�ne a Poincaré map PZ on a neighborhood

of p0 in p0 + Z as in Section 3. (Here we use exceptionally the notation Z and

PZ to emphasize the di�erence from the above mentioned Y and PY .) Choose

ψ from a local unstable manifold Wu
loc (PZ , p0) of PZ such that ϕ = Φ (T, ψ) for

some T ≥ 0. This is possible by (3.5). Choose η to be a strictly positive vector in

TψWu
loc (PZ , p0). Proposition 3.5 yields that the existence of such η may be supposed

without loss of generality. Then D2Φ (T, ψ) η ∈ TϕWu (Op), and D2Φ (T, ψ) η = uηT ,

where uη : [−1,∞)→ R is the solution of the linear variational equation

(5.3) u̇(t) = −u(t) + f ′
(
xψ (t− 1)

)
u (t− 1)

with uη0 = η. We claim that u is positive on [−1,∞). If this is not true, choose t0 > 0

to be minimal with u (t0) = 0. Then u̇ (t0) ≤ 0. On the other hand, the equation

(5.3) and u (t0 − 1) > 0 together yield that u̇ (t0) > 0, which is a contradiction. Let

χ be the positive vector uηT ∈ TϕWu (Op).
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The vectors ϕ̇ and χ are linearly independent because V (χ) = 0 and we may

assume by Proposition 3.3 that V (ϕ̇) ≥ 2.

3. As TϕW is a subspace of C with codimension 2, it su�ces to con�rm that

TϕW ∩ (Rϕ̇⊕ Rχ) =
{

0̂
}
.

Suppose that aϕ̇ + bχ ∈ TϕW\
{

0̂
}
for some a, b ∈ R. Then b 6= 0 as ϕ̇ /∈ TϕW .

Set c = a/b and consider the vector cϕ̇ + χ ∈ TϕW\
{

0̂
}
. Let v : [−1,∞) → R be

the solution of the linear variational equation

v̇(t) = −v(t) + f ′ (xϕ (t− 1)) v (t− 1)(2.2)

with v0 = χ, and let x = xϕ. As ϕ ∈ W , γj = Σj−1
i=0γ (P i

Y (ϕ)) is de�ned for all j ≥ 1,

and γj →∞ as j →∞. Then by formula (3.4),

TP j
Y (ϕ)W 3 DP

j
Y (ϕ) (cϕ̇+ χ) = cẋγj + vγj −

e∗
(
cẋγj + vγj

)
e∗
(
ẋγj
) ẋγj

= vγj −
e∗
(
vγj
)

e∗
(
ẋγj
) ẋγj .

An application of Lemma 2.7 to the equation (2.2) and its strictly positive solution

v : [−1,∞)→ R gives constants K > 0 and t ≥ 1 such that

‖vs−1‖ ≤ K ‖vs‖ for all s ≥ t.

Equation (2.2) with this estimate then gives a uniform bound for the derivatives

v̇γj/
∥∥vγj∥∥, j ≥ 1. So by the Arzelà�Ascoli theorem, there exists a subsequence(

vγjn∥∥vγjn∥∥
)∞
n=0

converging to a nonnegative unit vector ρ as n → ∞. As the C-norm and the C1-

norm are equivalent on A, the convergence xγj = P j
Y (ϕ)→ r0 implies that ẋγj → ṙ0

as j →∞. It follows that
1∥∥vγjn∥∥DP jn

Y (ϕ) (cϕ̇+ χ) ∈ TP jn
Y (ϕ)W

converges to the vector

ρ− e∗ (ρ)

e∗ (ṙ0)
ṙ0 ∈ Tr0W =

Cs, if Or is hyperbolic,

Cs ⊕ Rξ, if Or is nonhyperbolic.

As Tr0W ⊆ C≤1 and ṙ0 ∈ C≤1, this means that C≤1 has a nontrivial nonnegative

element ρ. This is a contradiction since Or has a Floquet multiplier λ1 > 1 and

C<λ1 ∩ V −1 (0) = ∅ by (3.2). �

Now we can verify a part of Theorem 1.2.(i).
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Proposition 5.12. Cp
q and C

p
k are both two-dimensional C1-submanifolds ofWu (Op).

Proof. De�ne r, W and Cp
r as at the beginning of this subsection.

1. As a �rst step we con�rm that to all ϕ ∈ Cp
r , one can give a subset Wϕ

of Cp
r so that Wϕ is a two-dimensional C1-submanifold of Wu (Op) and contains

ϕ. Let ϕ ∈ Cp
r . Choose T ≥ 0 such that ψ = Φ (T, ϕ) ∈ Wu (Op) ∩ W and

ψ̇ /∈ Y . Propositions 3.3 and 3.4 guarantee that this is possible. Consider the

two-dimensional C1-submanifold R× (Wu (Op) ∩W) of R×Wu (Op) and the map

Σ : R× (Wu (Op) ∩W) 3 (t, η) 7→ ΦWu(Op) (t, η) ∈ Wu (Op) .

Proposition 4.6 proves that Σ is C1-smooth and gives formulas for its derivatives.

Note that the derivative of the map

Wu (Op) ∩W 3 η 7→ ΦWu(Op) (−T, η) ∈ Wu (Op)

at ψ is injective on Tψ (Wu (Op) ∩W) by Corollary 4.7. Also observe that ψ̇ /∈ Y
implies that ψ̇ /∈ Tψ (Wu (Op) ∩W). Using these two properties and a reasoning

analogous to the one applied in Proposition 4.1, it is straightforward to show that

DΣ (−T, ψ) is injective on R × Tψ (Wu (Op) ∩W). Thus there exists an ε > 0 by

Proposition 2.8 such that the set

Wϕ =
{

ΦWu(Op) (t, η) : t ∈ (−T − ε,−T + ε) , η ∈ Wu (Op) ∩W ∩B (ψ, ε)
}

is a two-dimensional C1-submanifold of Wu (Op). It is clear that ϕ ∈ Wϕ. The

invariance of Cp
r implies that Wϕ ⊆ Cp

r .

