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1 Introduction

Under some mild moment condition (see (2.3)), a continuous state and con-
tinuous time branching process with immigration (CBI process) can be rep-
resented as a pathwise unique strong solution of the stochastic differential
equation (SDE)

t
Xt—X0+/( + BX,) ds+/ V2¢max{0, X, } dW,
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for t € [0,00), where a,c € [0,00), B € R, and (W;);»0 is a standard
Wiener process, N and M are Poisson random measures on (0,00)® and
on (0,00)? with intensity measures dsu(dz)du and dsv(dz), respectively,
N(ds,dz,du) := N(ds,dz, du) — ds p(dz) du is the compensated Poisson ran-
dom measure corresponding to N, the branching jump measure p and the
immigration jump measure v satisfy some moment conditions, and (W)¢>o,
N and M are independent, see Dawson and Li (Dawson and Li 2006, The-
orems 5.1 and 5.2). The model is called subcritical, critical or supercritical
if B<0, B=0 or B >0, see Huang et al. (Huang et al 2011, page
1105). Based on discrete time (low frequency) observations (X)re{o,1,...,n}s
n € {1,2,...}, Huang et al. Huang et al (2011) derived weighted conditional
least squares (CLS) estimator of (B,a). Under some additional moment con-
ditions, they showed the following results: in the subcritical case the estimator
of (B,a) is asymptotically normal; in the critical case the estimator of B
has a non-normal limit, but the asymptotic behavior of the estimator of a
remained open; in the supercritical case the estimator of B is asymptotically
normal with a random scaling, but the estimator of a is not weakly consistent.

Overbeck and Rydén Overbeck and Rydén (1997) considered CLS and
weighted CLS estimators for the well-known Cox—Ingersoll-Ross model, which
is, in fact, a diffusion CBI process (without jump part), i.e., when p =0 and
v =0 in (1.1). Based on discrete time observations (Xi)ref0,1,...n}» 7 €
{1,2,...}, they derived CLS estimator of (B,a,c) and proved its asymptotic
normality in the subcritical case. Note that Li and Ma Li and Ma (2015)
started to investigate the asymptotic behaviour of the CLS and weighted CLS
estimators of the parameters (B, a) in the subcritical case for a Cox-Ingersoll-
Ross model driven by a stable noise, which is again a special CBI process (with
jump part).

For simplicity, we suppose Xy = 0. We suppose that ¢, p and v
are known, and we derive the CLS estimator of (B, A) based on discrete
time (low frequency) observations (Xi)re(1,....n}> 7 € {1,2,...}, where
A= a+f0°° zv(dz). In the critical case, i.e, when B = 0, under some moment
conditions, we describe the asymptotic behavior of these CLS estimators as
n — 00, provided that a # 0 or v # 0, see Theorem 3.1. We point out that
the limit distributions are non-normal in general. In the present paper we do
not investigate the asymptotic behavior of CLS estimators of (B, A) in the
subcritical and supercritical cases, it could be the topic of separate papers.

2 CBI processes

Let Z4, N, R, R; and R, denote the set of non-negative integers, positive
integers, real numbers, non-negative real numbers and positive real numbers,
respectively. For z,y € R, we will use the notations z Ay := min{z,y}
and zt := max{0,z}. By || and ||A|, we denote the Euclidean norm
of a vector x € R? and the induced matrix norm of a matrix A € R¥*?,
respectively. The null vector and the null matrix will be denoted by 0. By
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C2(R4,R) we denote the set of twice continuously differentiable real-valued
functions on Ry with compact support. Convergence in distribution and in

probability will be denoted by Py and L, respectively.

Definition 2.1 A tuple (c,a,b,v,u) is called a set of admissible parameters
if cca€eRy, beR, and v and u are Borel measures on (0,00) satisfying
JoTAA2)v(dz) <oo and [[7(z A 2%) p(dz) < oo. 0

Theorem 2.2 Let (c,a,b,v,u) be a set of admissible parameters. Then there
exists a unique conservative transition semigroup (Pt)te]R+ acting on the Ba-
nach space (endowed with the supremum norm) of real-valued bounded Borel-
measurable functions on the state space R, such that its infinitesimal gen-
erator is

o0

(G)(x) = cxf"(x) + (a+ bz) f'(x) + /0 (f(z+2) = f(x)) v(dz)
(2.1)

va | Tt 2) — f@) - F@) A 2) p(d2)

for f e C?>R.,R) and z € Ry. Moreover, the Laplace transform of the
transition semigroup (Py)icr, has a representation

