THE UNSTABLE SET OF A PERIODIC ORBIT FOR DELAYED
POSITIVE FEEDBACK
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Abstract In the paper |[Large-amplitude periodic solutions for differential equations
with delayed monotone positive feedback, JDDE 23 (2011), no. 4, 727-790|, we have
constructed large-amplitude periodic orbits for an equation with delayed monotone
positive feedback. We have shown that the unstable sets of the large-amplitude
periodic orbits constitute the global attractor besides spindle-like structures. In this
paper we focus on a large-amplitude periodic orbit O, with two Floquet multipli-
ers outside the unit circle, and we intend to characterize the geometric structure
of its unstable set W*(0,). We prove that W*(0,) is a three-dimensional C'-
submanifold of the phase space and admits a smooth global graph representation.
Within W* (O,), there exist heteroclinic connections from O, to three different peri-
odic orbits. These connecting sets are two-dimensional C''-submanifolds of W* (O,)
and homeomorphic to the two-dimensional open annulus. They form C'-smooth
separatrices in the sense that they divide the points of W* (O,) into three subsets

according to their w-limit sets.
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1. INTRODUCTION

Consider the delay differential equation

(1.1) (t) = —pa (t) + f (z (£ = 1)),
where p is a positive constant and f : R — R is a smooth monotone nonlinearity.
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The natural phase space for Eq.(1.1) is C = C'([-1,0],R) equipped with the
supremum norm. For any ¢ € C|, there is a unique solution z¥ : [—-1,00) — R of
(1.1). For each t > 0, zf € C is defined by =7 (s) = z? (t +s), —1 < s < 0. Then
the map

D:[—1,00) x O (t,p) = af € C
is a continuous semiflow.

In [8], the authors of this paper have studied Eq.(1.1) under the subsequent
hypothesis:

(H1) p>0, feC'(R,R) with f/(£) >0 for all £ € R, and
2 <1 <§H=0<86 <&

are five consecutive zeros of R 3 £ — —pé+ f (§) € R with f/ (&) < p <
I (&) for j € {—2,0,2} and k € {—1,1} (see Fig.1).

FIGURE 1. A feedback function satisfying condition (H1).

Under hypothesis (H1), fj € C, defined by fj (s) =&, -1 < s <0, is an
equilibrium point of ® for all j € {—2,—1,0, 1,2}, furthermore 5,2, fo and 52 are
stable, and é,l and él are unstable. By the monotonicity property of f, the subsets

Coaos={peC: &< p(s)<&forall se[-1,0]},

Coo={peC:&y5<¢(s)<0forall se[-1,0]},
Coa={peC:0<p(s) <&forall se[-1,0]}
of the phase space C' are positively invariant under the semiflow ® (see Proposition
2.4 in Section 2).

Let A, A_30 and A2 denote the global attractors of the restrictions ®|j oc)xc_y.
D@10,00)xC_s aNd P[0, 00)xCy o, Tespectively. If (H1) holds and £_5,£_1,0,&;, &, are the
only zeros of —ué+ f (£), then A is the global attractor of ®. The structures of A_5q
and Ap» are (at least partially) well understood, see e.g. [5, 6, 7, 9, 10, 11]. A_5¢

and Ap> admit Morse decompositions [18]|. Further technical conditions regarding



f ensure that A_5, and Ay have spindle-like structures [5, 9, 10, 11]: Ay is the
closure of the unstable set of fl containing the equilibrium points fo, 51, fg, periodic
orbits in Cp o and heteroclinic orbits among them. In other cases Ay is larger than
the the closure of the unstable set of él. The structure of A_5( is similar. See Fig.

2 for a simple situation.

FIGURE 2. A spindle-like structure

The monograph [10] of Krisztin, Walther and Wu has addressed the question
whether the equality A = A_5 U A holds under hypothesis (H1). The authors
of this paper have constructed an example in [8] so that (H1) holds, and Eq. (1.1)
admits periodic orbits in A\ (A_20U Agz2), that is, besides the spindle-like struc-
tures. The periodic solutions defining these periodic orbits oscillate slowly about 0
and have large amplitudes in the following sense.

A periodic solution 7 : R — R of Eq. (1.1) is called a large amplitude periodic
solution if r(R) D (£-1,&). A solution r : R — R is slowly oscillatory if for
each ¢, the restriction r|;_,, has one or two sign changes. Note that here slow
oscillation is different from the usual one used for equations with negative feedback
condition [2, 21]. A large-amplitude slowly oscillatory periodic solution r : R — R
is abbreviated as an LSOP solution. We say that an LSOP solution r : R — R is
normalized if r(—1) = 0, and for some 1 > 0, 7(s) > 0 for all s € (—1,—1+ 7).

The first main result of [8] is as follows.

Theorem A. There exist  and f satisfying (H1) such that Eq.(1.1) has exactly
two normalized LSOP solutions p: R — R and ¢ : R — R. For the ranges of p and
q, (€21,&) Cp(R) C ¢(R) C (£-2,&) holds. The corresponding periodic orbits

Op={pt:teR} and O, ={q : t € R}



are hyperbolic and unstable. O, admits two different Floquet multipliers outside the
unit circle, which are real and simple. O, has one real simple Floguet multiplier

outside the unit circle.

Note that although Theorem 1.1 in [8] does not mention that the Floquet multi-
pliers found outside the unit circle are simple and real, these properties are verified
in Section 4 of the same paper.

In the proof of the theorem, ;= 1 and f is close to the step function

—-K ifzr< -1,
AP@) =90  if 2| <1,
K ifx>1,

where K > 0 is chosen large enough.

In their paper [3], Fiedler, Rocha and Wolfrum considered a special class of one-
dimensional parabolic partial differential equations and obtained a catalogue listing
the possible structures of the global attractor. In particular, the result of Theorem
A motivated Fiedler, Rocha and Wolfrum to find an analogous configuration for
their equation. It is an interesting question whether all the structures found by
them have counterparts in the theory of Eq. (1.1).

Let W* (O,) and W* (O,) denote the unstable sets of O, and O, respectively.

A solution r : R — R is called slowly oscillatory about &, k € {—1,1}, if
R 3t +— r(t)—&; € R admits one or two sign changes on each interval of length 1. As
it is described by Proposition 2.7 in [8], f and p in Theorem A are set so that there
exist at least one periodic solution oscillating slowly about & with range in (0, &),
furthermore there is a solution z' : R — R among such periodic solutions that has
maximal range z'(R) in the sense that z'(R) D z(R) for all periodic solutions =
oscillating slowly about & with range in (0,&;). Similarly, there exists a maximal

periodic solution x~1 oscillating slowly about £_; with range in (£_5,0). Set
Op={z;:t€R} and O_; = {z;' : t € R} .
Let w () denote the w-limit set of any ¢ € C. Introduce the connecting sets

Cf:{wéwu(op):w(@)zfj}> je{-2,02},

CL={peW"(0): w(p) =0k}, ke{-11},
and
Cr ={p e W' (0,): w(p) = O}

Sets C, j € {—2,2}, are defined analogously.



The next theorem has also been given in [8] and describes the dynamics in A \

(.A_270 U .A()’z) .

Theorem B. One may set p and f satisfying (H1) such that the statement of
Theorem A holds, and for the global attractor A we have the equality

.A - A7270 U ./4072 U Wu (Op) U Wu (Oq) .

Moreover, the dynamics on W* (O,) and W" (O,) is as follows. The connecting sets
C7, CF, CF, j €{-2,0,2}, k € {~1,1}, are nonempty, and

W*(0,) =0, uC?,UC?, UCFUCTUCTUCE.
The connecting sets C*y and C§ are nonempty, and
w*(0,) =0,uUcC?,uCy.

The system of heteroclinic connections is represented in Fig. 3.

FI1GURE 3. Connecting orbits: the dashed arrows represent hetero-
clinic connections in A_5 o and in Ajg o, while the solid ones represent
connecting orbits given by Theorem B.

Hereinafter we fix 4 = 1 and set f in Eq.(1.1) so that Theorems A and B hold.
The purpose of this paper is to characterize the geometrical properties of W* (O,)
and the connecting sets within W* (O,).

We say that a subset W of C' admits global graph representation, if there exists
a splitting C' = G @ E with closed subspaces G and E of C, a subset U of G and a
map w : U — F such that

W={x+w(x): xeU}.

W is said to have a smooth global graph representation if in the above definition U is

open in G and w is C'-smooth on U. Note that in this case W is a C'-submanifold



of C' in the usual sense with dimension dim G, see e.g. the definition of Lang in
[12]. W is said to admit a smooth global graph representation with boundary if G
is n dimensional with some integer n > 1, U is the closure of an open set U°, w
is C''-smooth on U the boundary bdU of U in G is an (n — 1)-dimensional C'-
submanifold of GG, and all points of bdU have an open neighborhood in G on which
w can be extended to a C'-smooth function. In this case W is an n-dimensional
C'-submanifold of C' with boundary in the usual sense [12].
The first result of this paper is the following.

Theorem 1.1. W (0,), C*,, C§ and C% are three-dimensional C'-submanifolds
of C admitting smooth global graph representations.

The next objects of our study are the connecting sets C¥, C*, C7 containing the
heteroclinic orbits from O, to O, O_;, Oy, respectively. We actually get a detailed
picture of the structure of W* (O,) by characterizing the unions

S, =C" U0, UC? and S =C'UO,UCE

A solution z : R — R is said to oscillate about &;, i € {—2,—1,0, 1,2}, if the set
z71 (&) C R is not bounded from above. It is a direct consequence of Theorem B
that for k € {—1,1},

(1.2) S ={p e W*(0,) : x¥ oscillates about &} .

We say that a subset W of W* (O,) is above Sy, k € {—1,1}, if to each p € W
there corresponds an element v of Sy with ¢ < ¢ (that is, ¥ (s) < ¢ (s) for all

€ [—1,0]). Similarly, a subset W of W* (0O,) is below Sk, k € {—1,1}, if for all
w € W there exists ¢ € S, with ¢ < 1. W is between S_; and 5] if it is below S
and above S_;.

Our main result offers geometrical and topological descriptions of C¥, c?,, C7,
S_1 and 57, and their closures in C'. It shows that S_; and S; separate the points
of W*(O,) into three groups according to their w-limit sets. Thereby, S_; and S
play a key role in the dynamics of the equation.

Theorem 1.2.
(i) The sets C?, C*,, CY, S_y and S, are two-dimensional C"-submanifolds of
W*(0O,) with smooth global graph representations. They are homeomorphic to the
open annulus

A =Ly eR?: 1< |u| <2}.
(ii) The equalities

CY=0,UCtu0, CI=0,UCtuU0,



and
Se=0,US U0, =0, UCLUO,UCtUO,
hold for both k € {—1,1}. The sets C?, C?,, C?, S_| and Sy admit smooth
global graph representations with boundary, and thereby they are two-dimensional
Cl-submanifolds of C with boundary. In addition, they are homeomorphic to the
closed annulus
AT = {y e R?: 1< u] <2},

(i1i) S_, and Sy are separatrices in the sense that CY is above Sy, C¥ is between S_4

and St, furthermore C?, is below S_;.

Fig. 4 visualizes the structure of the closure W* (O,) of W* (O,) in C. To get
an overview of the above results regarding W" (O,), see the inner part of Fig. 4,
drawn in black. We emphasize a particular consequence of Theorem 1.2: the tangent

spaces of S_; and S; coincide along O, see Fig. 5.

FIGURE 4. W (O,) can be visualized as a “tulip” rotated around the
vertical axis: the dots correspond to equilibria and periodic orbits,
the thick arrows symbolize two-dimensional heteroclinic connecting
sets, and the three groups of thin arrows represent three-dimensional
connecting sets. The elements of W* (O,) are drawn in black. Grey
is used for the boundary of W* (0,).

Let W* (O;) and W* (O_;) denote the unstable sets of O; and O_;, respectively,

defined as the forward extension of a one-dimensional local unstable manifold of



FIGURE 5. The tangent spaces of S_; and \S; coincide along O,.

a return map (corresponding to the only Floquet multiplier outside the unit circle
which is real and simple), see (3.5). We expect W* (O,), W* (O_;) and W" (O,)
to be two-dimensional C'-submanifolds of C. We conjecture that for the closure

Wu (0O,) of W*(0O,) in C, the equality
W(O,) = W (Op) UW™(O) UW* (O1) UW" (0-1) U {20, }

holds, as it represented in Fig. 4. Moreover, all points of W" (O,) U W* (O;) U
W (O_;) have an open neighborhood on which the C'-map in the graph represen-
tation of W* (O,) can be smoothly extended.

It also remains an open question whether A\ (A_30U Ap2) is homeomorphic to

the three-dimensional body
B3 ((0,0,0),2)\ {Bs((0,0,1),1) UBs ((0,0,—1),1)} C R?,

where Bs ((a1, as, as) ,r) denotes the three-dimensional closed ball with center (ay, as, as)
and radius r.

The proofs of Theorems 1.1-1.2 apply general results on delay differential equa-
tions, the Floquet theory (Appendix VII of [10], [14]), results on local invariant
manifolds for maps in Banach spaces (Appendices I-IT of [10]), correspondences be-
tween different return maps (Appendices I and V of [10]), a result from transversality
theory [1] and also a discrete Lyapunov functional of Mallet-Paret and Sell counting
the sign changes of the elements of C' (Appendix VI of [10], [16]).

This paper is organized as follows. Section 2 offers a general overview of the
theoretical background and introduces the discrete Lyapunov functional. As the
Floquet theory and certain results on local invariant manifolds of return maps play
essential role in this work, Section 3 is devoted to the discussion of these concepts.
Sections 4 and 5 contain the proofs of Theorems 1.1 and 1.2, respectively.

The proof of Theorem 1.1 in Section 4 takes advantage of the fact that the unsta-
ble set of a hyperbolic periodic orbit is the forward continuation of a local unstable
manifold of a Poincaré map by the semiflow. In consequence, by using the smooth-
ness of the local unstable manifold and the injectivity of the derivative of the solution
operator, we prove that all points ¢ of W* (O,) belong to a subset W, of W* (O,)
that is a three-dimensional C'-submanifold of C. This means that W* (0,) is an



immersed submanifold of C'. In general, an immersed submanifold is not necessarily
an embedded submanifold of the phase space. In order to prove that W*(O,) is
embedded in C, we have to show that for any ¢ in W* (0,), there is no sequence
in W* (0,) \W,, converging to . We define a projection 73 from C' into R3. Us-
ing well-known properties of the discrete Lyapunov functional, we show that 73 is
injective on W* (O,) and on the tangent spaces of W,. This implies that m3W,, is
open in R?. If a sequence (¢")), in W*(O,) \W,, converges to ¢ as n — oo, then
3" — T3 as n — 00, and m3p" € w3W, for all n large enough. The injectivity of
73 on W" (O,) then implies that ¢™ € W,,, which is a contradiction. So W" (O,) is
a three-dimensional embedded C'-submanifold of the phase space. The description
of W* (O, is rounded up by giving a graph representation for W* (O, in order to
present the simplicity of its structure. The smoothness of the sets C”,, C§ and C¥
then follows at once because they are open subsets of W* (O,). We also obtain as an
important consequence that the semiflow defined by the solution operator extends
to a C'-flow on W (O,) with injective derivatives.

The proof of Theorem 1.2 in Section 5 is built from several steps, and it is orga-
nized into five subsections.

In Subsection 5.1 we list preliminary results regarding the closure S;, of S, in C,
k € {—1,1}. We introduce in particular a projection my from C' into R? and —
using the special properties of the discrete Lyapunov functional — we show that 7y is
injective on S;. The injectivity of |5, is already sufficient to give a two-dimensional
graph representation for any subset W of Sj (without smoothness properties): there
is an isomorphism J : R? — C such that P, = Jyom : C — C is a projection
onto a two-dimensional subspace G of C', and there exists a map wy defined on the
image set P,S), with range in P, ' (0) such that for any subset W C S,

W ={x+ws(x): x € BLW}.

The smoothness of wy, and the properties of its domain P,S, C G5 are investigated
later. Subsection 5.1 is closed with showing that |5~ is a homeomorphism onto its
image, furthermore m, maps the nonzero tangent vectors of Sy to nonzero vectors in
R2.

It is clear that (O, U S, UQO,) C Si for both k € {—1,1}. The inclusion S}, C
(Or U S UQ,) is proved in Subsection 5.2 based on the previously obtained result
that S), is mapped injectively into R2. Then it follows easily that C_,f, ke{-1,1},
and C? are not larger than the unions O, UC?U O}, and O, U CPuU O, respectively.