2. To complete the proof, it su�ces to exclude for all ϕ ∈ Cp
r the existence of

a sequence (ϕn)∞n=0 in Cp
r so that ϕn /∈ Wϕ for n ≥ 0 and ϕn → ϕ as n → ∞.

By Proposition 5.7, Dπ2 (ϕ) = π2 is injective on the two-dimensional tangent space

TϕWϕ, hence it de�nes an isomorphism from TϕWϕ onto R2. Therefore there exists

ε̃ > 0 such that the restriction of π2 to Wϕ ∩ B (ϕ, ε̃) is a di�eomorphism from

Wϕ ∩B (ϕ, ε̃) onto an open set U in R2. If a sequence (ϕn)∞n=0 in C
p
r converges to ϕ

as n→∞, then π2ϕ
n → π2ϕ as n→∞, and π2ϕ

n ∈ U for all n large enough. The

injectivity of π2 on Sk veri�ed in Proposition 5.4 then implies that ϕn ∈ Wϕ. �

It is worth noting that the second part of the above proof con�rms the following

assertion.

Proposition 5.13. π2C
p
q and π2C

p
k are open subsets of R2.

We know from Proposition 5.5 that there exist a projection P2 from C onto a

two-dimensional subspace G2 of C and a map wk : P2Sk → P−1
2 (0) so that

Sk =
{
χ+ wk (χ) : χ ∈ P2Sk

}
.
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Then

Cp
q =

{
χ+ wk (χ) : χ ∈ P2C

p
q

}
and Cp

k = {χ+ wk (χ) : χ ∈ P2C
p
k} .

The next result implies that these representations of Cp
q and Cp

k are smooth.

Proposition 5.14. P2C
p
q and P2C

p
k are open subsets of G2, and wk is continuously

di�erentiable on P2C
p
q ∪ P2C

p
k .

Proof. The proof is based on the smoothness of Cp
q and C

p
k and applies an argument

which is analogous to the one in the proof of Theorem 1.1.

Let Cp
r be any of the sets Cp

q and Cp
k . Let χ ∈ P2C

p
r be arbitrary, and choose

ϕ ∈ Cp
r so that χ = P2ϕ. As the restriction of π2 to TϕCp

r is injective, J2 is an

isomorphism and P2 = J2 ◦ π2, DP2 (ϕ) = P2 de�nes an isomorphism from TϕC
p
r to

G2. The inverse mapping theorem implies that an ε > 0 can be given such that P2

maps Cp
r ∩B (ϕ, ε) one-to-one onto an open neighborhood U ⊂ P2C

p
r of χ in G2, P2

is invertible on Cp
r ∩B (ϕ, ε), and the inverse P̃−1

2 of the map

Cp
r ∩B (ϕ, ε) 3 ϕ 7→ P2ϕ ∈ U

is C1-smooth. As

wk (χ) = (id− P2) ◦
(
P2|Sk

)−1
(χ) = (id− P2) ◦ P̃−1

2 (χ) ∈ P−1
2 (0)

for all χ ∈ U , the restriction of wk to U is C1-smooth. �

5.4 Cp
q , C

p
k and Sk are homeomorphic to A(1,2), and their closures are

homeomorphic to A[1,2]

Recall that

Apq = ext (π2Op) ∩ int (π2Oq) , Apk = ext (π2Ok) ∩ int (π2Op)

and

Ak,q = ext (π2Ok) ∩ int (π2Oq) .

We have already deduced that π2C
p
q ⊆ Apq and π2C

p
k ⊆ Apk. As a result, π2Sk ⊆ Ak,q.

Proposition 5.15. The map π2|Sk
is a homeomorphism onto Ak,q, furthermore

π2C
p
k = Apk, π2C

p
q = Apq and π2Sk = Ak,q.

Proof. First we show that π2C
p
q = Apq . By Proposition 5.13, π2C

p
q is open in Apq . We

claim that π2C
p
q is also closed in Apq . So assume that (zn)∞n=0 is a sequence in π2C

p
q

and zn → z ∈ Apq as n → ∞. Let ϕn = π−1
2 (zn) ∈ Cp

q , n ≥ 0. By Proposition 5.6,

π−1
2 is Lipschitz-continuous. Thus {ϕn}∞n=0 is a Cauchy-sequence in C

p
q and a ϕ ∈ Cp

q

can be given such that ϕn → ϕ as n → ∞, moreover, ϕ = π−1
2 (z). It is clear that

ϕ /∈ Op and ϕ /∈ Oq because then z = π2ϕ /∈ Apq . Thus ϕ ∈ Cp
q \ (Op ∪ Op) = Cp

q
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(here we use Corollary 5.10) and necessarily z = π2ϕ ∈ π2C
p
q . In consequence,

π2C
p
q = Apq .

It is analogous to verify that π2C
p
k = Apk. It follows immediately that

π2Sk = π2

(
Cp
k ∪ Op ∪ C

p
q

)
= Apk ∪ π2Op ∪ Apq = Ak,q

and

π2Sk = π2 (Ok ∪ Sk ∪ Oq) = π2Ok ∪ Ak,q ∪ π2Oq = Ak,q.

As both π2|Sk
: Sk → R2 and π−1

2 : π2Sk → C are continuous, we obtain that π2|Sk

de�nes a homeomorphism from Sk onto Ak,q. �

As a consequence we obtain that Cp
q , C

p
k , and Sk are homeomorphic to the open

annulus

A(1,2) =
{
u ∈ R2 : 1 < |u| < 2

}
.

Since the above proposition implies that π2C
p
k = Apk and π2C

p
q = Apq , we also deduce

that the closures Cp
q , C

p
k , and Sk are homeomorphic to the closed annulus

A[1,2] =
{
u ∈ R2 : 1 ≤ |u| ≤ 2

}
.

Note that we have proven all the statements of Theorem 1.1.(i) regarding Cp
q and

Cp
k (see propositions 5.12, 5.14 and 5.15). The smoothness of Sk is considered in the

next subsection.