/ e_)‘yPt(x, dy) = e_’””(t’)‘)_fgw(”(s”\))ds, reRy, XeRy, teRy,
0

where, for any X\ € Ry, the continuously differentiable function Ry 3t +—
v(t,\) € Ry is the unique locally bounded solution to the differential equation

aﬂ)(t, )‘) = 790(1]@’ A))7 U(Oa /\) = A (22)

with
©(\) == cA? —bA + / (e_/\z =14+ X1A2))p(dz), AeRy,
0

and

PY(A) = a\+ /000(1 —e M) (dz), AER,.

Remark 2.8 This theorem is a special case of Theorem 2.7 of Duffie et al. Duffie
et al (2003) with m =1, n =0 and zero killing rate. The unique existence
of a locally bounded solution to the differential equation (2.2) is proved by
Li (Li 2011, page 45). Here, we point out that the moment condition on p
given in Definition 2.1 (which is stronger than the one (2.11) in Definition
2.6 in Duffie et al. Duffie et al (2003)) ensures that the semigroup (P;)icr,
is conservative (we do not need the one-point compactification of Ri), see
Duffie et al. (Duffie et al 2003, Lemma 9.2) and Li (Li 2011, page 45). For the
continuity of the function Ry xRy 3 (¢, \) — v(t, A), see Duffie et al. (Duffie
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et al 2003, Proposition 6.4). Finally, we note that the infinitesimal generator
(2.1) can be rewritten in another equivalent form

@@ =caf@)+ (at (04 [ Du@)) o) £

+ / (F@+2) - f(@) v(dz) + / (Fa+2) - f(2) — 2f'(2)) p(d2),

where b+ [[(z — 1) u(dz) is nothing else but B given in (2.5). O

Definition 2.4 A conservative Markov process with state space R, and
with transition semigroup (P;):er . given in Theorem 2.2 is called a CBI
process with parameters (c,a,b,v, ). The function Ry 3 A — ¢(A) € R is
called its branching mechanism, and the function Ry > A — (X)) € Ry is
called its immigration mechanism. g

Note that the branching mechanism depends only on the parameters c, b
and g, while the immigration mechanism depends only on the parameters a
and v.

Let (X;)ier, be a CBI process with parameters (c,a,b,v, ;) such that
E(Xp) < oo and the moment condition

/100 zv(dz) < oo (2.3)

holds. Then, by formula (3.4) in Barczy et al. Barczy et al (2015),
¢
E(X,| X, = 2) :eBt:c+A/ ePidu, zeRy, teRy, (2.4)
0

where
B:=b +/1 (z = 1) pu(dz), A:=a +/O zv(dz). (2.5)

Note that B € R and A € Ry due to (2.3). One can give probabilistic inter-
pretations of the modified parameters B and A, namely, e® = E(Y; | Yy = 1)
and A =E(Z,|Zy=0), where (Y;)ier, and (Zi)icr, are CBI processes
with parameters (c,0,b,0,1) and (0,a,0,v,0), respectively, see formula
(2.4). The processes (Y;)ier, and (Z;)icr, can be considered as pure
branching (without immigration) and pure immigration (without branching)
processes, respectively. Consequently, e® and A may be called the branch-
ing and immigration mean, respectively. Moreover, by the help of the modified
parameters B and A, the SDE (1.1) can be rewritten as

X, = X0+/(A+BX ds+/ V2eXS dw,

// / 2lugx,_ }Nds dz,du) + // ds dz)

(2.6)
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for t € [0,00), where M(ds,dz):= M(ds,dz) — ds u(dz).

Next we will recall a convergence result for critical CBI processes.

A function f: R, — R is called cadlag if it is right continuous with left
limits. Let D(R4,R) and C(R4,R) denote the space of all R-valued cadlag
and continuous functions on R, respectively. Let Do, (R4, R) denote the
Borel o-field in D(R4,R) for the metric characterized by Jacod and Shiryaev
(Jacod and Shiryaev 2003, VI.1.15) (with this metric D(R4,R) is a complete
and separable metric space). For R-valued stochastic processes ();)icr, and
(yf"))teﬂh, n € N, with cadlag paths we write Y™ 2, Y as n — o0
if the distribution of Y on the space (D(R,,R), Dy (R4, R)) converges
weakly to the distribution of ) on the space (D(Ry,R),Do(Ry,R)) as
n — oco. Concerning the notation P, we note that if ¢ and &,, neN,
are random elements with values in a metric space (E, p), then we also denote

by &, N ¢ the weak convergence of the distributions of &, on the space
(E,B(E)) towards the distribution of ¢ on the space (E,B(E)) as n — oo,
where B(FE) denotes the Borel o-algebra on E induced by the given metric
p.