It is a more challenging task to show that C? and C}, k € {-1,1}, are C'-
submanifolds of W" (O,) (as stated by Theorem 1.2.(i)). The proof of this assertion
is contained in Subsection 5.3. It is partly based on transversality [1|; we verify that

W (0O,) intersects transversally a local center-stable manifold of a Poincaré return



map at a point of O and a local stable manifold of a Poincaré return map at a point
of O, and thereby the intersections — subsets of C and C} — are one-dimensional
submanifolds of W* (O,). The main difficulty in this task is that the hyperbolicity
of Oy is not known. Krisztin, Walther and Wu have proved transversality in a
similar situation [10]. Then we apply techniques that already appeared in Section
4. The injectivity of the derivative of the flow induced by the solution operator
on W* (O,) guarantees that each point ¢ in C? or C} belongs to a “small” subset
of C? or C}, respectively, that is a two-dimensional C"'-submanifold of W* (O,).
Therefore, C? and C} are immersed C*-submanifolds of W* (0,). In order to prove
that CF and C} are embedded in W* (O,), we repeat an argument from the proof
of Theorem 1.1 with 7y in the role of 73. Based on the property that C?' and cy
are C'-submanifolds of W* (0,), we prove at the end of Subsection 5.3 that wy, is

continuously differentiable on the open sets P,C¥ and P}, i.e., the representations
cy = {X—i—wk(x) DX € PQCg} and C} ={x+wr(x): x € RC}}.

are smooth.
Next we verify in Subsection 5.4 that the images of C?, C} and S, k € {—1,1},
under 7y are topologically equivalent to the open annulus, and the images of their

closures are topologically equivalent to the closed annulus.
As

Se={x+wr(x): x € S} and PS5, = PRCLUPRO,U RCY,

we have a smooth representation for .S, if we show that %Sy is open in G5 and wy, is
smooth at the points of P,O,,. This is done in Subsection 5.5. It follows immediately
that Sy, is a C''-submanifold of W* (0,). Simultaneously, we verify that all points
of RO, U PO, have open neighborhoods on which wj can be extended to Cl-
functions. As POy U PO, is the boundary of P,Sy, this step guarantees that Sy
has a smooth representation with boundary, and thereby Sy is a C'-submanifold of
C with boundary. The same reasonings yield the analogous results for C_g’ and C_,f.
Summing up, the proofs of Theorem 1.2.(i) and (ii) are completed in Subsection 5.5.

It remains to show that S_; and S; are indeed separatrices in the sense described
by Theorem 1.2.(iii). It is easy to see that the assertion restricted to a local unstable
manifold of O, holds. Then we use the monotonicity of the semiflow to extend the
statement for W" (O,) .

Several techniques applied here have already appeared in the monograph [10]| of
Krisztin, Walther and Wu. The novelty of this paper compared to [10] is that here
we describe the unstable set of a periodic orbit, while [10] considers the unstable set

of an equilibrium point.
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2. PRELIMINARIES

We fix 4 = 1 and set f in Eq.(1.1) so that Theorems A and B hold. In this
section we give a summary of the theoretical background. In particular, we discuss
the differentiability of the semiflow, the basic properties of the global attractor, the
discrete Lyapunov functional of Mallet-Paret and Sell, and we list some technical
results. The discussion of the Floquet theory and the Poincaré return maps is left

to the next section.

Phase space, solution, segment. The natural phase space for Eq.(1.1) is the
Banach space C = C([—1,0],R) of continuous real functions defined on [—1,0]
equipped with the supremum norm
lell = sup [p(s)].
—1<5<0

If J is an interval, v : J — R is continuous and [t — 1,¢] C J, then the segment
u; € Cis defined by u (s) =u(t+s), —1 < s <0.

Let C! denote the subspace of C containing the continuously differentiable func-
tions. Then C' is also a Banach space with the norm |||/ = |||l + [|¢/]] -

For all £ € R, £ € C is defined by & (s) = & for all s € [—1,0].

A solution of Eq.(1.1) is either a continuous function on [ty — 1,00), ¢y € R,
which is differentiable for ¢ > ¢, and satisfies equation Eq. (1.1) on (o, 00), or a
continuously differentiable function on R satisfying the equation for all ¢ € R. To
all p € C, there corresponds a unique solution z%# : [—1,00) — R of Eq. (1.1) with
zy = ¢. On (0,00), x¥ is given by the variation-of-constants formula for ordinary

differential equations repeated on successive intervals of length 1:

t
(2.1) 2% (t) =e""2% (n) —|—/ (¥ (s—1))ds foralneN, n<t<n-+1.

n

Semiflow. The solutions of Eq. (1.1) define the continuous semiflow

PR xC >3 (t,p)—af €C.

11



All maps ®(¢,) : C — C, t > 1, are compact [4]. As f > 0 on R, all maps
®(t,-): C — C,t >0, are injective [10]. It follows that for every ¢ € C' there is
at most one solution x : R — R of Eq. (1.1) with zy = ¢. Whenever such solution
exists, we denote it also by x¥.

For fixed ¢ € C, the map (1,00) 3t — D(t,p) € C is continuously differentiable
with D1® (t,)1 = 2% for all t > 1. For all t > 0 fixed, C' 3 ¢ — ®(t,p) € C
is continuously differentiable, and Dy®(t, ¢)n = v/, where v" : [—1,00) — R is the

solution of the linear variational equation
(2.2) 0(t) = —v(t)+ ff (@ (t—1)v(t—1)

with v] = 7. So the restriction of ® to the open set (1,00) x C' is continuously
differentiable.

Proposition 2.1. Suppose that n € C, b: R — R is positive, and the problem

b(t) = —v(t) +b(t)v(t—1)
Vo =7

has a solution v" either on [ty — 1,00) with ty < 0 or on R (i.e., there is a continuous
function v : [ty —1,00) — R with vl = n that is differentiable and satisfies the
equation for t > to, or there exists a differentiable function v : R — R with v] =7

satisfying the equation for all real t, respectively). Then v" is unique.

Proof. As the solution on [0, 00) is determined by a variation-of-constants formula

analogous to (2.1), the uniqueness in forward time is clear. For ¢ < 0, the uniqueness
follows from v (t — 1) = (v (t) + v (¢)) /b (t). O

In particular, the solution operator Ds®(t,¢) corresponding to the variational
equation (2.2) is injective for all ¢ € C' and t > 0.

A function é € C'is an equilibrium point (or stationary point) of ® if and only if
£(s) = ¢ forall =1 < s < 0 with € € R satisfying —¢ + f(€) = 0. Then 2 (t) = ¢
for all t € R. As it is described in Chapter 2 of [10], condition f’ (§) < 1 implies that
€ is stable and locally attractive. If f (&) > 1, then ¢ is unstable. So hypothesis
(H1) with p = 1 implies that £ o, & and & are stable, and £_; and & are unstable.

Limit sets. If ¢ € C and 2% : [-1,00) — R is a bounded solution of Eq. (1.1), then

the w-limit set

w(¢) ={1 € C : there exists a sequence (t,), in [0, c0)

with ¢, — oo and @ (t,, ) — ¢ as n — oo}

192



is nonempty, compact, connected and invariant. For a solution x : R — R such that

T|(~o0,0) is bounded, the a-limit set

a(x) ={1 € C: there exists a sequence (t,); in R

with ¢, — —oo and z;, — ¥ as n — oo}

is also nonempty, compact, connected and invariant.
According to the Poincaré-Bendixson theorem of Mallet-Paret and Sell [17], for
all
peCos={peC: &< p(s)<&forall s e[—1,0]},

the set w () is either a single nonconstant periodic orbit, or for each ¥ € w (p),
«Q (xw) Uw (’l/}) - {5*27 éfl? éOJ éla 52} .
An analogous result holds for a/(x) in case z is defined on R and {z;: t <0} C
0_2’2.
By Theorem 4.1 in Chapter 5 of [20], there is an open and dense set of initial
functions in C_3 5 so that the corresponding solutions converge to equilibria.
Note that there is no homoclinic orbit to fj, Jj €{—2,0,2}, as these equilibria are

stable. It follows from Proposition 3.1 in [7]| that there exists no homoclinic orbits
to the unstable equilibria é,l and él.

The global attractor. The global attractor A of the restriction (I>|[07OO)X0_272 is a
nonempty, compact set in C, that is invariant in the sense that ® (¢, A) = A for
all t > 0, and that attracts bounded sets in the sense that for every bounded set
B C C_55 and for every open set U D A, there exists ¢ > 0 with ® ([t,00) x B) C U.

Global attractors are uniquely determined [4]. Tt can be shown that

A={p € C 55 : there is a bounded solution z : R — R
of Eq. (1.1) so that ¢ =z},
see [9, 14, 18].
The compactness of A, its invariance property and the injectivity of the maps
O (t,.): C — C,t >0, combined permit to verify that the map
[0,00) x AD (t,p) = P (t,p) € A

extends to a continuous flow ® 4 : R x A — A; for every ¢ € A and for all ¢t € R we
have ® 4 (t, ) = xf with the uniquely determined solution z¥ : R — R of Eq. (1.1)
satisfying xf = .

Note that we have A = ® (1,.4) C C'; A is a closed subset of C''. Using the flow
® 4 and the continuity of the map

Cop—®(1,p) €
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one obtains that C' and C! define the same topology on \A.

A discrete Lyapunov functional. Following Mallet-Paret and Sell in [16], we use
a discrete Lyapunov functional V : C'\ {0} — 2N U {oc}. For ¢ € C'\ {6}, set
sc(p) =01if o> 0or p <0 (ie., ¢(s) >0 for all s € [~1,0] or ¢ (s) < 0 for all
s € [—1,0], respectively), otherwise define

sc(p) = sup{k € N\ {0} : there exist a strictly increasing sequence

(55 C [~1,0] with ¢ (si1) ¢ (s:) < 0 for i € {1,2, k}} .
Then set

V() = sc (), if sc () is even or oo,
[ sc(p)+1, if sc(p) is odd.

Also define
R = {peC :p(0)#00r@(0)p(=1)>0,
w(=1)#0or ¢ (—1)¢(0) <0, all zeros of ¢ are simple} .
V' has the following lower semi-continuity and continuity property (for a proof,

see [10, 16]).

Lemma 2.2. For each ¢ € C'\ {0} and (pn), C C'\ {0} with ¢, — @ asn —
00, V(p) < liminf, oV (¢n). For each ¢ € R and (p,)7 C C'\ {0} with
lon —@llcr = 0 as n — 00, V(p) =lim, e V (pn) < 00.

The next result explains why V' is called a Lyapunov functional (for a proof, see
[10, 16] again). For an interval J C R, we use the notation

J+[-1,00={teR: t=t +ty with t; € J, ty € [-1,0]}.

Lemma 2.3. Assume that p > 0, J C R s an interval, a : J — R is positive and
continuous, z : J + [—1,0] = R is continuous, z (t) # 0 for some t € J + [—1,0],
and z s differentiable on J. Suppose that

(2.3) Z(t)=—pz(t)+a(t)z(t—1)

holds for all t > inf J in J. Then the following statements hold.

(i) If t1,ty € J with t; <ty , then V (2:,) >V (21,).

(i) Ift,t—2¢€ J, z(t — 1) = z(t) = 0, then either V (z;) = 00 or V (z1_2) >V (2).
(i) If t € J, t —3 € J, and V (z_3) =V (2:) < o0, then z € R.

If f is a C''-smooth function with f’ > 0on R, z,% : J+[~1,0] — R are solutions
of Eq. (1.1) and ¢ € R\ {0}, then Lemma 2.3 can be applied for z = (v — ) /c with
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the positive continuous function
1
a:JBtr—>/ fsx(t—=1)+(1—s)2(t—1))ds €[0,00).
0

Further notations and preliminary results. A solution x is oscillatory about
an equilibrium £ (or a constant &) if = (€) is not bounded from above. It is slowly
oscillatory about € (or €) if t — 2 (£) — € has one or two sign changes on each interval
of length 1.

B(p,r), ¢ € C', r >0, denotes the open ball in C' with center ¢ and radius r.

We use the notation S{. for the set {z € C: |z] = 1}.

For a simple closed curve ¢ : [a,b] — R?, int (c[a, b]) and ext (c[a,b]) denote the
interior and exterior, i.e., the bounded and unbounded components of R?\ ¢ ([a, b]),
respectively. We use the same notations for closed curves ¢ : [a,b] — Go, where G,
is any two-dimensional real Banach space.

We say ¢ < 9 for ¢, € Cif ¢ (s) < 9 (s) for all s € [—1,0]. Relation ¢ <
holds if ¢ < @ and ¢ # . In addition, ¢ < ¢ if ¢ (s) < 9 (s) for all s € [—1,0].
Relations “>7, “>" and “>” are defined analogously.

The semiflow ® is monotone in the following sense.
Proposition 2.4. If o, ¢ € C with ¢ < (¢ > ), then af < zV (:cf > xff’) for
allt > 0. If p < (¢ > ), then 2¥ < ¥ (xf>>xff’> forallt > 2. If o < ¢
(o> ), then z¥ < ¥ (:Ef > xf) for all t > 0.

The assertion follows easily from the variation-of-constant formula. For a proof
we refer to [20]. Note that Proposition 2.4 guarantees the positive invariance of
C_290, Cp2 and C_g5.

The periodic solutions have nice monotonicity properties (see Theorem 7.1 in [17])

as follows.

Proposition 2.5. Supposer : R — R is a periodic solution of Eq. (1.1) with minimal
period w > 0. Then r is of monotone type in the following sense: if tg < t; < to+w
are fized so that r (ty) = mingerr(t) and r (t1) = maxerr(t), then 7 (t) > 0 for
t € (to,t1) and 7 (t) <0 fort € (t1,to + w).

We also need the next technical results. The first one is the direct consequence
of Lemmas VI.4, VI.5 and VL6 in [10].

Lemma 2.6. Let p > 0, ag > 0 and oy > «p. Let sequences of continuous real
functions a™ on R and continuously differentiable real functions 2" on R, n > 0, be
given such that for alln > 0, oy < a™(t) < oy for allt € R, 2" (t) # 0 for some
teR, V(2) <2 forallt € R, and 2™ satisfies

ZM(t) = —p" (t)+a" (t) 2" (t — 1)
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on R. Let a further continuous real function a on R be given so that a™ — a as
n — oo uniformly on compact subsets of R. Then a continuously differentiable
oo

function z : R — R and a subsequence (2"~ of (2").;2, can be given such that

2" — z and 2™ — Z as k — oo uniformly on compact subsets of R, moreover
Z(t)=—pz(t)+a(t)z(t—1)
for all t € R.

The subsequent result shows that Lyapunov functionals can be used effectively to
show that solutions of linear equations cannot decay too fast at co. For a proof, see
Lemma VI.3 in [10].

Lemma 2.7. Let 1 > 0, ag > 0 and oy > . Assume that ty € R, a: [tg — 5,to] —
R is continuous with oy < a(t) < ay for all t € [to—5,t0|, z : [to —6,t] — R
is continuous, differentiable for to — 5 < t < to and satisfies (2.3) for to — 5 <
t < to. In addition, assume that z,—5 # 0 and V (z,-5) < 2. Then there exists
K = K (i, g, 1) > 0 such that

1zt < B[22 -

The last result of this section is Lemma 1.8 in [10]. It will be used to abbreviate

proofs of smoothness of submanifolds.

Proposition 2.8. Let g be a C'-map from an m-dimensional C*-manifold M into
a Cl-manifold N modeled over a Banach space. If for some p € M, the derivative
Dg (p) of g at p is injective, then p has an open neighborhood U in M so that for
all open sets V in U, g (V) is an m-dimensional C*-submanifold of N.

3. FLOQUET MULTIPLIERS AND A POINCARE RETURN MAP

In this section we give a brief introduction to the Floquet theory regarding peri-
odic solutions which are slowly oscillatory about an equilibrium. Then we define a
Poincaré map and collect the most important properties of its local invariant man-

Land 27!, The section is closed by

ifolds. At last we apply these results to p, ¢,
showing that the unstable space of the monodromy operator corresponding to the

periodic orbit Oy is one-dimensional for both k € {—1,1}.

3.1. Floquet multipliers. Suppose r : R — R is a periodic solution of Eq. (1.1)
with minimal period w > 0. If r is slowly oscillatory about an equilibrium (as p, g,
x! or z7! are), then Proposition 2.5 implies that w € (1,2). Assume that this is the
case.

Consider the period map @ = ® (w, ) with fixed point ry and its derivative M =
Dy® (w,r9) at r9. Then My = uf for all ¢ € C, where u¥ : [-1,00) — R is the
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solution of the linear variational equation

(3.1) u(t) = —u(t)+ f(rt—1)u(t—1)

with uj = ¢. M is called the monodromy operator.