5.5 The smoothness of Sk, C
p
q , C

p
k and Sk

Now we can round up the proofs of Theorem 1.2.(i) and (ii).

Recall that

Sk = {χ+ wk (χ) : χ ∈ P2Sk} , P2Sk = P2C
p
k ∪ P2Op ∪ P2C

p
q

and wk is continuously di�erentiable on the set P2C
p
k ∪P2C

p
q . Hence the smoothness

of this representation for Sk is proved by showing that P2Sk is open in G2 and wk
is smooth at the points of P2Op. It follows at once that Sk is a two-dimensional

C1-submanifold of C. Since Sk is a subset of the three-dimensional C1-submanifold

Wu (Op), it is obvious that Sk is also a C1-submanifold of Wu (Op).
We in addition show that P2Ok ∪ P2Oq is the boundary of P2Sk, and all points

of P2Ok ∪ P2Oq have open neighborhoods on which wk can be extended to C1-

functions. This means that Sk has a smooth representation with boundary, and

thus Sk is a two-dimensional C1-submanifold of the phase space C with boundary.

Similar reasonings yield the analogous results for Cp
q and Cp

k .

Let r : R → R be any of the periodic solutions xk, p or q shifted in time so that

r (0) = ξk and ṙ (0) > 0. As ξk belongs to the ranges of xk, p or q, and ξk is not an

extremum of them, the monotonicity property of periodic solutions in Proposition
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2.5 implies that this choice of r is possible. Let ω > 0 denote the minimal period of

r. By Eq. (1.1),

f (r (−1)) = ṙ (0) + r (0) > ξk = f (ξk) .

As f strictly increases, this means that r (−1) > ξk. Conversely, if there was t∗ ∈
(0, ω) such that r (t∗) = ξk and r (t∗ − 1) > ξk, then

ṙ (t∗) = −r (t∗) + f (r (t∗ − 1)) > −ξk + f (ξk) = 0

would follow, which would contradict Proposition 2.5. Therefore the half line Lk =

{(ξk, x2) ∈ R2 : x2 > ξk} and π2Or = {π2rt : t ∈ [0, ω)} have exactly one point in

common: (r (0) , r (−1)) = (ξk, r (−1)). See Fig. 7.

Choose sk, sp, sq > ξk so that

{(ξk, sk)} = Lk ∩ π2Ok, {(ξk, sp)} = Lk ∩ π2Op

and

{(ξk, sq)} = Lk ∩ π2Oq.

As s increases, (ξk,∞) 3 s 7→ (ξk, s) ∈ R2 �rst intersects π2Ok, then π2Op and

�nally π2Oq because

(ξk, s)→ π2ξ̂k = (ξk, ξk) ∈ int (π2Ok) whenever s→ ξk+,

π2Ok ⊂ int (π2Op) and π2Op ⊂ int (π2Oq). So ξk < sk < sp < sq, as it is shown by

Fig. 7.

Figure 7. The de�nition of L1, s1, sp and sq in the case k = 1.

Consider the curve

h : [sk, sq] 3 s 7→ π−1
2 (ξk, s) ∈ C.

Then h is Lipschitz-continuous and injective. By Proposition 5.15, h ([sk, sq]) ⊂ Sk.

In detail,

h (sk) ∈ Ok, h ((sk, sp)) ⊂ Cp
k , h (sp) ∈ Op, h ((sp, sq)) ⊂ Cp

q , and h (sq) ∈ Oq.

According to the next result, h is C1-smooth on (s1, sq) \ {sp}.
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Proposition 5.16. π−1
2 |π2(Cp

q∪Cp
k) is C1-smooth.

Proof. We know from Proposition 5.13 that π2

(
Cp
q ∪ C

p
k

)
is open in R2.

For all x ∈ π2

(
Cp
q ∪ C

p
k

)
, the graph representation of Cp

q ∪ C
p
k and the de�nition

of P2 together give that

Cp
q ∪ C

p
k 3 π

−1
2 (x) = P2

(
π−1

2 (x)
)

+ wk
(
P2

(
π−1

2 (x)
))

= J2

(
π2

(
π−1

2 (x)
))

+ wk
(
J2

(
π2

(
π−1

2 (x)
)))

= J2 (x) + wk (J2 (x)) .

As J2 de�nes an isomorphism from R2 to G2, it is continuously di�erentiable. In

addition, J2

(
π2

(
Cp
q ∪ C

p
k

))
= P2

(
Cp
q ∪ C

p
k

)
, and wk is continuously di�erentiable

on the open subset P2

(
Cp
q ∪ C

p
k

)
of G2 by Proposition 5.14. Hence the statement

follows. �

As a next step, we show the smoothness of h at points sk, sp and sq. We will need

the following technical result, which is part of Proposition 8.5 in [10].

Proposition 5.17.

(i) Let v : R → R be a solution of Eq. (3.1) with v0 6= 0̂. If V (vt) = 2 for all

t ∈ R, then v0 ∈ CrM< ∩ C≤1.

(ii) For every ϕ ∈ CrM< ∩ C≤1 \
{

0̂
}
, there is a solution v : R → R of Eq. (3.1)

so that v0 = ϕ and V (vt) = 2 for all t ∈ R.

Proposition 5.18. Let ∗ ∈ {k, p, q} and set r : R → R to be the periodic solution

of Eq. (1.1) with π2r0 = (ξk, s∗).

(i) There exists a unique continuously di�erentiable function z = z∗ : R → R
satisfying

(5.4)


ż (t) = −z (t) + f ′ (r (t− 1)) z (t− 1) , t ∈ R,

z (−1) = 1, z (0) = 0,

V (zt) = 2, t ∈ R.

(ii) For every ε > 0, there exists δ > 0 so that for all χ ∈ [sk, sq], ν ∈ [sk, sq] with

|χ− s∗| < δ, |ν − s∗| < δ and χ 6= ν,∥∥∥∥h (χ)− h (ν)

χ− ν
− z0

∥∥∥∥ < ε.

(iii) z0 and ṙ0 are linearly independent.

Proof. 1. We prove that for all sequences (χn)∞n=0, (νn)∞n=0 in [sk, sq] with χn 6= νn

for all n ≥ 0 and χn → s∗, νn → s∗ as n → ∞, there exist a strictly increasing

sequence (nl)
∞
l=0 and a continuously di�erentiable function z = z∗ : R → R so that
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z is a solution of the equation in (5.4), and

lim
l→∞

h (χnl)− h (νnl)

χnl − νnl
= z0.

Consider the solutions xn : R→ R and yn : R→ R of Eq. (1.1) with xn0 = h (χn)

and yn0 = h (νn) for all indices n ≥ 0. Then xn (−1) = χn, yn (−1) = νn and

xn (0) = yn (0) = ξk for all n ≥ 0, moreover xnt ∈ Sk and ynt ∈ Sk for all n ≥ 0 and

t ∈ R.
Introduce the functions

zn =
xn − yn

χn − νn
, n ≥ 0.

It is clear that zn (0) = 0 and zn (−1) = 1 for all n ≥ 0. By Proposition 5.3,

V (znt ) = 2 for all n ≥ 0 and t ∈ R. In addition, zn, n ≥ 0, satis�es the equation

żn (t) = −zn (t) + bn (t) zn (t− 1)

on R, where the coe�cient functions bn are de�ned as

bn : R 3 t 7→
ˆ 1

0

f ′ (sxn (t− 1) + (1− s) yn (t− 1)) ds ∈ (0,∞) , n ≥ 0.

Since χn → s∗ and νn → s∗ as n → ∞, xn0 → r0 and yn0 → r0 as n → ∞. It

follows that bn → b as n→∞ uniformly on compact subsets of R, where

b : R 3 t 7→ f ′ (r (t− 1)) ∈ (0,∞) .

As the global attractor is bounded, there are constants b1 > b0 > 0 so that b0 <

bn (t) < b1 for all n ≥ 0 and t ∈ R. Thus Lemma 2.6 ensures the existence of a

continuously di�erentiable function z : R→ R and a subsequence (znl)∞l=0 of (zn)∞n=0

such that znl → z and żnl → ż as l→∞ uniformly on compact subsets of R, and z
is a solution of the equation in (5.4).

It is obvious that z (0) = 0 and z (−1) = 1.

By the �rst part of Lemma 2.2, V (zt) ≤ 2 for all real t. Suppose V (zt∗) = 0

for some t∗ ∈ R. Then V (zt) = 0 for all t > t∗ and V (zt∗+3) ∈ R by Lemma 2.3.

The C1-convergence of znl to z and the second part of Lemma 2.2 then imply that

V
(
znl
t∗+3

)
= 0 for all su�ciently large index l, which is contradiction. So V (zt) = 2

for all real t.

2. Suppose that ẑ : R→ R is also a continuously di�erentiable function satisfying

(5.4), and z 6= ẑ. Then Proposition 2.1 yields that z0 6= ẑ0. The function d = z − ẑ
is a solution of ḋ (t) = −d (t) + f ′ (r (t− 1)) d (t− 1) , t ∈ R,

d (−1) = d (0) = 0.
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Since z0, ẑ0 ∈ CrM< ∩ C≤1 by Proposition 5.17 (i), d0 ∈ CrM< ∩ C≤1 \
{

0̂
}
. Then it

follows from Proposition 5.17 (ii) that V (dt) = 2 for all t ∈ R. So d0 ∈ R by Lemma

2.3.(iii), which is impossible as d (−1) = d (0) = 0.

These results imply both (i) and (ii).

3. Solution r has been de�ned to be a time translate of xk, p or q with r (0) =

ξk. Hence ξk is not an extremum of r, and thus ṙ (0) 6= 0 by Proposition 2.5.

Consequently, z0 /∈ Rṙ0 \
{

0̂
}
, and z0 and ṙ0 are linearly independent. �

Corollary 5.19. The function h is C1-smooth on [sk, sq].

We extend the de�nition of h to the half line (ξk,∞): we de�ne ĥ : (ξk,∞)→ C

as ĥ (s) = h (s) for s ∈ [sk, sq],

ĥ (s) = h (sk) + (s− sk) zk0 for s ∈ (ξk, sk)

and

ĥ (s) = h (sq) + (s− sq) zq0 for s > sq,

where zk0 and zq0 are given by Proposition 5.18. Then ĥ is C1-smooth with ĥ′ (sk) =

zk0 , ĥ
′ (sp) = zp0 , and ĥ′ (sq) = zq0. According to the choice of sk < sp < sq and

Proposition 5.15,

(5.5)

ĥ (sk) ∈ Ok, ĥ ((sk, sp)) ⊂ Cp
k , ĥ (sp) ∈ Op, ĥ ((sp, sq)) ⊂ Cp

q and ĥ (sq) ∈ Oq.

Observe that π2ĥ (s) = (ξk, s) for all s > ξk, hence the map (ξk,∞) 3 s 7→ π2ĥ (s) ∈
R2 is injective on (ξk,∞) and has range in Lk = {(ξk, x2) ∈ R2 : x2 > ξk}. So it

follows from π2Sk = Ak,q that

(5.6) ĥ ((ξk, sk) ∪ (sq,∞)) ∩ Sk = ∅.

Recall from Proposition 5.5 that there exist a projection P2 from C onto a two-

dimensional subspace G2 of C and a map wk : P2Sk → P−1
2 (0) so that

Sk =
{
χ+ wk (χ) : χ ∈ P2Sk

}
.

This induces a global graph representation for any subset W of Sk:

W = {χ+ wk (χ) : χ ∈ P2W} .