M is a compact operator, 0 belongs to its spectrum o = o (M), and its eigenvalues
of finite multiplicity — the so called Floquet multipliers — form o (M)\{0}. The
importance of M lies in the fact that we obtain information about the stability
properties of the orbit O, = {r, : t € R} from o (M).

As 7 is a nonzero solution of the variational equation (3.1), 1 is a Floquet mul-
tiplier with eigenfunction 7. The periodic orbit O, is said to be hyperbolic if the
generalized eigenspace of M corresponding to the eigenvalue 1 is one-dimensional,
furthermore there are no Floquet multipliers on the unit circle besides 1.

The paper [16] of Mallet-Paret and Sell and Appendix VII of the monograph [10] of
Krisztin, Walther and Wu confirm the subsequent properties. O, has a real Floquet
multiplier \; > 1 with a strictly positive eigenvector v;. The realified generalized

eigenspace C), associated with the spectral set {z € o : |z| < A} satisfies
(3.2) Cox, NVH(0) = 0.

Let C<,, p > 0, denote the realified generalized eigenspace of M associated with the
spectral set {z € o : |z| < p}. The set

{p € (0,00): o (M) pSE 0, Co, V" ({0,2}) = 0}
is nonempty and has a maximum ;. Then
(33) Ceyy NV1({0,2}) =0, C,,<\{0} cV'({0,2}) and dimC,,,« < 3,
where C

™M

spectral set {z € o : |z| > ry}. It will easily follow from the results of this paper

< is the realified generalized eigenspace of M associated with the nonempty

that dimC,,,. = 3 for the periodic solutions p,q,z~! and x!, see Remark 3.7. Re-
cently Mallet-Paret and Nussbaum have shown that the equality dimC,,,. = 3 holds
in general [15].

Let C, C. and C, be the closed subspaces of C' chosen so that C' = C, & C, &
Cy, Cs, C. and C, are invariant under M, and the spectra o, (M), o.(M) and
0. (M) of the induced maps Cy > z — Mz € Cy, C. > z — Mz € C,, and
Cy 2 o — Mz € C, are contained in {u € C: |u| <1}, {p€C: |u| =1} and
{pn e C: |u| > 1}, respectively.

As O, has a real Floquet multiplier A\; > 1, C, is nontrivial.

C,. is also nontrivial because 7o € C.. It is easy to see that the monotonicity
property of r described in Proposition 2.5 and w € (1,2) imply the existence of
t € Rwith V(it) =2 AsR >t — 7, € C is periodic, and R 5 ¢t — V (7y) is
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monotone decreasing by Lemma 2.3, it follows that V (7)) = 2 for all real ¢. In
particular, V' (7¢) = 2. Hence (3.3) gives that 7y, < 1, moreover (3.2) and (3.3)
together give that C. \ {0} C V71(2). The nontriviality of C, and dimC,,,. < 3 in

addition imply that C. is at most two-dimensional in our case:

o Rry, if O, is hyperbolic,
] Rigd R¢, otherwise,

where & € C.. \ Rrg provided that O, is nonhyperbolic.

3.2. A Poincaré return map. As above, let r : R — R be any periodic solution
of Eq. (1.1) which oscillates slowly about an equilibrium, and let w € (1,2) denote
its minimal period.

Fix a £ € C. \ Ry in case O, is nonhyperbolic and define

B Cs @ Cy, if O, is hyperbolic,
] ¢,eRe® C,, if O, is nonhyperbolic.

Then Y C C'is a hyperplane with codimension 1. Choose e* to be a continuous linear
functional with null space (e*)”' (0) = Y. The Hahn Banach theorem guarantees
the existence of e*. As D1® (w, 1)1 =79 ¢ Y, and thus e* (D1 ® (w,79) 1) # 0, the

implicit function theorem can be applied to the map

(t, ) = " (® (1, %) = r0)

in a neighborhood of (w, ). It yields a convex bounded open neighborhood N of
roin C, ¢ € (0,w) and a C'-map v : N — (w—¢&,w +¢) with v (ry) = w so that
for each (t,¢) € (w —e,w+¢) X N, the segment z{ belongs to ro + Y if and only
if t = v(¢) (see [2], Appendix I in [10], [13]). In addition, by continuity we may
assume that D1® (y(¢),¢)1 ¢ Y for all ¢ € N. The Poincaré return map Py is
defined by

Py :NN(ro+Y)> 90— P (v(p),p) €rg+ Y.

Then Py is continuously differentiable with fixed point 7.
It is convenient to have a formula not only for the derivative DPy () of Py at
@ € NN(ro+Y), but also for the derivatives of the iterates of Py. For all ¢ in the

domain of P{}, 7 >1, set
¥ () = ey (PE () -
Then

DP (9) 1= D1® (3(9), ) 7} (#) 1+ Da® (35(), ) 1
for all n € Y. Differentiation of the equation e* (® (v;(¢), ¢) — ro) = 0 yields that

e (Da® (5(9), 0) )
e* (D1® (v (), ) 1)’

v () n =
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and therefore
(3.4)  DPL()n = Ds® (7;(¢), ) 1 — 2 Egﬁ &Ez;i; ?;D@ (i (), ) 1

forallneY.

Let o (Py) and o (M) denote the spectra of DPy (r9) : ¥ — Y and the mon-
odromy operator, respectively. We obtain the following result from Theorem XIV.4.5
in [2].

Lemma 3.1.

(i) o (Py)\{0,1} = o (M) \ {0, 1}, and for every A € o (M) \ {0, 1}, the projection

along Rrg onto Y defines an isomorphism from the realified generalized eigenspace

of A and M onto the realified generalized eigenspace of X\ and D Py (ro).

(11) If the generalized eigenspace G (1, M) associated with 1 and M is one-dimensional,
then 1 ¢ o (Py).

(iii) If dim G (1, M) > 1, then 1 € o (Py), and the realified generalized eigenspaces

Gr (1, M) and Gg (1, Py) associated with 1 and M and with 1 and D Py (1), respec-

tively, satisfy

G[R(l,Py):YmGR(l,M) and GR(l,M):RTo@GR(l,Py)
In our case, the special choice of Y implies the following corollary.

Corollary 3.2.

(i) Cs and C, are invariant under DPy (ro), and the spectra o5 (Py) and o, (Py) of
the induced maps Cs > © — DPy (rg)x € Cs and C, > © — DPy (rg)z € C, are
contained in {p € C: |u| <1} and {u € C: |u| > 1}, respectively.

(i1) If M has an eigenfunction v corresponding to a simple eigenvalue \ € o (M) '\
{0,1}, then v is an eigenfunction of DPy (rq) corresponding to the same eigenvalue.
(15i) If O, is nonhyperbolic, then & is an eigenfunction of DPy (ro), and it corre-

sponds to an eigenvalue with absolute value 1.

In particular, if \; is a simple Floquet multiplier, then the strictly positive eigen-
function v; of M corresponding to A; is also an eigenfunction of DPy (rg) corre-
sponding to A;.

In case O, is hyperbolic, then according to Theorem 1.3 in Appendix I of [10],
there exist convex open neighborhoods N;, N, of 0 in Cy, C,, respectively, and a
C'-map w, : N, — O, with range in N, so that w, (O) = O, Duw, (O) = 0, and the
submanifold

Wige (Py,70) = {ro + x + wu (X) : X € Nu}
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of rg +Y is equal to the set

{g& €ro+ N, + N, : there is a trajectory (%)‘100 of Py with ¢g = ¢ such that
on €19+ Ny + N, for all n <0 and ¢, — 19 as n — —o0} .

W (Py,ro) is called a local unstable manifold of Py at ry.

The unstable set of the orbit O, is defined as the forward extension of W} (Py, o)
in time:
(3.5) W' (0O,) =& ([0,00) x W (Py,19)) .
If O, is hyperbolic, then

W*(0O,) ={xo: =:R — Ris asolution of (1.1), a(x) exists and a (z) = O, }.

If O, is hyperbolic, then by Theorem 1.2 in [10], there are convex open neighbor-
hoods N,, N, of 0 in Cj, C,, respectively, and a C'-map w, : Ny — C, with range
in IV, such that wy (6) =0, Dw, (()) =0, and

Wise (Py,10) = {ro + x + ws (X) © x € Ny}
is equal to

{p € ro+ Ny + N, : there is a trajectory (¢,), of Py in
ro + Ng + N, with @9 = ¢ and ¢, — 19 as n — 0o} .

Wi . (Py,ro) is a local stable manifold of Py at ry. It is a C'-submanifold of ro + Y
with codimension dimC),, and it is a C*'-submanifold of C' with codimension dimC,, +
1.

In case O, is nonhyperbolic, we need a local center-stable manifold WS, ( Py, rg) of
Py at rg. According to Theorem II.1 in [10], there exist convex open neighborhoods
N,. and N, of 0 in C, ®RE and C,,, respectively, and a C'-map w,. : Ny, — C,, such
that w,. (f)) =0, Dw,. (0) =0, wye (Nge) C N, and the local center-stable manifold

Wlsocc (PY? TO) = {7’0 + X + Wse (X) : X € Nsc}
satisfies

() Pr' (ro+ Nue + Nu) € WL (Py, 7o) -
n=0

Note that Wi (Py, rg) is also a C''-submanifold of ro + Y with codimension dimC,,

and it is a C''-submanifold of C with codimension dimC,, + 1.

Proposition 3.3. One may choose the neighborhoods Ny and N,. so small in the def-
initions of Wi . (Py,10), WiS. (Py, 7o), respectively, such that for all o in W; . (Py,10)N
A and in WS (Py,ro) VA, ¢ ¢ Y and V ($) > 2. Analogously, one may suppose

oc

that o ¢ Y for all o € W (Py,ro) NA.
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Proof. Recall that the C-norm and the C'-norm are equivalent on the global at-
tractor A. Hence for all ¢ € A with small |[¢ —r¢]|, ¢ ¢ Y follows from 7y ¢ Y,
furthermore V (¢) > 2 follows from V (7g) = 2 and the lower semicontinuity of
V. O

The next result is an immediate consequence of Proposition 1.7 in [10] combined
with characterizations of the local stable and center-stable manifolds given by The-
orems 1.2 and II.1 in [10].

Proposition 3.4. Let W denote a local stable manifold W}, . (Py, o) if O, is hyper-
bolic, and let W be a local center-stable manifold Wi, (Py,rg) otherwise. Let p € C

be given such that ® (t,p) — O, ast — co. Then there exist T > 0 and a trajectory
(¢ of Py in W such that ¢° = @ (T, p) and ©™ — 1y as n — co.

3.3. Examples. Consider the case when r is the LSOP solution p given by Theorem
A. Theorem A states that O, is hyperbolic, and has two real and simple Floquet

multipliers outside the unit circle. Hence C,. = Rpy and
Cy ={c1v1 + cov9 1 c1,09 € R},

where v; is a positive eigenfunction corresponding to M and the leading real eigen-
value A\; > 1, and v, is an eigenfunction corresponding to M and the eigenvalue
Ay with 1 < Ay < A;. For the solution u*2 : [—1,00) — R of the linear variational
equation (3.1) with initial segment vy, V' (uy?) = 2 for all ¢ > 0. For both i € {1, 2},
A; is an eigenvalue of DPy (pg) with the eigenvector v;.

The local unstable manifold W} (Py, po) of the Poincaré map Py at py is a two-
dimensional C'-submanifold of py + Y.

We will use the subsequent technical result.

Proposition 3.5. One may choose N,, so small that the tangent space T, WV} (Py, po)
has a strictly positive element for all ¢ € W} . (Py,po).

Proof. By decreasing N, if necessary, we can achieve that v; + Dw, (x) v, > 0 for
all x € N,, where v; is a fixed positive eigenfunction corresponding to the leading
eigenvalue \; of DPy (po). Let ¢ € W} _ (Py,po) be arbitrary and choose x¥ € N,
with ¢ = pg + x? + w, (x¥). Then for all ¢ in an open interval I C R containing 0,
v (t) = po + x? + tvy + wy (x? + tvy) is defined. Moreover, v : I — W} (Py,po) is
a C'-curve with v (0) = ¢ and

T‘PW;:JC (PY7p0) = 7/ (0) = + Dwu (ch) v > 6
OJ

We plan to consider other periodic orbits oscillating slowly about an equilibrium,

but keep the same notations for simplicity (w for the minimal period, Py for the
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Poincaré map, \;, 1 > 1, for the Floquet multipliers, v;, ¢ > 1, for eigenvectors, and
so on). It will be clear from the context which periodic orbit we refer to.

Theorem A gives a second LSOP solution ¢ : R — R. O, is hyperbolic, and
it has exactly one simple Floquet multiplier outside the unit circle, which is real
and greater than 1. This leading eigenvalue will be also denoted by A;, but it
differs from the leading Floquet multiplier of O,. To \; there corresponds a positive
eigenfunction vy (different from the previous v1). Hence for r = ¢, C. = Rqy and
C, = Ru;. The local stable manifold W§ . (Py, qo) of Py at qo is a C'-submanifold
of qo +Y with codimension 1, and a C'-submanifold of C' with codimension 2. We
have the tangent space T, ) W; . (Py,q) = Cs at qo in go + Y.

Recall that there exist periodic solutions z' : R — R and 27! : R — R of Eq. (1.1)
oscillating slowly about & and £_; with ranges in (0,&) and ({_9,0), respectively,
so that the ranges z'(R) and 27! (R) are maximal in the sense that z!'(R) D z(R)
for all periodic solutions z oscillating slowly about & with ranges in (0,&); and
analogously for z7!. We do not know whether the corresponding periodic orbits, O,

and O_q, are hyperbolic or not.
Proposition 3.6. For both periodic orbits O and O_,, dimC, = 1.

Proof. We give a proof for O;. As O; has a Floquet multiplier \; > 1, it is clear
that dim C,, > 1.

Let W denote the local stable manifold W . (Py,z}) if Op is hyperbolic, and
let W be the local center-stable manifold Wi¢, (Py, ) otherwise. Then W is a C'-
submanifold of z{+Y with TV = C; it Oy 1s hyperbolic, and with T, W = Cs®RE
if O; is nonhyperbolic.

By Theorem B, there exists n € W*(O,) so that 2} — O; as t — co. Then
Proposition 3.4 guarantees the existence of a sequence (t,),~, in R with ¢,, — oo as
n — oo such that =} € W\ {z{} for all n > 0 and z] — z§ as n — oo.

We introduce the notation y” : R — R, n > 0, for the function obtained from
2" by time shift so that yj = x7 . Then y" (t) — z'(t) as n — oo for all t € R
by the continuity of the flow ®4. Since z" is a bounded solution of Eq. (1.1), the
solutions y" are uniformly bounded on R, and Eq.(1.1) gives a uniform bound
for their derivatives. By applying the Arzela—Ascoli theorem successively on the
intervals [—j, j], 7 > 1, we obtain strictly increasing maps x; : N - N, 1 < j € N, so
that for every integer j > 1, the subsequence (yXlO‘“OXJ'(k))z:O converges uniformly on
[—7,7]- By diagonalization, set x (k) = x10...0x% (k) and consider the subsequence
(Y™ ) ey = (yX(""))ZO:O. Then y™ — x' as k — oo uniformly on all compact subsets
of R.
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Define

k(1) — 1 t
zk(t):y‘u z (1) for all k > 0 and ¢t € R.
21 1H

tng, L0
Then z*, k > 0, satisfies the equation ¥ (t) = —2% (t) + ay, (t) 2F (t — 1) on R, where

the coefficient function ay is defined by

1
ak:RBtH/ fr(sy™(t—1)+(1—-s)z'(t—1))dseR", k>0.
0

Note that there are constants a; > «a¢ > 0 independent of k and t such that
ap < ag(t) < aq for all k£ > 0 and ¢t € R, moreover, ay — a as k — oo uniformly on

compact subsets of R, where
a:Rat— f (a2 (t—1)) e RT.

In addition, observe that for all k > 0 and ¢t € R, zF # 0 because yi* = x?nk # x} and
the flow ® 4 is injective. Hence V' (zf) is defined and equals 2 for all k > 0 and t € R
by Proposition 8.3 in |8]. Lemma 2.6 then implies the existence of a continuously
ZO of (zk)zozo such that
M — 2 and 2% — % as k — oo uniformly on compact subsets of R, moreover

differentiable function z : R — R and a subsequence (z’”)

(3.6) Zt)=—z({t)+a(t)z(t—1)

for all real ¢.
We claim that z, # 0 and

Cs, if O, is hyperbolic,

20 € TaW = .
0 Cs ® RE, otherwise.

Consider the map w = w, if O; is hyperbolic, and the map w = w,. otherwise.