Since J2 : R2 → G2 is an isomorphism and P2 = J2 ◦ π2, Proposition 5.15 shows

that

P2C
p
k = ext (P2Ok) ∩ int (P2Op) , P2C

p
q = ext (P2Op) ∩ int (P2Oq) ,

P2Sk = ext (P2Ok) ∩ int (P2Oq) ,
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P2Ok ∪ P2Oq is the boundary of P2Sk, and hence

(5.7) P2Sk = P2Ok ∪ (ext (P2Ok) ∩ int (P2Oq)) ∪ P2Oq.

As P2Ok and P2Oq are the images of simple closed C1-curves, the boundary

P2Ok ∪ P2Oq of the domain P2Sk of wk is a one-dimensional C1-submanifold of G2.

The next result shows that wk is continuously di�erentiable at the points of P2Op,
and it is smooth at the points of P2Ok∪P2Oq in the sense that wk can be extended to

continuously di�erentiable functions on open neighborhoods of the boundary points.

Proposition 5.20.

(i) To each ϕ ∈ Ok ∪Oq there corresponds an open neighborhood U of P2ϕ in G2

and a continuously di�erentiable map wek : U → P−1
2 (0) such that

(5.8) wek|U∩P2Sk
= wk|U∩P2Sk

,

and U \ {P2x
ϕ
t : t ∈ R} is the union of open connected disjoint subsets U+ and U−

of U with the following property:

U− ∩ P2Sk = ∅ and U+ ⊂ P2C
p
k if ϕ ∈ Ok,

U− ⊂ P2C
p
q and U+ ∩ P2Sk = ∅ if ϕ ∈ Oq.

(ii) The map wk is continuously di�erentiable at the points of P2Op. Each ϕ ∈ Op
has an open neighborhood U of P2ϕ in G2 such that U \ P2Op is the union of open

connected disjoint subsets U+ and U− of U with U− ⊂ P2C
p
k and U+ ⊂ P2C

p
q .

Proof. The proof below veri�es assertions (i) and (ii) simultaneously.

1. Let r : R → R be one of the periodic solutions xk, p or q shifted in time so

that r (0) = ξk and ṙ (0) > 0 (that is π2r0 ∈ Lk), and �x ∗ ∈ {k, p, q} accordingly.
Set s∗ = r (−1). Let ϕ ∈ Or = {rt : t ∈ R} and choose T > 1 so that ϕ = Φ (T, r0).

For all 0 < ε < min {T − 1, sk − ξk}, the map

a : (−ε, ε)× (−ε, ε) 3 (t, s) 7→ Φ
(
T + t, ĥ (s∗ + s)

)
∈ C

is C1-smooth with

Da (0, 0)R2 = Rϕ̇⊕ RD2Φ (T, r0) z∗0 ,

where z∗ : R → R is the solution of (5.4) given by Proposition 5.18. The vectors

ϕ̇ = D2Φ (T, r0) ṙ0 and D2Φ (T, r0) z∗0 are linearly independent because D2Φ (T, r0)

is injective, and ṙ0 and z∗0 are linearly independent by Proposition 5.18 (iii).

Therefore Proposition 2.8 implies that for all small ε > 0, the sets

a ((−ε, ε)× (−ε, ε)) , a ((−ε, ε)× (−ε, 0)) and a ((−ε, ε)× (0, ε))

are two-dimensional C1-submanifolds of C with

Tϕa ((−ε, ε)× (−ε, ε)) = Da (0, 0)R2.
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2. Set E1 = Da (0, 0)R2 and let E2 be a closed complement of E1 in C. We

claim that for small ε > 0, there exist an open neighborhood Nε of 0̂ in E1 and a

continuously di�erentiable function b : Nε → E2 so that b
(
0̂
)

= 0, Db
(
0̂
)

= 0 and

a ((−ε, ε)× (−ε, ε)) is the shifted graph of b:

a ((−ε, ε)× (−ε, ε)) = ϕ+ {χ+ b (χ) : χ ∈ Nε} .

Let PrE1 denote the projection of C onto E1 along E2, and de�ne j : C → C by

j (χ) = χ− ϕ for all χ ∈ C. Then

D (PrE1 ◦ j ◦ a) (0, 0)R2 = PrE1 ◦Da (0, 0)R2 = E1.

Hence the inverse function theorem guarantees that PrE1 ◦ j ◦ a is a local C1-

di�eomorphism, i.e., for small ε > 0, PrE1 ◦ j ◦ a maps (−ε, ε) × (−ε, ε) injec-

tively onto an open neighborhood Nε of 0̂ in E1, and the inverse (PrE1 ◦ j ◦ a)−1 of

(−ε, ε)×(−ε, ε) 3 (t, s) 7→ PrE1 ◦j◦a (t, s) ∈ Nε is C1-smooth. In consequence, PrE1

maps j◦a ((−ε, ε)× (−ε, ε)) onto Nε injectively, and there exists a map b : Nε → E2

so that b
(
0̂
)

= 0 and

j ◦ a ((−ε, ε)× (−ε, ε)) = {χ+ b (χ) : χ ∈ Nε} .

The smoothness of b follows from

b = (id− PrE1) ◦ j ◦ a ◦ (PrE1 ◦ j ◦ a)−1 .

Db
(
0̂
)

= 0 because Da (0, 0)R2 = E1.

3. Next we show that the continuously di�erentiable map

c : E1 ⊃ Nε 3 χ 7→ P2 (ϕ+ χ+ b (χ)) ∈ G2

is a local C1-di�eomorphism.

Note that Dc
(
0̂
)
χ = P2χ for all χ ∈ E1. So it su�ces to con�rm that P2|E1 is

injective. E1 is spanned by the derivatives Dγ (0) 1 of the curves

γ : (−1, 1) 3 s 7→ a (c1s, c2s) ∈ C,

where (c1, c2) ∈ R2. From (5.5) and the invariance of Sk it follows that if s∗ + c2s ∈
[sk, sq], then γ (s) ∈ Sk. Proposition 5.7 gives that π2γ

′ (0) 6= (0, 0) if γ′ (0) 6= 0̂.

Thus π2|E1 is injective. As J2 is an isomorphism, P2 = J2 ◦ π2 is also injective on

E1.

In consequence, a positive constant ε0 can be given such that c is a C1-di�eomorphism

from Nε0 onto an open neighborhood U of P2ϕ in G2. De�ne c−1 to be the inverse

of Nε0 3 χ 7→ c (χ) ∈ U .
The constant ε0 can be chosen so that ε0 < min {T − 1, sk − ξk, sp − sk, sq − sp}

also holds.
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4. Notice that

U = P2a ((−ε0, ε0)× (−ε0, ε0)) ,

and set

U− =P2a ((−ε0, ε0)× (−ε0, 0)) ,

U0 =P2a ((−ε0, ε0)× {0}) ,

U+ =P2a ((−ε0, ε0)× (0, ε0)) .

By steps 2 and 3 it is clear that P2 restricted to a ((−ε0, ε0)× (−ε0, ε0)) de�nes a

C1-di�eomorphism from a ((−ε0, ε0)× (−ε0, ε0)) onto U . As a ((−ε0, ε0)× (−ε0, 0))

and a ((−ε0, ε0)× (0, ε0)) are two-dimensional C1-submanifolds of C, the arcwise

connected sets U− and U+ are open in G2.

As ĥ (s∗) = r0 ∈ Or, we have a ((−ε0, ε0)× {0}) ⊂ Or and U0 ⊂ P2Or. As P2Or
is a one-dimensional C1-submanifold of G2, we may assume (by decreasing ε0 > 0 if

necessary) that

(5.9) U− ∩ P2Or = ∅ and U+ ∩ P2Or = ∅.

5. Introduce the C1-map

wek : U 3 η 7→ ϕ+ c−1 (η) + b
(
c−1 (η)

)
− η ∈ C.

For all η ∈ U , c−1 (η) ∈ Nε0 , and thus

P2

(
ϕ+ c−1 (η) + b

(
c−1 (η)

)
− η
)

= P2

(
ϕ+ c−1 (η) + b

(
c−1 (η)

))
− P2η

= c
(
c−1 (η)

)
− η = 0̂.

So wek maps U into P−1
2 (0).

6. Assume that ϕ ∈ Ok, that is r is the time translate of xk, and s∗ = sk. Then

the relations ε0 < sp − sk, ĥ ((sk, sp)) ⊂ Cp
k and the invariance of Cp

k guarantee

that U+ ⊂ P2C
p
k ⊂ ext (P2Ok). As D1P2a (0, 0) 1 and D2P2a (0, 0) 1 are linearly

independent in G2, the curve

(−ε0, ε0) 3 s 7→ P2a (0, s)

intersects transversally P2Ok at P2ϕ = P2a (0, 0). Using this, (5.9) and that P2Ok is
a simple closed curve inG2, it follows that the connected open sets U− and U+ belong

to di�erent connected components of G2\P2Ok. Then U+ ⊂ ext (P2Ok) implies that

U− ⊂ int (P2Ok). Now (5.7) can be applied to conclude that U− ∩ P2Sk = ∅.
In cases ϕ ∈ Op and ϕ ∈ Oq, it is similar to show that U− ⊂ P2C

p
k , U

+ ⊂ P2C
p
q

and U− ⊂ P2C
p
q , U

+ ∩ P2Sk = ∅, respectively. We omit the details.

7. It remains to con�rm (5.8). Assume again that ϕ ∈ Ok, that is r is the time

translate of xk, and s∗ = sk. Let η ∈ U ∩ P2Sk be arbitrary. As U− ∩ P2Sk = ∅ by
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part 6, necessarily η ∈ U+ ∩ U0. Then η = P2a (t, s) = P2Φ
(
T + t, ĥ (sk + s)

)
for

some t ∈ (−ε0, ε0) and s ∈ [0, ε0). As ĥ ([sk, sk + ε0)) ⊂ ĥ ([sk, sq]) ⊂ Sk and Sk is

invariant, a (t, s) ∈ Sk. Then due to the injectivity of P2 on Sk,

η + wk (η) = a (t, s)

follows. On the other hand, we have

η + wek (η) = ϕ+ c−1 (η) + b
(
c−1 (η)

)
∈ a ((−ε0, ε0)× (−ε0, ε0)) ,

and P2w
e
k (η) = 0̂. By the injectivity of P2 on a ((−ε0, ε0)× (−ε0, ε0)) and

P2 (η + wk (η)) = P2 (η + wek (η)) = η,

it follows that wk (η) = wek (η).

Showing (5.8) in the cases ϕ ∈ Op or ϕ ∈ Oq is analogous. �

Proof of Theorem 1.2.(i). We already know from Propositions 5.12, 5.14 and 5.15

that the connecting sets Cp
q and C

p
k are two-dimensional C1-submanifolds ofWu (Op)

with smooth global graph representations, furthermore Cp
q , C

p
k and Sk are homeo-

morphic to the open annulus A(1,2).

As J2 : R2 → G2 is an isomorphism and P2 = J2 ◦π2, Proposition 5.15 shows that

P2Sk is open in G2. In addition, Propositions 5.14 and 5.20.(ii) together give that

wk is C1-smooth on P2Sk = P2

(
Cp
k ∪ Op ∪ Cp

q

)
. So the global graph representation

Sk = {χ+ wk (χ) : χ ∈ P2Sk}

given for Sk is smooth. This property with Sk ⊂ Wu (Op) guarantees that Sk is a

two-dimensional C1-submanifold of Wu (Op) [12]. �

Proof of Theorem 1.2.(ii). Recall that Propositions 5.9 and 5.10 have con�rmed the

equalities

Cp
q = Op ∪ Cp

q ∪ Oq, Cp
k = Op ∪ Cp

k ∪ Ok
and

Sk = Ok ∪ Sk ∪ Oq.