Choose x' € TaW, | > 0, with x' — 0 as | — oo so that Ty, = zp+ X+ w ()
)

for all [ > 0. Then

2o = lim z5' = lim ———— = lim
l—o00

As zg is the limit of unit vectors, it is clearly nontrivial. Dw (6) = (0 implies that

limy o0 w (X') / Hle =0 and thus
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and

We obtain that

X o) x|V w (x')
I +w DI XX +w OO X+ w OO
! 1 v
20 1 0

as | — oo. Then the limit lim/_, x'/ ||x'|| necessarily exists too, and

! l I
+ w
zozlimxl—ul)zlileeTx1WCY
oo X +w O oo IX]

Since V/ (z§l> = 2 for all [ > 0, the lower-semicontinuity of V' proved in Lemma

2.2 implies that V (z) < liminf; ;. V (zé”) = 2. Recall that 2§ € C. also belongs
to V=1 ({0,2}), moreover, &} ¢ Y. Thus @} and 2, are linearly independent elements
of (Cs® C.) NV~1({0,2}). In consequence, result (3.3) gives that C, is at most
one-dimensional.

The proof is analogous for O_;. O

The previous result implies that if Oy, k € {—1,1}, is hyperbolic, then the lo-
cal stable manifold W;,. (Py,zf) of Py at xf is a C'-submanifold of zf + Y with
codimension 1 and with tangent space T,x Wy, (Py,zf) = Cy at zf. Itis a C'-
submanifold of C' with codimension 2.

Similarly, if Oy, k € {—1,1}, is nonhyperbolic, then the local center-stable mani-
fold Wie, (Py, xf) of Py at zf is a C'-submanifold of zff +Y with codimension 1 and

with tangent space Tox Wi, (Py,zf) = Cy @ RE at af. It is also a C'-submanifold

of C' with codimension 2.

Remark 3.7. We see from the proof of Proposition 3.6 that for r = 2%, k € {-1,1},
C,,,< admits at least three linearly independent elements: v, € C,, ik € C,. and
2o € Cs @ C.. As C,,, is at most three-dimensional by (3.3), we conclude that
dim C,
obvious that the dimension of C,,
two Floquet-multipliers outside the unit circle. These observations are in accordance
with the recent result [15] of Mallet-Paret and Nussbaum stating that dim C,,, . = 3

in more general situations.

u< = 3. A similar reasoning confirms the same equality for r = ¢. It is

< is maximal also in the case r = p, as O, has

M<
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4. THE PROOF OF THEOREM 1.1

Note that each ¢ in the unstable set W" (O,) arises in the form ¢ = @ (¢,1),
where 1 € W _(Py,po) and t > 1. Indeed,

(3.5) W (0,) = @ ([0,00) x Wi (Py,70)) ,
and from each v € W} (Py, po) we can start a backward trajectory (77/)")(100 of Py in
Wi (Py, po) converging to py as n — —oo. As the first part of the proof of Theorem
1.1, we are going to show in Proposition 4.1 that for all t > 1 and ¢ € W} (Py, po),
¢ = P (t,7) belongs to a subset Wy, . of W*(O,) that is a three-dimensional
submanifold of C. This implies that W" (0,) is an immersed submanifold of C.
The proof of Proposition 4.1 is based on (3.5), the differentiability of ®| «)xc and
the injectivity of Dy® (¢, ) for ¢t > 0.

However, it does not follow immediately that W*" (O,) is an embedded C*-submanifold
of C. We also need to show for any ¢ € W*(O,) the existence of a ball B in C
centered at ¢ such that

(4.1) WY (0,) N B =W,y N B.

To do this, we will give a sequence of further auxiliary results right after Proposition
4.1. We will introduce a projection 3 from C' into R?, and use the special properties
of the Lyapunov functional V' to show that 75 is injective on W* (O, and on the
tangent spaces of Wy, .. These results will easily imply (4.1).

Afterwards we offer a smooth global graph representation for W* (O,) in order to
indicate the simplicity of its structure. The smoothness of the sets C*,, C§ and C%
then follows at once because they are open subsets of W* (O,,). At last we show that
the semiflow induced by the solution operator ® extends to a C*-flow on W* (O,)).
This property will be applied later in the proof of Theorem 1.2.

Proposition 4.1. To each v € W (Py,po) and t > 1, there corresponds an € =
e(,t) € (0,t — 1) so that the subset

Wtﬂ/’ﬁ = ((t - €7t + 8) X (Wluoc (PY7p0) NnB (W 5)))
of W*(O,) is a three-dimensional C*-submanifold of C.

Proof. 1t is clear from (3.5) that W, , . defined as above is a subset of W* (O,) for
alle € (0,t—1).
Consider the three-dimensional C'-submanifold (1,00) x W _(Py,po) of R x C

and the continuously differentiable map

Y (1,00) X W (Py,po) 2 (s,0) = @ (s,0) € C.

925



It suffices to show by Proposition 2.8 that for all v € W (Py,po) and t > 1, the
derivative DY (t,1)) is injective on the tangent space T(y ) ((1,00) x W, (Py,po)) =
R x TyuWi. (Py,po). This space is spanned by the tangent vectors of the following

curves at 0:
(—1,1) 38— (t+s,9) and (=1,1)2 s+ (t,v(s)), i€ {1,2},

where
v (=1,1) = W (Py,po) is a C'-curve,
v (0) = ¢ and D~; (0) =n; for both ¢ € {1,2},
with 7; and 7, forming a basis of the two-dimensional tangent space T, W}, (Py, po)-
Asm €Y, m € Yandy ¢ Y by Proposition 3.3, the vectors 7, 1, and v are linearly
independent. Clearly,
S84 5,0) oo = B (15,0 oo = D1 (1,0) 1 = 2 = Dy (1)

and

d

%E (87 (8)) ls=0 = - @ (.7 (5)) s=o = D2@ (£, 9) mi, i€ {1,2}.

As Dy® (t,¢) : C — C is injective (see Section 2) and n, 7o and ¥ are linearly
independent, we deduce that the range DX (¢,¢) (R x TyW}. (Py,po)) is three-
dimensional, and thus DX (t,) is injective. O

Next we characterize W" (O,) and its tangent vectors in terms of oscillation fre-

quencies.

Proposition 4.2. For all o € W* (O,) and ¢p € W* (O,,) with ¢ # ¢, V (¢ — ¢) <
2.

Proof. We distinguish three cases:

(i) both ¢ € O, and ¢ € O,;

(ii) ¢ € O, and ¢ € W* (O,) \ O,, (or vice verse);

(ili) both ¢ € W*(O,) \ O, and p € W* (O,) \ O, .

Let w > 1 denote the minimal period of p. It is easy to deduce from Proposition
2.5 that

(4.2) V(pr —ps) =2forall 7 € [0,w) and o € [0,w) with T # 0.

Hence the statement holds in case (i).

Case (ii). By definition, there exist o € [0,w) and (¢,);” C R so that ¢, — —oc0
and xff — po as n — 00. As zj € O, for all n > 0, we may also assume by
compactness that z{ — p. as n — oo for some 7 € [0,w). As the C-norm and
Cl-norm are equivalent on the global attractor, xffn — py and ] — p; as n — o0

also in C''-norm.
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By Lemma 2.3 (iii) and property (4.2), p, —p. € Rfor all 7 € [0,w) and 0 € [0,w)
with 7 # 0. Hence if 0 # 7, then Lemma 2.2 implies that

2=V (py —pr) = lim V(azi—xfn)

n—oo

By the monotonicity of V' we conclude that V' (:Uf’ — :Bf) < 2forallrealt. If o = T,

then for all € > 0 small, 0 +¢ # 7 and xff:ﬁg — Pore as N — 00 both in C-norm and

Cl-norm. Therefore by Lemma 2.2 and by our previous reasoning,

1% (xf - xf) < liminf V' (xfjrg — xf) <2

e—0+

for all t € R. In particular, V (¢ — ¢) < 2.

We omit the proof of case (iii), as it is analogous to the one given for (ii). U

As it is stated in the next proposition, the tangent vectors of W* (O,) have at

most two sign changes. This result is a direct consequence of Proposition 4.2.

Proposition 4.3. Assume o € W*(0,), v : (—1,1) — C is a C'-curve with
7(0) = ¢, and (s,)," is a sequence in (—1,1)\ {0} so that s, — 0 as n — oo and
v (8,) € W (O,) for all n > 0. Also assume that v (0) # 0. Then V (7' (0)) < 2.

Proof. By Proposition 4.2,
Sn

for all sufficiently large n > 0 (for all n with v (s,,) # 7 (0)). Since (v (s,) — 7 (0)) /sn —
~'(0) in C' as n — oo, the statement follows from the lower semi-continuity property
of V presented by Lemma 2.2. ([l

In order to get more information on the unstable set W* (O,), we project it into

the three-dimensional Euclidean space. Introduce the linear map

m3:C 290 (¢(0),¢0(-1),Z(p) € R,
where Z (p) = f81 ¢ (s)ds. The next statement can be obtained also from Proposi-
tion 4.2.

Proposition 4.4. 73 is injective on W" (O,).

Proof. Suppose that there exist ¢ € W* (0,) and ¢ € W*(O,) so that ¢ # ¢ and
T3¢ = m31p. Consider the solutions z# : R — R and 2% : R — R of Eq. (1.1). The
segments z¥ and ! belong to W (O,), and the injectivity of the semiflow ® implies
that 2¥ # 2 for all t € R. Hence V (xf - x;ﬁ) < 2 for all t € R by Proposition 4.2.
Since ¢ (0) — ¥ (0) = ¢ (—=1) — 1 (—1) = 0, Lemma 2.3 (ii) gives that

Vip-1) <V (2% -a%,) <2,
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that is V (p —¢) =0 and ¢ < ¢ or ¢» < ¢. Using Z (¢) = Z (¢) we conclude that

¢ = 1, which contradicts our initial assumption. O

We also need to know how 73 acts on the tangent vectors of W* (O,) .

Proposition 4.5. If v : (—1,1) — C is a C'-curve with range in W* (O,) and
7' (0) # 0, then w3y (0) # (0,0,0).

Proof. Lety : (—1,1) — C be a C'-curve with range in W* (0, and with » (0) # 0.
Let z : R — R be the unique solution of Eq. (1.1) with zo = v (0) € W*(O,), and
seta:R>t— f(x(t—1)) € RT.

1. We claim that the problem

y)=—-yt)+alt)yt—-1), tekR,
Yo =" (0)
has a unique solution y : R — R.

Fix a sequence (s,)°°, in (—1,1)\ {0} with s,, — 0 as n — co. As ' (0) # 0, we
may assume that 7 (s,) # 7 (0) for all n > 0. Consider the solutions 2" = () :
R — R. Then 2z} € W*(0O,) for all n > 0 and ¢t € R, furthermore z" (t) — z (¢)
as n — oo for all ¢ € R by the continuity of the flow ® 4. Since all their segments
belong to the bounded global attractor, the solutions 2" are uniformly bounded on
R, and Eq. (1.1) gives a uniform bound for their derivatives. Therefore by applying
the Arzela—Ascoli theorem successively on the intervals [—7, j|, 7 > 1, and by using
a diagonalization process, we obtain that (z") ", has a subsequence (z"*);”, such
that the convergence x™ — x is uniform on all compact subsets of R. Set

yk (t) _ " (2 —Z (t)

for all K > 0 and t € R.

k

Then for all k > 0 and t € R, yF # 0 by the injectivity of the flow ® 4, and
V(yf) < 2 by Proposition 4.2. In addition, y*, & > 0, satisfies the equation
gF (t) = —y* (t) + ax () y* (t — 1) on R, where

1
ak:RBtH/f/(sx”’f(t—l)—i-(l—s)x(t—l))dsER+, k> 0.
0

It is clear that there are constants oy > ag > 0 independent of k and ¢ such that

ag < ag (t) < ap forall k > 0 and ¢t € R. Also note that ay — a as k — oo uniformly

on compact subsets of R. Therefore by Lemma 2.6, there exist a continuously
(o) k oo

1o Of (y )k:o such that

y* — y and " — 9 as k — oo uniformly on compact subsets of R, moreover

(4.3) g(t)=—yt)+a(t)y(t—1)

differentiable function y : R — R and a subsequence (ykl)
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for all real ¢. It is clear from the construction that

Ty Y (Sn > —7(0)
Yo = lim o =10 i i ='(0).

l—o00 S”kl l—00 S"’“l

The uniqueness of y is guaranteed by Proposition 2.1.

2. Next we claim that (—1,1) 5 s — ® 4 (—2,7(s)) is differentiable at s = 0, and
d
1. 24 (—=2,7(5)) [s=0 = y—2-

If this is not true, then there exists a sequence (s,),~,in (—1,1)\ {0} with s, — 0
as n — oo such that for all n > 0,

Dy <_2> Y (Sn)) — Dy (_27 Y (0)>

Sn

remains outside a fixed neighborhood of y_5 in C. So to verify the claim, it suffices
to show that any sequence (s,), ., in (—=1,1)\ {0} with s, — 0 as n — oo admits a
subsequence (s,,);~, for which

@A (_27 Y (Snz)) — (DA (_27 Y (0))

Sn

— 1y o asl— .
)

Indeed, by repeating the reasoning in the first part of the proof word by word, one
can show that the sequence (2)°°, formed by the solutions 2" = 27¢n) : R — R,
n > 0, has a subsequence (z™);°, such that (z™ — x) /s,, — y as | — oo uniformly

on compact subsets of R. In particular,

T

Y o= lim — lim (I)A (_2’7(5711)) — (I)A (_27’7(0))'

l—o0 Sn, l—o0 Sn

l

3. So y_o is a tangent vector of W*(0,) at x_y, and thus V (y_3) < 2 by
Proposition 4.3.

4. To prove the assertion indirectly, suppose that

7 (0)(0) =~ (0)(=1) =Z(v'(0)) =
Then as y (0) =7 (0) (0) = 0 and y (=1) =~ (0) (1) = 0, V.(v/(0)) < V' (y-2) <2
by Lemma 2.3 (ii). So V (¢/(0)) = 0, that is v/ (0) 2 0 or v/ (0) < 0. As we have
also assumed that Z (7' (0)) = 0, necessarily 4 (0) = 0 follows, a contradiction. The

proof is complete. 0
Now we can verify Theorem 1.1.

Proof of Theorem 1.1.

1.The proof of the assertion that W* (0,) is a three-dimensional C*-submanifold
of C. All p € W"(O,) can be written in form ¢ = & (¢,¢), where ¢ > 1 and
v € W (Py,po). This property follows from relation (3.5) and the fact that to
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each 1 € Wi_ (Py, po), there corresponds a trajectory (") __ of Py in W}, (Py, po)
with ¢° = ¢ and ¢™ — py as n — —oo. Hence Proposition 4.1 guarantees the

existence of € > 0 so that the subset
Wipe =@ ((t —&,t+¢) x Wi (Py,p0) N B (¥,¢)))

of W*(0,) containing ¢ is a three-dimensional C''-submanifold of C.

To show that W* (0,) is a three-dimensional C*-submanifold of C, it suffices to
exclude for all t > 1 and ¢ € W} (Py,po) the existence of a sequence (¢")>~,
in W*(O,) so that o™ ¢ W,,. for n > 0 and 9" — ¢ = ®(t,¢) as n — .
According to Proposition 4.5, D7 (p) = 73 is injective on the three-dimensional
tangent space T,,W, ., i.e. it defines an isomorphism from 7,W, ;, . onto R*. Thus
the inverse mapping theorem yields a constant 6 > 0 such that the restriction of 3
to Wiy N B (p,0) is a diffeomorphism from W, . N B (¢, d) onto an open set U in
R®. If a sequence (")~ in W* (O,) converges to ¢ as n — 0o, then m3p" — 3¢ as
n — oo, and 3" € U for all sufficiently large n. The injectivity of 73 on W* (O,)
verified in Proposition 4.4 then implies that ¢" € Wy ..

2. Graph representation for W*(0O,). Choose ¢; € C such that msp; = e;,
Jj €{1,2,3}, where e; = (1,0,0), es = (0,1,0) and e3 = (0,0, 1). This is possible as
m3:C 30— (9(0),p(=1),Z(p)) € R? is injective on the 3-dimensional tangent
spaces of W*(O,), and hence it is surjective. Clearly ¢;, o and 3 are linearly
independent.