As J2 : R2 → G2 is an isomorphism and P2 = J2 ◦π2, Proposition 5.15 yields that

P2Sk is the closure of the open set P2Sk, and its boundary is P2 (Ok ∪ Oq) . The
sets P2Ok and P2Oq are the images of simple closed C1-curves, hence the boundary

is a one-dimensional C1-submanifold of G2. By the proof of Theorem 1.2.(i), wk is

continuously di�erentiable on P2Sk. Proposition 5.20.(i) in addition veri�es that all

points of P2 (Ok ∪ Oq) have open neighborhoods in G2 on which wk can be extended

to C1-smooth functions. Summing up, the representation given for Sk is a two-

dimensional smooth global graph representation with boundary. It is analogous to

show that the induced representations of Cp
q and C

p
k are two-dimensional global graph
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representations with boundary, therefore we omit the details. It follows immediately

that Cp
q , C

p
k and Sk are two-dimensional C1-submanifolds of C with boundary [12].

The assertion that Cp
q , C

p
k and Sk are homeomorphic to the closed annulus A[1,2]

follows from Proposition 5.15. �

5.6 S1 and S−1 are indeed separatrices

To complete the proof of Theorem 1.2, it remains to show that S−1 and S1 are

separatrices in the sense that Cp
2 is above S1, C

p
0 is between S−1 and S1, furthermore

Cp
−2 is below S−1. The underlying idea of the following proof is that the assertion

restricted to a local unstable manifoldWu
loc (PY , p0) is true, and the monotonicity of

the semi�ow can be used to extend the statement for Wu (Op) .
Recall that for the periodic orbit Op, the unstable space Cu is two-dimensional:

Cu = {c1v1 + c2v2 : c1, c2 ∈ R} ,

where v1 is a positive eigenfunction corresponding to the leading real Floquet mul-

tiplier λ1 > 1, and v2 is an eigenfunction corresponding to the Floquet multiplier λ2

with 1 < λ2 < λ1. Also recall that a local unstable manifold Wu
loc (PY , p0) of PY at

p0 is a graph of a C1-map: there exist convex open neighborhoods Ns, Nu of 0̂ in Cs,

Cu, respectively, and a C1-map wu : Nu → Cs with range in Ns so that wu
(
0̂
)

= 0̂,

Dwu
(
0̂
)

= 0 and

Wu
loc (PY , p0) = {p0 + χ+ wu (χ) : χ ∈ Nu} .

Choose α ∈ (0, 1) so small that (−α, α) v1 + (−α, α) v2 ⊂ Nu and

(5.10) sup
χ∈(−α,α)v1+(−α,α)v2

‖Dwu (χ)‖ < 1

2
.

Introduce the sets

As = {p0 + χ+ wu (χ) : χ ∈ (−α, α) v1 + sv2} ⊂ Wu
loc (PY , p0) , s ∈ (−α, α) .

The elements of As, s ∈ (−α, α), are ordered pointwise. Indeed, if s ∈ (−α, α) is

�xed and a, b ∈ (−α, α) are arbitrary with a < b, then (5.10) implies that[
b− a+

ˆ b

a

Dwu (uv1 + sv2) du

]
v1 � 0̂,

and thus

p0 + (av1 + sv2) + wu (av1 + sv2)� p0 + (bv1 + sv2) + wu (bv1 + sv2) .

Introduce the subsets

Ak,+s =
{
ϕ ∈ As : xϕt � ξ̂k for some t ≥ 0

}
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and

Ak,−s =
{
ϕ ∈ As : xϕt � ξ̂k for some t ≥ 0

}
of As for all s ∈ (−α, α). Then Ak,+s and Ak,−s are open and disjoint in As. It is also

clear from the monotonicity of the semi�ow combined with the ordering of As that

for any ϕ− ∈ Ak,−s and ϕ+ ∈ Ak,+s , ϕ− � ϕ+.

We claim that there exists β ∈ (0, α] so that Ak,+s and Ak,−s are nonempty for all

s ∈ (−β, β). Choose

η1 = p0 −
α

2
v1 + wu

(
−α

2
v1

)
∈ A0 and η2 = p0 +

α

2
v1 + wu

(α
2
v1

)
∈ A0.

Then η1 � p0 � η2. By Theorem 4.1 in Chapter 5 of [20], there is an open and

dense set of initial functions in C so that the corresponding solutions converge to

equilibria. In consequence, there exist η+
1 , η

−
1 , η

+
2 , η

−
2 ∈ C such that

η−1 � η1 � η+
1 � p0 � η−2 � η2 � η+

2 ,

and for both i = 1 and i = 2, x
η−i
t and x

η+i
t converge to one of the equilibrium points

as t→∞. Since maxt∈R p (t) > ξ1, mint∈R p (t) < ξ−1 and

x
η−1
t � x

η+1
t � pt � x

η−2
t � x

η+2
t for all t ≥ 0

by Proposition 2.4, we obtain that

x
η−1
t → ξ̂−2, x

η+1
t → ξ̂−2, x

η−2
t → ξ̂2 and xη

+
2
t → ξ̂2 as t→∞.

Using again Proposition 2.4, we get that xη1t → ξ̂−2 and x
η2
t → ξ̂2 as t→∞, therefore

xη1t1 � ξ̂k and x
η2
t2 � ξ̂k for some t1, t2 ≥ 0. The continuity of the semi�ow Φ implies

that there exist open balls B1, B2 centered at η1, η2, respectively, such that xϕt1 � ξ̂k

for all ϕ ∈ B1 and xϕt2 � ξ̂k for all ϕ ∈ B2. It follows that there exists β ∈ (0, α] so

that Ak,+s and Ak,−s are nonempty for all s ∈ (−β, β).

Summing up, Ak,+s and Ak,−s are open, disjoint and nonempty subsets of the con-

nected As for all s ∈ (−β, β). Consequently, the set As \ (A+
s ∪ A−s ) is nonempty

for all s ∈ (−β, β), i.e., As has at least one element in Sk. On the other hand, the

nonordering property of Sk stated in Proposition 5.2 implies that As ∩ Sk contains
at most one element, i.e., As ∩ Sk is a singleton for all s ∈ (−β, β).