Let J3 : R® — C be the injective linear map for which Jze; = p;, j € {1,2,3},
and let P3 = J3 oms. Then Ps; : C' — C' is continuous, linear and Psp; = ¢; for all
Jj € {1,2,3}. In consequence, Py o P; = P3, which means that P is a projection.
The space

G3 = P3C = {c1pp1 + copa + 303 1 €1,C9,c3 € R}
is 3-dimensional, and with E = P; ' (0), we have C' = G3 ® E. As the restriction of
P; to W¥(0O,) is injective, the inverse P; ' of the map W*(O,) 3 ¢ — Pyp € G
exists. At last, introduce the map

w: W' (O,) > x s (id— P3)o Py (x) € E.

Then
W (Op) ={x+w(x): x € W (Op)}.

It remains to show that Us = PsW*(0,) is open in G3 and w is C'-smooth.
Let x € PsW*(0O,) be arbitrary. Then x = P3¢ with some ¢ € W*(0O,). As the
restriction of w3 to T,V (O,) is injective, DP; (p) = P5 defines an isomorphism
from T,W (O,) to G3. Consequently the inverse mapping theorem implies that an

e > 0 can be given such that P; maps W (O,) N B (g, <) one-to-one onto an open
neighborhood U C Us of x in Gs, Ps is invertible on W (O,) N B (¢, ¢), and the
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inverse P; ! of the map
W(O,)NB(p,e)dp—Ppel
is Cl-smooth. As
w(x) = (id = Ps) o Py (x) = (id—P:s)Op:;l(X)

for all x € U, the restriction of w to U is C'-smooth.

3. The characterization of C3, j € {-2,0,2}. Since the basin of attraction
of a stable equilibrium is open in C| the connecting set C}’, Jj € {—2,0,2}, is an
open subset of W* (O,). Tt follows immediately that C7, j € {—2,0,2}, is a three-

dimensional C'-submanifold of C' and
C;': {X+w(x) DX € PgC’f}

for all j € {—2,0,2}. O

As W*(0,) is a C'-submanifold of C, it makes sense to investigate the differen-
tiability of the map

(I)Wu(()p) R x WY (Op) = (t, 30) — Py (t, QO) e w (Op) .

Suppose that n; 7o and 73 form a basis of the three-dimensional tangent space
TV (O,) of W*(O,) at some ¢ € W*(O,). Then for all t € R, the tangent space
Tit,p) (R x W*(O,)) of R x W*(O,) at (t, ) is spanned by the tangent vectors of
the following curves at 0:

(—L,1)>s—= (t+s,9) and (—1,1)> s+ (t,7(s)), i€ {1,2,3},

where ;1 (=1,1) = W*(0,) is a C'-curve with v; (0) = ¢ and D~; (0) = n; for all
i€ {1,2,3}.
We are going to apply the following assertion in the proof of Theorem 1.2.(i).

Proposition 4.6. The flow ®yyu(o,) is C-smooth. For allt € R and ¢ € W*(O,),

d .
(44) E(I)Wu(op) (t + S, 90) ‘s:(] = xf
For all o € W*(O,,) and n € T, W (O,), the variational equation
(2.2) 0(t) =—v(t)+ ff (@ (t—=1)v(t—1)

has a unique solution v : R — R with vj =n. Ift e R and v : (—1,1) = W"(O,)
is a C-curve with v (0) = ¢ and v/ (0) =1, then
d

(4.5) By, (7 (5)) om0 = .
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Proof. 1. To prove the smoothness of ®yyu(o,), it is sufficient to show that for all
t € R, the map

(4.6) (t,00) X W*(Op) 3 (s,0) = Pu(s,0) € W (Op)

is continuously differentiable.
Let t € R be given, and introduce the map

At : Wu (Op) > Y = q).A <t790> € WU (Op) .

For t > 0, A, is clearly C'-smooth as ® (¢, ) is C'-smooth and maps W* (O,) into
W*(0O,). For t <0, the smoothness of A; follows from the smoothness of the map
® (—t,-), the injectivity of its derivative, the inclusion ® (—t, W"(0,)) C W*(O,)
and the inverse mapping theorem.

For all (s, ) € (t,00) x W*(O,),

Du(s,0)=P(s+1—t,Pyu(t—1,0)=P(s+1—1t,A1(p)).
So the C'-smoothness of the maps P|(1,00)xc and
(t,00) x W*(O,) 3 (s,) = (s+1—t, A1 (p)) € (1,00) x C

guarantee that (4.6) is also continuously differentiable.

2. Relation (4.4) is already known for ¢ > 1. It can be easily obtained for ¢t < 1
from the definition of the Fréchet derivative.

3. We already now that initial value problems corresponding to the variational
equation (2.2) have unique solutions in forward time, moreover relation (4.5) holds
for ¢t > 0.

Fix ¢ < 0. Note that if v : (=1,1) = W"(0O,) is a C'-curve with v (0) = ¢ and

7' (0) =n, then
d

L dweon (t,7(5)) ls=0 = DA; (¢) 0.

By part 1, the map A, is a C'-diffeomorphism with the inverse A;' = A_,. Hence
for all n € T W (0,), x = DA; (¢)n exists and belongs to T , (1) W" (Op). Then

n=[DA ()] x = DA (R4 (t,9) x = DA (®a(t,9)) X
= Dy® (_ta P4 (t7 (P)) X = uitv
where uX : [—1,00) — R is the solution of
i (s)=—u(s)+ f (22409 (s = 1)) u (s — 1)
— u(s)+ @ (s — 1) uls— 1)
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with uj = y. With transformation v (s) = u (s — ¢) we obtain that the problem

0(s) =—v(s)+ [ (2% (s —1)v(s—1)

Vo =1

(4.7)

has a solution v” on [t — 1,00) satisfying v,/ = x = DA; (p)n. As this reasoning
holds for any t < 0, we deduce — using Proposition 2.1 — that (4.7) admits a unique
solution v : R — R with vy = DA; (p) n for any ¢ < 0. This completes the proof of
(4.5) for all t € R. O

The formula (4.5) plays a key role in the proof of the subsequent corollary.
Corollary 4.7. For each fizred t € R, the derivative of the map
at any ¢ € W"(O,) is injective on T, W (O,).
Proof. Suppose there exist ¢ € R, p € W* (0,) and € T,W" (0,) with 1 # 0 such
that DA, (¢)n = 0. By the previous proposition, DA, (¢)n = v, where v7 : R — R
is the solution of (2.2) with v = 1. So we assume that v} = 0. Then the function
u : R — R defined by u(s) = v"(t+s), s € R, is a nontrivial solution of the

equation
i(s) = —u(s) + f (#2@D (s ~ 1) ) u(s = 1)

with uo = 0. This implies a contradiction to Proposition 2.1. O

5. THE PROOF OF THEOREM 1.2

Fix index & € {—1,1} in the rest of the paper and consider the sets C?, C} and
Spk=Cru0,ucr.

5.1 Preliminary results on Sy

In this subsection we define a projection my from C into R? and show that
is injective on the closure Sj, of S in C, see Proposition 5.4. The proof of this
assertion is based on the special properties of the discrete Lyapunov functional V.
The injectivity of my|g- enables us to give a graph representation for Sy (without
smoothness properties): there is an isomorphism Jy : R? — C such that P, =
Jyomy : C'— (' is a projection onto a two-dimensional subspace Gy of C, and a
map wy, : P,S, — P (0) can be defined such that

Se={x+we(x): x € Sk},

see Proposition 5.5. The differentiability of w; and the properties of its domain
P,Sp C G4 are studied only in Subsections 5.3 and 5.5. We also show at the end of
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this subsection that 7|5~ is a homeomorphism onto its image (see Proposition 5.6),
moreover o maps the nonzero tangent vectors of S_k to nonzero vectors in R? (see
Proposition 5.7).

Clearly, S, is invariant under ® 4. Then it easily follows that S}, is invariant too.
Indeed, let € S, \ Sk be arbitrary and choose a sequence (¢,)-, in Sy converging
to ¢ as n — oo. As the global attractor A is closed, ¢ € A. By the continuity of
the flow @4 on R x A, S 3 2" — zf as n — oo for all t € R, which means that
S is invariant under @ 4.

By Theorem B,

(1.2) Sk ={p € W*(0O,) : z¥ oscillates about &} .

Note that if ¥ is nonoscillatory about & for some ¢ € C (i.e. there exists T' > 0
so that % > &, or 22 < & ), then ¢ has an open neighborhood U, in C such that
for all ¢ € U, =¥ is nonoscillatory about . Hence it comes immediately from (1.2)
that for all ¢ € S, z¥ oscillates about &.

The next result states that the stable set of the unstable equilibrium fk contains
only nonordered elements with respect to the pointwise ordering. The proof follows

the first part of the proof of Proposition 3.1 in [10].

Proposition 5.1. There exist no ¢ € C and ¥ € C with ¢ < ¢ such that x] and

xff both converge to ék as t — oo.

Proof. Suppose that ¢ € C, p € C, ¢ < ¢ and both z}, mf converge to ék as
t — 0o. Then y := z¥ — x¥ is positive on [—1,00) by Proposition 2.4, it satisfies
y(t) = —y(t) + b (1) y(t — 1)

for all t > 0, where
1
b: [O,oo)atr—>/ frsz¥(t—1)+ (1 —s)a?(t—1))ds € (0,00),
0

furthermore b (t) — f' (&) as t — oo. Since f' (&) > 1 by hypothesis (H1), the
number € = (f' (&) — 1) e™!/2 is positive. So there exists 7' > 0 such that b (t) >
f' (&) — e for all t > T. Observe that the positivity of y and b implies that

d

dt( () = y(t—1)>0 forallt>D0.
For this reason, e'~ly (t — 1) < e'y (¢) for t > 1, and
g ) ==y @)+ (f (&) —e)y(t-1)

> —(Lt+ee)y(t)+ f(&)yt—1)
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for all ¢t > T + 1. The choice of € ensures that

1 1
l4ee= §+§f/(§k) < f1(&)-
Hence the equation

At (I+ee) = f (&) e
has a positive real solution A. Choose > 0 so that y(t) > ée* on [T, T + 1]. The

function z(t) = deM is a solution of the equation
) =—0+ee)z () + [ (&)z(—1)
on R. Set u =y — z. Then ur 1 > 0 and
w(t) > —(1+ee)u(t) + f (&) u(t —1) for all t > T + 1.

If there existed t* > T + 1 so that u(t*) = 0 and w is positive on [T, t*), then
% (t*) would be nonpositive. On the other hand, the inequality for v combined with
u(t*) =0 and u(t* —1) > 0 would yield that @ (t*) > 0. So u(t) = y(t) — 2(¢t) =
y(t) — de* > 0 for all t > T, which contradicts the boundedness of . O

The next proposition is the analogue of Proposition 3.1 in [10].

Proposition 5.2. (Nonordering of Sy) For all p,v € C with o < v, either p €
C\Sy or ¢ € C\S.

Proof. If there are ¢ € S, and 1; € S satisfying ¢ < 15, then by Proposition 2.4
and the invariance of Sy, p = xf € S, Y = xéﬁ € S and ¢ < . Theorem 4.1 in
Chapter 5 of [20] proves that there is an open and dense set of initial functions in
C_39 so that the corresponding solutions converge to equilibria. Hence there exist
¢* € C and ¢¥* € C with p < ¢* < 9" < 9 such that both a:f* and xf’ tend to
equilibria as t — oo.

If xf — é’ as t — 0o, where f is any equilibrium with & > &, then there exists
T > 0 such that ék < x? Then ék < :c# < :c? by Proposition 2.4, which implies a
contradiction to the fact that the elements of Sj, oscillate about &;. If a:ff’ — é < ék
as t — oo, and there exists T > 0 with 2z} < &, then rh <L 1h < &, which
contradicts ¢ € S;. Therefore, w (%) = {ék} . Similarly, w (¢*) = {ék} This is a

contradiction to Proposition 5.1.
Proposition 5.3. If ¢ € Sy, ¥ € S and ¢ # ¥, then V (1 — @) = 2.

Proof. It p,¢0 € Sy and ¢ # 9, then V (¢ — ) < 2 by Proposition 4.2. The
lower-semicontinuity of V' (see Lemma 2.2) hence implies that V (¢p —¢) < 2 for
all ¢ € Sy satisfying ¢ # . If V(¢ —¢) = 0, then ¢ < @ or ¢ < ¢, which

contradicts Proposition 5.2. 0
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The role of 73 in the proof of Theorem 1.1 is now taken over by the linear map
m:C 39 (p(0),9(-1)) € R

The next assertion is analogous to Proposition 4.4, and it will be used several times

in the subsequent proofs.
Proposition 5.4. m, is injective on Sj.

Proof. Suppose that there exist ¢ € S;, and ¢ € Sy, so that ¢ # 1 and T = m1).
Consider the solutions 2% : R — R and 2% : R — R. The invariance of S, implies
that =¥ € S, and xf € S for all t € R, and the the injectivity of the semiflow
guarantees that 27 # 2! for all t € R. Hence V (mf - xép) = 2 for all real t by
Proposition 5.3. The initial assumption ¢ (0) — ¢ (0) = ¢ (—1) — ¢ (—=1) = 0 and
Lemma 2.3 (ii) however yield that
Vie—1) <V (a2 —a%),
which is a contradiction. U

The injectivity of my|g- is sufficient to give a graph representation for Sk

Proposition 5.5. S;, has a global graph representation: there exist a projection Py
from C onto a two-dimensional subspace Gy of C and a map wy : P,Sy — Py (0)
so that

(5.1) Se={x+wr(x): x € PS5k} .

Proof. Let e; = (1,0,0) and e; = (0,1,0). Let 1 and ¢ be the linearly independent
elements of C' fixed in the proof of Theorem 1.1 with the property that w59, = e; for
7 € {1,2}. Define J, : R? — C to be the injective linear map for which J, (1,0) = ¢,
and J3 (0,1) = ¢, and set P, = Jyomy : C'— C. Then P, is continuous, linear and
Pyp; = ¢, for both j € {1,2}. Hence P, o P, = P,, and P is a projection. The

2-dimensional image space
Gy = PoC ={c101 + a2 : ¢1,c0 € R}
is a subspace of G5 and C' = G, ® P, ' (0). (Note that P, and Gy are both indepen-

dent of k.) As the restriction of P, to S}, is injective by Proposition 5.4, the inverse
(P2|§)_1 of the map Sj, 3 ¢ — Py € G, exists. With the map

wi s PS8, 3 x = (id = Py) o (Polg) ' (x) € Py (0)
we have (5.1). O

The smoothness of this representation will be verified later. Observe that

Wl p, (57087) = Wilpy(5Tns)-
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Also note that now we have a global graph representation for any subset W of Sj:
W={x+uwr(x): x€ RW}.

Let 72_1 D Ty (S_k) — C be the inverse of the injective map S 3 ¢ — mop € R2.

1

Proposition 5.6. 7, " is Lipschilz-conlinuous.

Proof. Suppose that 7, ' is not Lipschitz-continuous, i.e., there are sequences of
solutions 2" : R — R and 4" : R =+ R, n € N, so that zf # y{ for all n > 0,
a2, yr € Sy for all n > 0, and

|7 (25 — y0) |2

Hn n|| —0 asn— 0.
To — Yo

By the compactness of Si, the solutions 2" and y” are uniformly bounded, and
Eq. (1.1) gives a uniform bound for their derivatives. Therefore we can use the
Arzela—Ascoli theorem successively on the intervals [—j, j], 7 > 1, and apply a di-

agonalization process to get subsequences (z")*_,. (y™) ~_, and continuous func-

m=0
tions z : R — R, y : R — R so that 2™ — x and y"™ — y as m — oo uniformly on
compact subsets of R.
Set functions
a" () —y™ (t)
5™ = yo™ |
Then V (2{*) = 2 for all m > 0 and ¢ € R by Proposition 5.3, ||z{*|| = 1 for all
m > 0, and

2" Rt €eR, meN.

|7.‘-2 (‘,L‘g'm _ ygrn)
m =
e = gy

In addition, 2™ (t) = —2" (t) + am (t) 2™ (t — 1) for all m > 0 and t € R, where the

coeflicient functions

2
RE 50 asm — oo.

1
am:Ratr—)/f’(sx"m(t—1)+(1—s)y"m(t—1))ds€R+, m > 0,
0
converge to
1
a:R9t|—>/f’(sx(t—1)+(1—5)y(t—1))d5ER*
0

uniformly on compact subsets of R. It is also obvious that there are constants
ay > o > 0 such that oy < a,, (t) < oy for all m >0 and t € R.

Therefore Lemma 2.6 guarantees the existence of a subsequence (2™),2 of (2™).*

m=0

and a continuously differentiable function z : R — R such that 2™ — z and 2™ — 2

as | — oo uniformly on compact subsets of R, and z satisfies
Z(t)=—2(@{)+a(t)z(t—1) forallteR.

It is clear that ||2o]| = 1, and thus z # 0. In addition, m52p = (0,0).
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By Lemma 2.2,

V(z) < liminf V (") =2 for all real t.

I=o0
Hence Lemma 2.3 (ii) and property mzo = (0,0) together give that V' (z) = 0. As
t — V (2:) is monotone nonincreasing, V' (z3) = 0. Lemma 2.3 (iii) then implies that
z3 belongs to the function class R, and the second statement of Lemma 2.2 gives
that

0="V(z3) = lim V (25"),

l—o0

which contradicts V' (z5") = 2.

O

We get the next result as a consequence, it is analogous to Proposition 4.5.

Proposition 5.7. Suppose that ¢ € S, v : (=1,1) — C is a C'-curve with v (0) =
@, and (s,)y is a sequence in (—1,1)\ {0} so that s, — 0 asn — oo and 7 (s,) € Sk,
for allmn > 0. If v/ (0) # 0, then 7y (0) # (0,0).

Proof. Let K > 0 be a Lipschitz-constant for 7, . Proposition 5.6 guarantees that
such K exists. Then

7Y (8n) — m2y (0)
Sn R2

‘7(%)—7(0)” <K

Sn

for all n > 0. Letting n — oo we obtain that ||y (0)|| < K |m27’ (0)|ge. Therefore if
4 (0) # 0, then w7y (0) # (0,0). O

5.2 The structure of S

It is obvious from the definition of S;, that (O, U S, UO,) C Si. The equality
S =0 US, U O, is proved in this subsection based on the property that m, maps
Sy injectively into R?. Then it will follow easily that C’_g = 0, UCl U0, and
C?=0,UC?U0O,.

Proposition 5.4 implies that 75 maps periodic orbits with segments in S into
simple closed curves in R?, and the images of different periodic orbits are disjoint
curves in R?. Lemma 5.7 of [17] guarantees the same properties for all periodic
orbits. So

RSt mp € RE Rt myq € R
and
R >t mr’ € R?

are pairwise disjoint simple closed curves.
It comes from Proposition 7.3 of [17] that if a periodic solution r : R — R
oscillates about an equilibrium &, then m¢ € int (15,0,), where O, = {r; : t € R}.

If two periodic solutions 1 : R — R and ry : R — R oscillate about an equilibrium
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é, then necessarily mO,, C int (120,,) or m0,, C int (m0,,). These observations
imply the subsequent results. Since p oscillates about 0, and 2* oscillates about fk,
we have 7,0 € int (m20,) and ngk € int (mOy). Note that as either the minimum
of p is smaller than the minimum of z* or the maximum of p is greater than the
maximum of z*, it is impossible that m0, C int (m2O). As both p and z* oscillate
about &, we obtain that m,0, C int (1,0,). From p(R) C ¢ (R) it follows that
10, C int (120,). As ¢ (R) C (£-9,&), it is clear that Wgé_g and 7@52 belong to
ext (m,0,). See Fig. 6.
Let
A} = ext (mOy) Nint (m20,), AP = ext (m20,) Nint (120,)
and
A, = ext (m20%) Nint (m20,) ,

see I'ig. 6. Then by the Schonflies theorem [19], A}, AP and Ay, are homeomorphic
to the open annulus A1 = {u € R?: 1 < |u| < 2}. For the closures A?, A? and

Apq of A7, AP and Ay, in R?, respectively, we have
AP = A Um0, Um0, A= AP Um0, Um0,

and
Ak’,q = A]ﬁq U WzOk U 7T20q.

Observe that for all ¢ € CP, myp € AP because t > mx{ is continuous, mzy —
10, as t — —o0, mry — mO, as t — oo, O, U Cf; U, C Sk, and my is injective
on Si. For the same reason, mC? C A?. Then it is clear that m,C} = m,CF C AP
and mC? = 1,C? C AP, As O, € CP N C?, we conclude that

m0, C (C’_gﬂC’_,f) C WQC_gﬁ@C’_lf - A_{;mA_ﬁ =m0y,
that is, m,0), = mo (C'_,f N C_,’j> The injectivity of m, on Si then implies that
(5.2) 0, =CPnC?.
We also obtain from m,C? C AP and mCy C A} that
TSk = mCy Um0, UmyCl C A} Um0, U AL = Ay,

and hence 1S, = mS), C A_;w. Note that this means that ék ¢ S
It has been already verified that for all ¢ € S, 2% oscillates about &;,. We claim
that this oscillation is slow.

Proposition 5.8. V <<p — fk> =2 for all p € S;,.
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FIGURE 6. The images of the equilibria and the periodic orbits under
7o, and the definitions of the open sets A7, AP and Ay .

Proof. 1. First we prove the assertion for the elements of Siy. Choose an arbitrary
element ¢ € Sy and a sequence (t,), -, with ¢, — —oo as n — oo such that z{ — po
as n — oo. As the C-norm and C'-norm are equivalent on the global attractor,
xy — po as n — 0o also in Cl-norm. Note that p is slowly oscillatory about & (see
Proposition 8.2 in [8]), i.e., V (pt — fk) = 2 for all real t. Hence Lemma 2.3.(iii)

~

gives that py — & € R, and Lemma 2.2 implies that
2:V(p0—€k) = lim V(mfn —ék).
n—oo
Then by the monotonicity of V' (see Lemma 2.3.(1)), V (mf — ék> <2forallt eR.

v (gp - fk) =0 and ¢ < &, or ¢ > &, then 2§ < &, or 2f > & by Proposition
2.4, which contradicts the fact that x¥ oscillates about &;.

2. Now choose any ¢ € S; and fix a sequence (p,)o—, in S with ¢, — ¢ as
n — oco. Since & ¢ S, V (gp — ék) is defined. The lower semi-continuity of V'

(see Lemma 2.2) and part 1 yield that V' (gp — fk) < liminf, oV <gpn - fk> = 2.
Observe that assumption V' (gp — fk> = 0 would lead to a contradiction just as in
the previous step. So V' (cp — fk> =2forall p €S}, O
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Now we are ready to confirm the equalities regarding C_,f, C_g and S in Theorem
1.2.(ii).

Proposition 5.9. S, = 0, US, U0, = O, UC, UO,UCPUO,.

Proof. Let us fix k = 1. Tt is clear from the definition of S; that (O, UQO,) C S,
and thus we only need to verify the inclusion S\ S; € (O; UQ,). Let ¢ € S;\ S,
be arbitrary.

It is an immediate consequence of the oscillation of 2¥ about & that ¢ ¢ W* (O,),
otherwise ¢ would also belong to Sy by (1.2). It is also obvious that ¢ ¢ A_o,.
There are two possibilities by Theorem B: either ¢ € W*(O,) = O,UC?, U ] or
¢ € Apgz. The solution z¥ cannot converge to any of the equilibria é_g, 52 because
it oscillates about &. So if ¢ € (5_1\51) NW"(O,), then necessarily ¢ € O,. It
remains to show that the relation ¢ € (S_l\ Sl) N Apo implies that ¢ € O;.

Ay is a compact and invariant subset of C, hence ¢ € Ag o implies that z; € Ago
for all real ¢, moreover a (2¥) and w () are also subsets of Ago. On the other hand,
S is also compact and invariant, so a (2%) Uw (¢) C Sy, and V (@/} — fl> = 2 for all
Y € a(x¥) Uw (p) by the previous proposition. The Poincaré-Bendixson Theorem
(see Section 2) then implies that w (¢) is either a periodic orbit in Ag 5 oscillating
slowly about &;, or for each ¥ € w(yp), « ($¢) =w) = {51} Asg there are no

homoclinic orbits to & (see Proposition 3.1 in [7]), w (@) = {él} in the latter case.

Similarly, a (z¥) is either {fl} or a periodic orbit in Ay, oscillating slowly about
ST

Recall that z! is defined so that the range z'(R) is maximal in the sense that
' (R) D r(R) for all periodic solutions r oscillating slowly about &; with range in
(0,&). Soif r : R — R is a periodic solution with segments in « (z¥) Uw (), then
mory € T Uint (moO;) for all t € R. Recall that Wzél also belongs to int (m2O).
Hence

Ty (e (z¥) Uw (¢)) C mO; Uint (m04) .

On the other hand,
T (o () Uw (¢)) C mS; € Ay, C R?\ int (m0y).

It follows that my (a (z¥) Uw (¢)) C mO; and thus o (z¥) = w(p) = Op. If z¥
is not the time translation of z!, then this is only possible if the curve t — mozf
is self-intersecting, which contradicts the injectivity of 7o on S;. Hence relation
Y E (?1 \ 81) N Ap 2 implies that ¢ € O;.

We have verified that each ¢ € S_l\ Si1 belongs to O U O, that is

S =0,UCTUO,UCPUO,.
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Handling the case k = —1 is completely analogous. 0
Corollary 5.10. S_1NS; = O,UC*UO,, CcP = 0,uCruO, and C? = O,UCYUO.

Proof. The first equality follows immediately from Proposition 5.9. The second and
third equalities come from

0,UC’ U0, CCHCS,=0,UClUO,UCrUOQO,,
O,UCIUO, CCLC S =0,UCrUO0,UCPUO,
and (5.2). O

5.8 The smoothness of C¥ and CY

Suppose 7 is one of the periodic solutions ¢ or z* with minimal period w > 1, and
let C? be the heteroclinic connection from O, to O, = {r, : t € R}.

Next we confirm that C? is a C'-submanifold of W* (0O,). First we verify that
W (0,) intersects transversally a local stable or a local center-stable manifold of a
Poincaré map at a point of O,. It follows that the intersection is a one-dimensional
C*-submanifold of W* (O,). Then we apply the injectivity of the derivative of the
flow induced by the solution operator on W* (O,) (see Proposition 4.6 and Corollary
4.7) to confirm that each point ¢ in C? belongs to a “small” subset W,, of C? that is
a two-dimensional C'-submanifold of W* (0,). This means that C? is an immersed
C'-submanifold of W* (0,). In order to prove that C? is embedded in W* (0,), we
have to show that for any ¢ in C?, there is no sequence in C?\W,, converging to
¢. According to results of Subsection 5.1, 7, is injective on C? and on the tangent
spaces of C?, which implies that myIW,, is open in R?. If a sequence (¢") 7, from the
rest of the connecting set converges to ¢ as n — oo, then me™ — mp as n — oo,
and " € mW,, for all n large enough. The injectivity of m5 on Sy then implies
that ™ € W, which is a contradiction. So C? is embedded in W* (O,). With the

projection P, and the map w,, from Proposition 5.5,
C7 ={x+wr(x): x € RCY}.

Using the previously obtained result that C? is a C'-submanifold of W* (0,), we
prove at the end of this subsection that wy, is continuously differentiable on the open
set P,CP, i.e., this representation for C? is smooth.

Section 3 has introduced a hyperplane Y, a convex bounded open neighborhood
N of roin C, € € (0,w) and a C'-map 7 : N — (w —e,w +¢) with 7 (ry) = w so
that for each (t,¢) € (w —e,w +¢€) X N, the segment z{ belongs to ro + Y if and
only if t = (). A Poincaré return map Py has been defined as

Pyr:NN(ro+Y)2p— & (y(p),p) €Erg+ Y.
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Let W denote a local stable manifold W . (Py,ro) of Py at rg if O, is hyperbolic,
and let W be a local center-stable manifold W;< (Py, 1) of Py at r otherwise.
By Section 3, W is a C'-submanifold of ry + Y with codimension 1, and it is a
C'-submanifold of C' with codimension 2.

The subsequent proposition is an important step toward the proof of the assertion
that C? and C are two-dimensional C'-submanifolds of W* (O,).

Proposition 5.11. W* (O,)NW is a one-dimensional C*-submanifold of W* (O,).

Proof. 1. Theorem B and Proposition 3.4 imply that W* (O,) N W is nonempty.
It suffices to verify that the inclusion map i : W*(O,) 3 ¢ — ¢ € C' and W are
transversal. Then it follows that i=' (W) = W*(0,) N W is a C'-submanifold of
W (0O,), furthermore it has the same codimension in W* (O,) as W in C' (see e.g.
Corollary 17.2 in [1]). Accordingly we show that the inclusion map i : W* (O,) 3
@ — ¢ € C and W are transversal. This means that for all ¢ € W*(0,) with
p=1i(p) €W,

(i) the inverse image (Di ()~ TypyW = T, V" (O,) NT,W splits in T,V (O,)
(it has a closed complementary subspace in T,WV" (0,)), and

(ii) the space Di(¢) T,W" (Op) = T, V" (O,) contains a closed complement to
TiypyW =T, Win C.

Property (i) holds because dimT,W* (O,) = 3 < oo. In the following we confirm
(ii).

2. Let ¢ € W*(O,) N W. First note that the invariance of W"(O,) ensures
that ¢ € T,V"(O,). On the other hand, Proposition 3.3 gives that ¢ ¢ Y can be
assumed. Therefore p € T, W (O,) \ T, WV.

We claim that T,)V" (O,) contains a sign-preserving element x. Let Z be the
hyperplane in C with C' = Rpy® Z and define a Poincaré map P on a neighborhood
of po in po + Z as in Section 3. (Here we use exceptionally the notation Z and
Py to emphasize the difference from the above mentioned Y and Py.) Choose
¢ from a local unstable manifold W}, (Pz,po) of Pz such that ¢ = ® (T, ) for
some 7" > 0. This is possible by (3.5). Choose 1 to be a strictly positive vector in
TyW.t . (Pz,po). Proposition 3.5 yields that the existence of such n may be supposed
without loss of generality. Then Dy® (T,4)n € T, WV (O,), and Do® (T, 1) n = us,

where u” : [—1,00) — R is the solution of the linear variational equation
(5.3) a(t) = —u(t)+ f (¥ (t—1))u(t—1)

with u = 7. We claim that w is positive on [—1, 00). If this is not true, choose ty > 0
to be minimal with u (t9) = 0. Then % (¢y) < 0. On the other hand, the equation
(5.3) and u (ty — 1) > 0 together yield that @ (tg) > 0, which is a contradiction. Let
x be the positive vector ul € T,W* (0,).
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The vectors ¢ and x are linearly independent because V (x) = 0 and we may
assume by Proposition 3.3 that V (¢) > 2.
3. As T,V is a subspace of C' with codimension 2, it suffices to confirm that

TNVN (R @ Ry) = {0}

Suppose that ap + bx € T,W\ {0} for some a,b € R. Then b # 0 as ¢ ¢ T,V .
Set ¢ = a/b and consider the vector cp + y € T,W\ {0}. Let v : [~1,00) — R be
the solution of the linear variational equation
(2.2) o(t) =—v(t)+ f (a2 (t—1)v(t—1)
with vy = x, and let © = 2. As o € W, v; = By (P ()) is defined for all j > 1,
and 7; — 0o as j — oo. Then by formula (3.4),

e* (cin, +0y,) .

i)V 2 DP (o) (cp + x) = Cy; + Uy — o () Ty,
gl
_. _€ (v) .
S e ()

An application of Lemma 2.7 to the equation (2.2) and its strictly positive solution
v:[—1,00) = R gives constants K > 0 and ¢ > 1 such that

lvs—1]] < K ||vs]| for all s > t.

Equation (2.2) with this estimate then gives a uniform bound for the derivatives

U,/ ||U%. H, j > 1. So by the Arzela—Ascoli theorem, there exists a subsequence

o
Yy
[l

converging to a nonnegative unit vector p as n — oo. As the C-norm and the C'-

norm are equivalent on A, the convergence z,, = Pé (¢) — 7o implies that &, — 79
as j — oo. It follows that

1 - .
TP () (e +X) € Tpgn ()W

o5,

converges to the vector

(p) . Cs, if O, is hyperbolic,
P — — To € TTOW =
e* (1) Cs ®RE, if O, is nonhyperbolic.

As T,, W C C<; and 7y € C<y, this means that C'<; has a nontrivial nonnegative
element p. This is a contradiction since O, has a Floquet multiplier A\; > 1 and
Coy, NV7H(0) = 0 by (3.2). O

Now we can verify a part of Theorem 1.2.(i).
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Proposition 5.12. C? and C}, are both two-dimensional C*-submanifolds of W* (O,).

Proof. Define r, YW and C? as at the beginning of this subsection.

1. As a first step we confirm that to all ¢ € CP, one can give a subset W,
of CP so that W, is a two-dimensional C'-submanifold of W* (0,) and contains
. Let ¢ € CP. Choose T' > 0 such that ¢ = & (T,¢) € W*(O,) N W and
V) ¢ Y. Propositions 3.3 and 3.4 guarantee that this is possible. Consider the
two-dimensional C'-submanifold R x (W* (0,) N W) of R x W* (O,)) and the map

SR x (WH(0,)NW) 3 (1) = Pwuo,) (t,n) € W (O,).