Note that for any s ∈ (−β, β) , ϕ− ∈ Ak,−s , ϕ+ ∈ Ak,+s and ψ ∈ As ∩ Sk, ϕ− �
ψ � ϕ+.

Also observe that if (ϕn)0
−∞ is a trajectory of PY in Wu

loc (PY , p0) with ϕn → p0

as n → −∞, then for all indices with su�ciently large absolute value, ϕn ∈ As for
some s ∈ (−β, β).

An element ϕ of Wu (Op) is said to be above Sk if ψ ∈ Sk can be given with

ψ � ϕ, and ϕ ∈ Wu (Op) is said to be below Sk if there exists ψ ∈ Sk with ϕ� ψ.

An element of Wu (Op) is between S−1 and S1 if it is below S1 and above S−1.
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A subsetW ofWu (Op) is above (below) Sk, if all elements ofW are above (below)

Sk. A subset W of Wu (Op) is between S−1 and S1 if it is below S1 and above S−1.

Proposition 5.21. For each ϕ ∈ Wu (Op), exactly one of the following cases holds:

(i) ϕ ∈ Sk,
(ii) ϕ is above Sk,

(ii) ϕ is below Sk.

Proof. It is clear that ϕ ∈ Wu (Op) cannot be below and above Sk at the same

time because then there would exist ψ1, ψ2 ∈ Sk with ψ1 � ϕ � ψ2, which would

contradict Proposition 5.2. For the same reason, ϕ ∈ Sk cannot be above (or below)
Sk. So at most one of the above cases holds for all ϕ ∈ Wu (Op).
Let ϕ ∈ Wu (Op) \Sk be arbitrary. By (3.5) and the characterization ofWu

loc (PY , p0),

there exists a sequence (tn)0
−∞ with tn → −∞ as n→ −∞ so that

{
xϕtn
}0

−∞ is a tra-

jectory of PY in Wu
loc (PY , p0) and xϕtn → p0 as n→ −∞. So an index n∗ ≤ 0 can be

given with tn∗ < 0 such that xϕtn∗ ∈ As for some s ∈ (−β, β). Let ψ denote the single

element of As ∩ Sk. As the elements of As are ordered pointwise, we obtain that

xϕtn∗ � ψ or xϕtn∗ � ψ or xϕtn∗ = ψ. Observe that xϕtn∗ = ψ is impossible: as ψ ∈ Sk
and Sk is invariant, xϕtn∗ = ψ would imply that ϕ = xψ−tn∗ ∈ Sk, which contradicts

the choice of ϕ. If xϕtn∗ � ψ, then the invariance of Sk and the monotonicity of the

semi�ow imply that xψ−tn∗ ∈ Sk and ϕ� xψ−tn∗ , that is, ϕ is below Sk. If x
ϕ
tn∗
� ψ,

then ϕ� xψ−tn∗ and ϕ is above Sk. �

Now we are able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2.(iii). 1. First we show that for any ϕ ∈ Wu (Op)\Op, ϕ ∈ Cp
2

if and only if ϕ is above S1.

Suppose that ϕ ∈ Cp
2 . Then x

ϕ
t1 � ξ̂1 for some t1 > 0. Choose t2 > 0 in addition

so that xϕ−t2 ∈ As for some s ∈ (−β, β). Necessarily xϕ−t2 ∈ A1,+
s , and thereby

xϕ−t2 � ψ, where ψ is the single element of As ∩ S1. Then xψt2 ∈ S1 and ϕ � xψt2 ,

that is, ϕ is above S1.

Conversely, suppose that ϕ ∈ Wu (Op) \ Op is above S1, and choose ψ ∈ S1 with

ϕ � ψ. Recall that there is an open and dense set of initial functions in C so

that the corresponding solutions are convergent (Theorem 4.1 in Chapter 5 of [20]).

Hence η1 ∈ C, η2 ∈ C and η3 ∈ C can be given such that

ψ � η1 � η2 � ϕ� η3,

furthermore xη1t , x
η2
t and xη3t converge to equilibria as t→∞. By the monotonicity

of the semi�ow,

(5.11) xψt � xη1t � xη2t � xϕt � xη3t for all t ≥ 0,
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hence the oscillation of xψ about ξ̂1 implies that ω (ηi) is either
{
ξ̂1

}
or
{
ξ̂2

}
for

all i ∈ {1, 2, 3}. If ω (η2) =
{
ξ̂1

}
, then necessarily ω (η1) = ω (η2) =

{
ξ̂1

}
, which

contradicts Proposition 5.1. So ω (η2) =
{
ξ̂2

}
. Then (5.11) guarantees that xη3t → ξ̂2

and thus xϕt → ξ̂2 as t→∞.

2. It is similar to show that for any ϕ ∈ Wu (Op) \ Op, ϕ ∈ Cp
−2 if and only if ϕ

is below S−1.

3. Relations Sk = Cp
k∪Op∪Cp

q , k ∈ {−1, 1}, imply the equalities Cp
q∪Op = S−1∩S1

and Cp
k = Sk\S−k for both k ∈ {−1, 1}.

4. It remains to verify that for ϕ ∈ Wu (Op) \ Op, ω (ϕ) =
{

0̂
}
if and only if ϕ

is between S−1 and S1. Recall that for both k ∈ {−1, 1} and each ϕ ∈ Wu (Op),
ϕ is either below Sk, or it is above Sk, or it is an element of Sk. For this reason,

ϕ ∈ Wu (Op) \ Op is between S−1 and S1 if and only if all the following three

properties hold: ϕ /∈ S−1 ∪ S1, ϕ is not above S1 and ϕ is not below S−1. So by the

above results, ϕ ∈ Wu (Op) \ Op is between S−1 and S1 if and only if

ϕ ∈ Wu (Op) \
{
Op ∪ Cp

−2 ∪ C
p
−1 ∪ Cp

q ∪ C
p
1 ∪ C

p
2

}
= Cp

0 .

�
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