Proposition 4.6 proves that ¥ is Cl-smooth and gives formulas for its derivatives.

Note that the derivative of the map
W (O,) YW 3 1= Pyyu(o,) (=T, n) € W' (O,)

at 1 is injective on T, W* (O,) N W) by Corollary 4.7. Also observe that ) ¢ Y
implies that ¢ ¢ T, (W" (0,) "W). Using these two properties and a reasoning
analogous to the one applied in Proposition 4.1, it is straightforward to show that
DY (—=T,%) is injective on R x T, (W™ (O,) N W). Thus there exists an ¢ > 0 by
Proposition 2.8 such that the set

Wo ={Pwuo, (tn) 1 t€ (=T =, =T+ ¢), n € W (O,)NWN B (¥,¢)}

is a two-dimensional C'-submanifold of W* (0O,). It is clear that ¢ € W,. The
invariance of C? implies that W, C CP.

2. To complete the proof, it suffices to exclude for all ¢ € C? the existence of
a sequence (¢") ", in C? so that ¢ ¢ W, for n > 0 and ¢" — ¢ as n — oo.
By Proposition 5.7, Dmy () = my is injective on the two-dimensional tangent space
T,W,, hence it defines an isomorphism from 7,,W,, onto R?. Therefore there exists
€ > 0 such that the restriction of my to W, N B (p,€) is a diffeomorphism from
W, N B (p,&) onto an open set U in R?. If a sequence (¢™) -, in CP converges to ¢
as n — 00, then myp"™ — mp as n — oo, and me™ € U for all n large enough. The
injectivity of my on Sy verified in Proposition 5.4 then implies that ¢™ € W, O

It is worth noting that the second part of the above proof confirms the following

assertion.
Proposition 5.13. mC¥ and mCr are open subsets of R%.

We know from Proposition 5.5 that there exist a projection P, from C' onto a

two-dimensional subspace Gs of C' and a map wy, : PSy, — P{l (0) so that

S_kZ{X—ka()O: XGPQS_k}.
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Then
Ch = {X—l—wk(x) DX € PQC’};} and Cp ={x+wp(x): x € PCy}.
The next result implies that these representations of C? and C? are smooth.

Proposition 5.14. »CY and P,C¥ are open subsets of G, and wy, is continuously
differentiable on P,C? U PCY.

Proof. The proof is based on the smoothness of C? and C} and applies an argument
which is analogous to the one in the proof of Theorem 1.1.

Let CT be any of the sets CF and C?. Let x € P,CP be arbitrary, and choose
@ € CP so that x = Pap. As the restriction of m to T,C? is injective, J, is an
isomorphism and P, = J; o my, DP; (¢) = P defines an isomorphism from 7,,C? to
GG5. The inverse mapping theorem implies that an € > 0 can be given such that P,
maps CP N B (g, ) one-to-one onto an open neighborhood U C P,C? of x in Go, P,
is invertible on C? N B (g, ¢), and the inverse P; ! of the map

CPNB(p,e) > PpelU
is C't-smooth. As
wy, () = (id — By) o (Pol5) " (x) = (id — Py) o Py (x) € Py (0)

for all y € U, the restriction of wy to U is C'-smooth. O

5.4 C¥, C} and Sy are homeomorphic to A2 - and their closures are

homeomorphic to A2
Recall that
AP = ext (m20,) Nint (m20,) AP = ext (mOf) Nint (120,)
and
A g = ext (m20y) Nint (70, .
We have already deduced that m,C? C AP and moCy C A}, As a result, moSk C Apgq-

Proposition 5.15. The map Wg\sfk is a homeomorphism onto Ay,, furthermore
mCyp = A7, mCl = Al and T3S, = Ak

Proof. First we show that moCT = AP. By Proposition 5.13, moC? is open in A?. We
claim that m,C? is also closed in AP. So assume that (z,),—, is a sequence in mC?
and 2z, — 2z € AP as n — oo. Let ¢, = 7yt (zn) € CP, n > 0. By Proposition 5.6,
7, ! is Lipschitz-continuous. Thus {¥n}.2, is a Cauchy-sequence in CPandayp € C’_g
can be given such that ¢, — ¢ as n — oo, moreover, ¢ = m, ' (2). It is clear that

¢ ¢ Op and ¢ ¢ O, because then z = mp ¢ AL, Thus ¢ € CP\ (0,U0,) = cr
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(here we use Corollary 5.10) and necessarily z = mp € mCP. In consequence,
Wgcg = Ag

It is analogous to verify that mC% = A%. It follows immediately that
TSk = m (Ch U0, UCY) = A} Um0, U AF = Ay,

and
7T25_k; = Ty (Ok U Sk U Oq) = Wgok U Ak7q U 7r2(9q == A_IW

As both 7|5~ : S — R?and 7, : 5, — C are continuous, we obtain that Tol5;

defines a homeomorphism from Sy onto Ay ,. O

As a consequence we obtain that C7, C?, and Sy, are homeomorphic to the open
annulus
Al =Ly e R?: 1< |u| < 2}.
Since the above proposition implies that m,C? = A_i and 720_5 = A_g, we also deduce

that the closures C_f;, C_,f, and S), are homeomorphic to the closed annulus
A[I’Q]:{UERQ: 1 <|ul <2}.

Note that we have proven all the statements of Theorem 1.1.(i) regarding C? and
C? (see propositions 5.12, 5.14 and 5.15). The smoothness of Sy, is considered in the

next subsection.

5.5 The smoothness of Sk, C'_Z;, af and Sk

Now we can round up the proofs of Theorem 1.2.(i) and (ii).
Recall that

Se={x+we(X): x € Sk},  PaSk=PCLUPRO,UPRCY

and wy, is continuously differentiable on the set PoC} U PgCg’. Hence the smoothness
of this representation for Sy is proved by showing that P,.S; is open in G5 and wy
is smooth at the points of P»O,. It follows at once that Sy is a two-dimensional
C'-submanifold of C. Since S; is a subset of the three-dimensional C'-submanifold
W (0O,), it is obvious that Sy is also a C'-submanifold of W* (O,).

We in addition show that PO, U P»0, is the boundary of P,S;, and all points
of RO, U PO, have open neighborhoods on which wj can be extended to Cl-
functions. This means that S;, has a smooth representation with boundary, and
thus Sy is a two-dimensional C''-submanifold of the phase space C' with boundary.
Similar reasonings yield the analogous results for C_g and C_,f.

Let 7 : R — R be any of the periodic solutions ¥, p or ¢ shifted in time so that
7 (0) = & and 7 (0) > 0. As & belongs to the ranges of 2, p or ¢, and & is not an

extremum of them, the monotonicity property of periodic solutions in Proposition
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2.5 implies that this choice of r is possible. Let w > 0 denote the minimal period of
r. By Eq. (1.1),
fr(=1))=7(0)+7(0) > & = [ (&) -
As f strictly increases, this means that r (—1) > &. Conversely, if there was ¢, €
(0,w) such that r (t.) = & and r (t,. — 1) > &, then
F(t) = =1 () + f(r (6 = 1)) > =&+ f (&) =0

would follow, which would contradict Proposition 2.5. Therefore the half line L, =
{(&k,22) ER?: 29 > &} and mO, = {myry : t € [0,w)} have exactly one point in
common: (r(0),r(—1)) = (&, (—1)). See Fig. 7.

Choose g, Sp, 54 > & so that

{(hss1)} = L N0k, {(&k,5p)} = Li N0,

and
{(&k,59)} = Li N0,
As s increases, (&, 00) D s — (&,s) € R? first intersects mOy, then m0, and

finally m O, because
(&, s) — 7T2€k = (&, &) € int (mOy)) whenever s — &+,

10, C int (m20,) and m O, C int (m20,). So & < s, < s, < S4, as it is shown by
Fig. 7.

Ly
_—
0, |
7O 1/

(

7T20q
/ P

FIGURE 7. The definition of Ly, s, s, and s, in the case k& = 1.

(él- 3(1)

O
(&1,61)

Cousider the curve
h: sk, s D8 myt (&,s) €C.

Then h is Lipschitz-continuous and injective. By Proposition 5.15, h ([sg, s,]) C Sk.
In detail,

h(sk) € Ok, h((sk,sp)) C Ollg)a h(sp) € Op,  h((sp,5g)) C Cf;, and  h(sy) € Oy

According to the next result, h is C''-smooth on (s1,s,) \ {s,}-
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Proposition 5.16. 751|w2(05u05) is Ct-smooth.

Proof. We know from Proposition 5.13 that (Cg U C,f) is open in R2.
For all z € (C’fl’ U CY), the graph representation of C? U C} and the definition
of P, together give that

CrucCtsm,!(z) =Py (r;" (2)) + wi (P2 (3" (2)))

= T (2 (" (2))) + we (T2 (72 (73" ()
= Jo (z) + wg (Jo (7)) .

As J, defines an isomorphism from R? to G, it is continuously differentiable. In
addition, Jo (7T2 (C’f; U C’,f)) =P (C’g U C,f), and wjy, is continuously differentiable
on the open subset P, (C? UCY) of G, by Proposition 5.14. Hence the statement
follows. O

As a next step, we show the smoothness of i at points sy, s, and s,. We will need
the following technical result, which is part of Proposition 8.5 in [10].

Proposition 5.17.

(i) Let v : R — R be a solution of Eq. (3.1) with vy # 0. If V (v,) = 2 for all
teR, then vy € Cy,« N C<y.

(ii) For every ¢ € Cy,,« N C<y \ {0}, there is a solution v : R — R of Eg. (3.1)
so that vo = ¢ and V (v;) =2 for all t € R.

Proposition 5.18. Let x € {k,p,q} and set r : R — R to be the periodic solution
of Eq. (1.1) with maorg = (&, S«).

(i) There exists a unique continuously differentiable function z = z* : R — R
satisfying

Zt)y=——2@)+f(rt—=1)z(t—-1), teR,

(5.4) z2(-=1)=1,2(0)=0,

(11) For every € > 0, there exists § > 0 so that for all x € [sk, Sq], V € [sk, Sq] with
X — 8i| <0, |[v—s4 <9 and x # v,

h —h
EGEN
X —V
(7ii) zo and 7o are linearly independent.
Proof. 1. We prove that for all sequences (x"),—,, (V")o—, in [sg, ¢ with x™ # v

for all n > 0 and x" — s,, V" — s, as n — oo, there exist a strictly increasing

sequence (n;),-, and a continuously differentiable function z = z* : R — R so that
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z is a solution of the equation in (5.4), and

nyy\ __ ny
o RO =R ™)

l—00 X™M — v
Counsider the solutions 2" : R — R and y" : R — R of Eq. (1.1) with zj = h (x")
and yi = h(v") for all indices n > 0. Then 2" (—1) = x", y"(—1) = " and
2" (0) = y" (0) = & for all n > 0, moreover 2 € Sy, and y € S}, for all n > 0 and
teR
Introduce the functions

T — "
2" = - yn, n > 0.
X" —v

It is clear that 2" (0) = 0 and 2" (—1) = 1 for all n > 0. By Proposition 5.3,
V (zp) =2 for all n > 0 and t € R. In addition, 2", n > 0, satisfies the equation

F(t) = —=2"(t)+ 0" ()" (t—1)

on R, where the coefficient functions 0" are defined as
1
b”:RBtH/ Flsa (E—1)+ (1—s)y" (t—1))ds € (0,00), n > 0.
0

Since X" — s, and V" — s, as n — 0o, ¥y — 1o and y§ —> 19 as n — oo. It

follows that 0™ — b as n — oo uniformly on compact subsets of R, where
b:Rat— f(r(t—1)) € (0,00).

As the global attractor is bounded, there are constants by > by > 0 so that by <
b" (t) < by for all m > 0 and ¢t € R. Thus Lemma 2.6 ensures the existence of a

o0

continuously differentiable function z : R — R and a subsequence (2™);2, of (2"),,

such that 2™ — z and 2™ — 2 as | — oo uniformly on compact subsets of R, and z
is a solution of the equation in (5.4).

It is obvious that z (0) = 0 and z (—1) = 1.

By the first part of Lemma 2.2, V (z) < 2 for all real t. Suppose V (z+) = 0
for some t* € R. Then V (2;) = 0 for all £ > t* and V (24+43) € R by Lemma 2.3.
The C'-convergence of 2™ to z and the second part of Lemma 2.2 then imply that
V (234,5) = 0 for all sufficiently large index [, which is contradiction. So V (z) = 2
for all real ¢.

2. Suppose that z : R — R is also a continuously differentiable function satisfying
(5.4), and z # Z. Then Proposition 2.1 yields that zq # 2. The function d = z — 2

is a solution of
dt)y=—-dt)+ f (rt—1)d(t—1), teR,
d(—1)=d(0)=0.
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Since zg, 29 € Cy,,< N C<1 by Proposition 5.17 (i), dy € Cy,,< N C<y \ {0}. Then it
follows from Proposition 5.17 (ii) that V' (d;) = 2 for all t € R. So dy € R by Lemma
2.3.(iii), which is impossible as d (—1) = d (0) = 0.

These results imply both (i) and (ii).

3. Solution r has been defined to be a time translate of 2%, p or ¢ with r (0) =
&. Hence & is not an extremum of r, and thus 7 (0) # 0 by Proposition 2.5.

Consequently, zo & Rrg \ {O}, and 2y and 7y are linearly independent. O
Corollary 5.19. The function h is C*-smooth on [sy, s,].

We extend the definition of h to the half line (&, 00): we define h : (&, 00) — C

as h(s) = h(s) for s € [sy, s,
h(s)=h(sg)+ (s —sp) 28 for s € (&, sp)
and
h(s)=h(sy)+(s—s,) 2l fors> s,

where 2% and z{ are given by Proposition 5.18. Then A is C'-smooth with A/ (s;) =
2k, W (sp) = 28, and I (s,) = zI. According to the choice of s, < s, < s, and
Proposition 5.15,
(5.5)
h(sy) € Or, h((sk,8) CCY, h(sy) € Op h((sp,8,) CCPand h(s,) € O,

Observe that mh (s) = (&, s) for all s > &, hence the map (&, 00) 3 s — mh (s) €
R? is injective on (&, 00) and has range in Lj, = {(&,x9) € R?: 9 > &}, So it

follows from m5S), = m that

(5.6) h (&, sk) U (54,00)) N Sy, = 0.

Recall from Proposition 5.5 that there exist a projection P, from C onto a two-
dimensional subspace Gy of C and a map wy, : PoSy — P; ' (0) so that

S = {X—l—wk(x) : XGPQS_k}.
This induces a global graph representation for any subset W of Sj:
W={x+wp(x): x € RLW}.

Since Jy : R? — (5 is an isomorphism and P, = J o s, Proposition 5.15 shows
that

PO} = ext (PROg) Nint (R0O,), RO} = ext (RO,) Nint (RO,),
PySi = ext (P,Of) Nint (RO,),
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P,O, U RO, is the boundary of P»Sj, and hence
(57) Pgs_k = Pgok U (ext (PQOk) Nint (Pqu)) U PQOq.

As POy and PO, are the images of simple closed C'-curves, the boundary
P,O, U PO, of the domain P,S;, of wy is a one-dimensional C*-submanifold of G..
The next result shows that wy, is continuously differentiable at the points of P,O,,
and it is smooth at the points of PO, UP,O, in the sense that wy can be extended to

continuously differentiable functions on open neighborhoods of the boundary points.

Proposition 5.20.
(1) To each ¢ € O U O, there corresponds an open neighborhood U of Payp in G
and a continuously differentiable map w§ : U — Py ' (0) such that

(5.8) wilunes, = Welunps;

and U\ { Pz} : t € R} is the union of open connected disjoint subsets UT and U~
of U with the following property:

U NPSy =0 and UT C P,CY if p € Oy,

U™ C P,C? and Ut N RS, =0if p €O,

(ii) The map wy, is continuously differentiable at the points of PoO,. Each ¢ € O,
has an open neighborhood U of Py in Gy such that U \ P,O, is the union of open
connected disjoint subsets U™ and U~ of U with U~ C P,Cp and UT C P,CP.

Proof. The proof below verifies assertions (i) and (ii) simultaneously.

1. Let r : R — R be one of the periodic solutions z*, p or ¢ shifted in time so
that r (0) = & and 7 (0) > 0 (that is mry € L), and fix * € {k,p, ¢} accordingly.
Set s, =r(—1). Let p € O, = {r;: t € R} and choose T' > 1 so that ¢ = & (T, 19).
For all 0 < e < min{7T — 1, s — &}, the map

a:(—e,e)x(—g,e)> (t,S)H@(T—Ft,]AZ(S*-FS)) eC

is C''-smooth with
Da (0,0)R? = Rp @ RDy® (T, 70) 25,

where z* : R — R is the solution of (5.4) given by Proposition 5.18. The vectors
© = Dy® (T, 1) 79 and Do® (T, 7¢) 24 are linearly independent because Dy® (T, 79)
is injective, and 7 and z{ are linearly independent by Proposition 5.18 (iii).

Therefore Proposition 2.8 implies that for all small £ > 0, the sets
CL((—€7€) X (_675» ) CL((—€7€) X (_670)) and a((_€78) X (075))
are two-dimensional C''-submanifolds of C with

T,a((—¢,¢) x (—¢,¢)) = Da (0,0) R?.
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2. Set By = Da(0,0)R? and let Ey be a closed complement of E; in C. We
claim that for small € > 0, there exist an open neighborhood N. of 0 in F; and a
continuously differentiable function b : N, — E5 so that b (0) =0, Db (0) = 0 and
a((—e,e) x (—¢,¢€)) is the shifted graph of b:

a((—e,e) x (—e,6)) =@+ {x+b(x): x € Nc}.

Let Prg, denote the projection of C' onto F; along Es, and define 5 : C' — C' by
Jj(x) =x—¢forall x € C. Then

D (Prg, o joa)(0,0)R? = Prg, o Da(0,0)R* = .

Hence the inverse function theorem guarantees that Prp, o j o a is a local C*-
diffeomorphism, i.e., for small ¢ > 0, Prg, o j o a maps (—¢,&) X (—¢,¢) injec-
tively onto an open neighborhood N. of 0 in Ej, and the inverse (Prg, o j o a)_l of
(—e,e)x(—¢,€) 2 (t,8) — Prg,0joal(t,s) € N.is C'-smooth. In consequence, Pryg,
maps joa ((—¢,e) x (—e,¢)) onto N, injectively, and there exists a map b: N, — E»
so that b (f)) =0 and

joa((—g¢e) x(=&,€)) ={x+b(x): x € Ne}.
The smoothness of b follows from
b= (id — Prg)ojoao (Prgojoa) .
Db (0) = 0 because Da (0,0)R? = Ej.

3. Next we show that the continuously differentiable map
c: By DNEEXF—)PQ(QD‘FX—Fb(X)) € Gy

is a local C!-diffeomorphism.
Note that Dc (0) x = Ppx for all y € Ej. So it suffices to confirm that Ps|g, is
injective. Fj is spanned by the derivatives D~ (0) 1 of the curves

vi(=1,1) 3 s a(cs,es) € C,

where (cy,cy) € R2 From (5.5) and the invariance of S, it follows that if s, + cys €
[k, Sq], then 7 (s) € Sj. Proposition 5.7 gives that w7y (0) # (0,0) if 4/ (0) # 0.
Thus my|p, is injective. As Jy is an isomorphism, P, = J; o s is also injective on
E;.

In consequence, a positive constant £y can be given such that cis a C''-diffeomorphism
from N, onto an open neighborhood U of Pyp in G. Define ¢! to be the inverse
of Njy 5 x—c(x) €U.

The constant €y can be chosen so that ¢ < min{7" — 1, s, — &, Sp — Sk, Sq — Sp}
also holds.
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4. Notice that
U = Pya((—ep,€0) X (—€0,¢0)),

and set
U™ =Pa ((—50,50) X <_50’O))’
U° =Pya ((—e9,0) x {0}),
Ut =Pya ((—ep, €0) % (0,20)) -

By steps 2 and 3 it is clear that P, restricted to a ((—eo,£0) X (—¢€0,€0)) defines a
Cl-diffeomorphism from a ((—¢&g, &) X (—€0,€0)) onto U. As a ((—&g,g0) X (—&0,0))
and a ((—¢&g,&0) x (0,&9)) are two-dimensional C'-submanifolds of C, the arcwise
connected sets U~ and U* are open in Gb.

As h(s,) = rg € O,, we have a ((—gg,£) x {0}) C O, and U° C P,O,. As PO,
is a one-dimensional C''-submanifold of G5, we may assume (by decreasing g > 0 if

necessary) that
(5.9) U NRO, =0 and U™ N RO, =0,
5. Introduce the C'-map
wi:Uan—=o+c ' (n)+b(c(n)—neC.
For all n € U, ¢! (n) € N,, and thus

Pr(p+c () +b(c () —n) =R (p+c () +b(c" (1)) — P
=c (c_1 (n) —n= 0.
So w¢ maps U into Py ' (0).
6. Assume that ¢ € Oy, that is r is the time translate of 2*, and s, = s;. Then

A~

the relations ey < s, — Sk, h((sk,sp)) C CF and the invariance of C} guarantee
that Ut C PC} C ext (P0;). As D1Pa(0,0)1 and DyPsa (0,0)1 are linearly

independent in Gy, the curve
(—€0,€0) 2 s+ Pra(0,s)

intersects transversally P,Oy at Po = Pya (0,0). Using this, (5.9) and that PO, is
a simple closed curve in Gy, it follows that the connected open sets U~ and U™ belong
to different connected components of Go\ PoO. Then U™ C ext (P,Oy) implies that
U~ Cint (P,0}). Now (5.7) can be applied to conclude that U~ N PS5}, = 0.

In cases ¢ € O, and ¢ € O, it is similar to show that U~ C RCy, U C PCP
and U~ C P,C?, U* N P,S;, = 0, respectively. We omit the details.

7. It remains to confirm (5.8). Assume again that ¢ € Oy, that is r is the time
translate of 2*, and s, = s;. Let € U N PyS), be arbitrary. As U~ N P,S;, = () by
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part 6, necessarily n € UT N UY. Then n = Pya(t,s) = P® (T + ¢, h (s, + s)) for

some t € (—eg,e0) and s € [0,20). As h([sg, s + €0)) C h([sk, 5q]) € Sy and S is
invariant, a (t,s) € S;. Then due to the injectivity of P, on S,

0+ wg (1) = a(ts)

follows. On the other hand, we have

n+wp(m) =¢+c () +b(c ' (n) € a((—eo,c0) x (—e0,0)),

and Pyws (n) = 0. By the injectivity of P, on a ((—¢&o,€0) X (—€0,£0)) and

Py (n+wi (n) = P (n+wi (n) =n,

it follows that wy (n) = w§ (n).
Showing (5.8) in the cases ¢ € O, or ¢ € O, is analogous. O

Proof of Theorem 1.2.(i). We already know from Propositions 5.12, 5.14 and 5.15
that the connecting sets C? and C}, are two-dimensional C*-submanifolds of W* (O,)
with smooth global graph representations, furthermore C?, Cf and S are homeo-
morphic to the open annulus A2,

As Jy : R? — (G5 is an isomorphism and P, = J, o7y, Proposition 5.15 shows that
P,Sy, is open in Go. In addition, Propositions 5.14 and 5.20.(ii) together give that
wy, is Cl-smooth on PSS, = P (C’,f uo,uU C’}]’). So the global graph representation

Sk ={x+wr(x): x € P2Si}

given for Sy is smooth. This property with Sy C W* (0O,) guarantees that Sy is a
two-dimensional C*-submanifold of W* (O,) [12]. O

Proof of Theorem 1.2.(ii). Recall that Propositions 5.9 and 5.10 have confirmed the
equalities
CY=0,UC’U0,  Cl=0,UClUO
and
Sk =0, U S, UO,.

As J, : R? = (G4 is an isomorphism and P, = J, o my, Proposition 5.15 yields that
P,S;, is the closure of the open set P»S), and its boundary is P, (O U O,). The
sets POy and P,O, are the images of simple closed C'-curves, hence the boundary
is a one-dimensional C''-submanifold of Gy. By the proof of Theorem 1.2.(i), wy is
continuously differentiable on PSy. Proposition 5.20.(i) in addition verifies that all
points of P, (O U O,) have open neighborhoods in G5 on which wy, can be extended
to C'-smooth functions. Summing up, the representation given for Sy is a two-
dimensional smooth global graph representation with boundary. It is analogous to

show that the induced representations of C_g and C’_,f are two-dimensional global graph
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representations with boundary, therefore we omit the details. It follows immediately
that CF, C? and Sy are two-dimensional C"'-submanifolds of C' with boundary [12].
The assertion that C_g, C_,f and Sj, are homeomorphic to the closed annulus A2

follows from Proposition 5.15. 0J

5.6 S1 and S_1 are indeed separatrices

To complete the proof of Theorem 1.2, it remains to show that S_; and S; are
separatrices in the sense that C% is above Sy, C is between S_; and Sy, furthermore
C?, is below S_;. The underlying idea of the following proof is that the assertion
restricted to a local unstable manifold W} (Py, po) is true, and the monotonicity of
the semiflow can be used to extend the statement for W* (O,) .

Recall that for the periodic orbit O,, the unstable space C,, is two-dimensional:
Cu = {61’01 + CoU2 1,00 € R},

where v; is a positive eigenfunction corresponding to the leading real Floquet mul-
tiplier A\; > 1, and v is an eigenfunction corresponding to the Floquet multiplier Ay
with 1 < Ay < A;. Also recall that a local unstable manifold W} (Py,po) of Py at
po is a graph of a C'-map: there exist convex open neighborhoods Ny, N, of 0 in C,
C,, respectively, and a C*-map w, : N, — C, with range in N, so that w, (O) = 6,
Duw, (0) =0 and

Wiee (Pypo) = {po + x +wu (X) 1 X € Nu}-

Choose « € (0,1) so small that (—a, o) v1 + (—«, @) v C N, and

1
(5.10) sup [Dwa OO < 5

XE(—a,a)v1+(—a,a)v2 2

Introduce the sets
As={po+x+wu(x): x € (—,) vy +sva} CWE (Py,po), $E(—a,a).

The elements of Ay, s € (—a, «), are ordered pointwise. Indeed, if s € (—«, ) is
fixed and a,b € (—a, «) are arbitrary with a < b, then (5.10) implies that

{b —a+ /b Dw,, (uvy + svg) du} v > 0,
and thus
po + (avy + svg) + wy, (avy + svg) K po + (bvy + sva) + wy, (bvy + svg) .
Introduce the subsets

ARt = {¢ € A, af > & for some t > 0}
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and
Ak~ — {gp € A, af < &, for some t > 0}

S

of A, for all s € (—a,a). Then A¥* and A%~ are open and disjoint in A,. Tt is also
clear from the monotonicity of the semiflow combined with the ordering of A that
for any o~ € A%~ and ot € AP o <« ot

We claim that there exists 8 € (0,a] so that A®* and A%~ are nonempty for all
s € (=5, ). Choose

= po— %vl + Wy (—%m) € Ao and 12 = po + %Ul + Wy (%m) € Ao.

Then 7y < pg < n2. By Theorem 4.1 in Chapter 5 of [20], there is an open and
dense set of initial functions in C' so that the corresponding solutions converge to

equilibria. In consequence, there exist n;", 7,75 ,7, € C such that
L m Ll L po Ly Lnp L ng,

- +
and for both i =1 and i = 2, 2" and z;* converge to one of the equilibrium points

as t — 0o. Since maxeg p () > &, mingegr p (1) < &1 and

ny " ny 3
T Lt Lpp <Ly Lzt forallt >0

by Proposition 2.4, we obtain that

x?; — 5,2, x?f — 5,2, x?g — é’g and :L’,Tf72+ — 52 as t — oo.
Using again Proposition 2.4, we get that 2" — £_, and 2? — & ast — oo, therefore
ol < &, and T > &, for some ¢1,t5 > 0. The continuity of the semiflow ® implies
that there exist open balls By, B, centered at 1,7, respectively, such that x;, < ék
for all ¢ € By and ], > fk for all ¢ € B,. It follows that there exists 5 € (0, a] so
that A®* and A%~ are nonempty for all s € (=23, 3).

Summing up, A% and A%~ are open, disjoint and nonempty subsets of the con-
nected A, for all s € (=0, ). Consequently, the set A, \ (AT U A7) is nonempty
for all s € (—f, /), i.e., As has at least one element in Sy. On the other hand, the
nonordering property of Sy stated in Proposition 5.2 implies that A, N .S, contains
at most one element, i.e., A; N S is a singleton for all s € (=4, 5).

Note that for any s € (—=f3,8), ¢~ € A%~ ot € Ab+T and ¢ € A,N S, v~ <K
<< ot

Also observe that if (cpn)g
as n — —oo, then for all indices with sufficiently large absolute value, ¢, € Ay for
some s € (=03, ).

An element ¢ of W*(O,) is said to be above Sy if ¢ € Sy can be given with
Y < p, and p € W*(0O,) is said to be below Sy if there exists ¢ € Si with ¢ < 9.
An element of W* (O,) is between S_; and S if it is below S; and above S_;.

is a trajectory of Py in W} (Py,po) with ¢, — po

o0
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A subset W of W* (O,) is above (below) S, if all elements of W are above (below)
Sk. A subset W of W* (O,) is between S_; and 5 if it is below S; and above S_;.

Proposition 5.21. For each o € W* (0O,), exactly one of the following cases holds:
(i) ¢ € Sk,
(11) ¢ is above Sk,
(i1) ¢ is below Sk.

Proof. 1t is clear that ¢ € W"(O,) cannot be below and above Sy at the same
time because then there would exist ¥1,199 € Sy with ¢ < ¢ < 19, which would
contradict Proposition 5.2. For the same reason, ¢ € Sy cannot be above (or below)
Sk. So at most one of the above cases holds for all o € W* (O,).

Let ¢ € W* (O,) \ Sk be arbitrary. By (3.5) and the characterization of W} (Py, po),
there exists a sequence (tn>(ioo with ¢, = —o0 as n — —oo so that {xfn}(ioo is a tra-
jectory of Py in W (Py,po) and x] — pg as n — —oo. So an index n* < 0 can be
given with ¢, < 0 such that xfn* € A, for some s € (=0, ). Let 1 denote the single
element of A, N S,. As the elements of A, are ordered pointwise, we obtain that
af <L porxf > oraxf, =1 Observe that xf & =1 is impossible: as ¢ € Sk
and Sy is invariant, x;’; . = ¥ would imply that ¢ = xftn* € Sk, which contradicts
the choice of ¢. If xfn* < 1, then the invariance of S; and the monotonicity of the
semiflow imply that xft € Sy and ¢ K xftn*, that is, ¢ is below Si. If zf , > 1),
then ¢ > a:lftn* and ¢ is above Sg. 0J

Now we are able to complete the proof of Theorem 1.2.

Proof of Theorem 1.2.(iii). 1. First we show that for any ¢ € W* (0,)\ O,, ¢ € C%
if and only if ¢ is above 5.

Suppose that ¢ € C%. Then 27 > fl for some t; > 0. Choose t, > 0 in addition
so that z?, € A, for some s € (—f,0). Necessarily 2, € Al", and thereby
x¥, > 1), where 9 is the single element of A; N S;. Then xff; € S and ¢ > 1’;/;,
that is, ¢ is above 5;.

Conversely, suppose that ¢ € W* (0,) \ O, is above 51, and choose ¢ € S; with
@ > 1. Recall that there is an open and dense set of initial functions in C' so
that the corresponding solutions are convergent (Theorem 4.1 in Chapter 5 of [20]).

Hence n; € C, ny € C' and 73 € C can be given such that
YL L L p L

furthermore z}', x}* and z}® converge to equilibria as t — co. By the monotonicity

of the semiflow,

(5.11) oV <ol < aP < af <P forallt >0,
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hence the oscillation of ¥ about &, implies that w (n;) is either {él} or {52} for
all i € {1,2,3}. Ifw () = {él}, then necessarily w (1) = w (12) = {él}, which

contradicts Proposition 5.1. So w (ny) = {52} Then (5.11) guarantees that z* — &,

and thus z¥ — & as t — oo.

2. It is similar to show that for any ¢ € W*(0,) \ O, ¢ € C*, if and only if ¢
is below S_;.

3. Relations S = CYUO,UC?, k € {—1,1}, imply the equalities C?UO, = S_1NS,
and C? = Sp\S_ for both k € {—1,1}.

4. Tt remains to verify that for o € W (0,) \ O,, w (¢) = {0} if and only if ¢
is between S_; and S;. Recall that for both £ € {—1,1} and each ¢ € W*(0,),
@ is either below S, or it is above Sg, or it is an element of Sy. For this reason,
@ € W*(O,) \ O, is between S_; and S; if and only if all the following three
properties hold: ¢ ¢ S_; US], ¢ is not above S; and ¢ is not below S_;. So by the
above results, p € W*(0,) \ O, is between S_; and S if and only if

p W' (0,)\ {0,UC",UC? LCPUCTUCE} = CE.
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