The following convergence theorem can be found in Huang et al. (Huang
et al 2011, Theorem 2.3).

Theorem 2.5 Let (Xy)icr, be a CBI process with parameters (c,a,b,v, j)
such that Xo =0, the moment conditions

/ z9v(dz) < oo, / 2% pu(dz) < oo (2.7)
1 1
hold with ¢ =2, and B =0 (hence the process is critical). Then

(X iexs = (07 X ) Jeers —> Velier, a5 n— 00 (2.8)
in D(Ry,R), where (Vi)ier, is the pathwise unique strong solution of the
SDE

dY; = Adt ++/CY;" AWy, teRy, Vo =0, (2.9)

where (Wy)ier, 1is a standard Brownian motion and
C:= 20+/ 22u(dz) € Ry (2.10)
0

Remark 2.6 The SDE (2.9) has a pathwise unique strong solution (yt(y))te&
for all initial values yéy) =y € R, and if the initial value y is nonnegative,

then )}t(y) is nonnegative for all ¢t € R, with probability one, since A €
Ry, see, e.g., Ikeda and Watanabe (Ikeda and Watanabe 1989, Chapter IV,
Example 8.2). O
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Remark 2.7 Note that C' =0 if and only if ¢ =0 and pu =0, when the
pathwise unique strong solution of (2.9) is the deterministic function ); = At,
t € Ry. Further, C = Var(Y;|Yy = 1), see Proposition B.3, where (Y;):er,
is a pure branching CBI process with parameters (c,0,b,0,u). Clearly, C
depends only on the branching mechanism. a

3 Main results

Let (X;)icr, be a CBI process with parameters (c,a,b,v, ;) such that the
moment condition (2.3) holds. For the sake of simplicity, we suppose Xy = 0.
In the sequel we also assume that a # 0 or v # 0 (i.e., the immigration
mechanism is non-zero), equivalently, A # 0 (where A is defined in (2.5)),
otherwise X; =0 for all t € Ry, following from (2.4). The parameter B
can also be called the criticality parameter, since (X;)ier, Iis critical if and
only if B =0.

For k€ Zy, let Fj:=0(Xo,X1,...,X). Since (Xp)rez, Is a time-
homogeneous Markov process, by (2.4),

E(Xk | Fr—1) = E(Xk [ Xp—1) = X1 + A, k€N, (3.1)
where
1
o:=ecP cRy,, .A::A/ eBrds e Ry (3.2)
0

Note that A = E(X;|Xo = 0), see (2.4). Note also that A4 depends both
on the branching and immigration mechanisms, although A depends only on
the immigration mechanism. Let us introduce the sequence

My == Xy — E(Xi | Fi—1) = X — 0Xp—1 — A, keN, (3:3)

of martingale differences with respect to the filtration (F)rez, . By (3.3), the
process (Xi)rez, satisfies the recursion

X =0Xp 1+ A+ My, k e N. (3.4)

~

For each n € N, a CLS estimator (g,,4,) of (o, A) based on a sample
Xi,..., X, can be obtained by minimizing the sum of squares

> Xk — 0Xp1 — A

k=1
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with respect to (9, A) over R?  and it has the form

n Z Xka,1 — Z X}c Z Xk*l
~ k=1 k=1 k=1
On - . 2
ny X7 | - (Z Xk—l)
k=1 k=1
(3.5)
NXe > XE - Y Xk X1 Y Xk
k=1 k=1 k=1 k=1
n - n n 2
ny Xiy - (Z Xkl)
k=1 k=1
on the set
n n 2
H, = {w e n: nZX,%fl(w) — (ZXk1<w)> > 0}7
k=1 k=1

see, e.g., Wei and Winnicki (Wei and Winnicki 1989, formulas (1.4), (1.5)). In
the sequel we investigate the critical case. By Lemma C.1, P(H,) — 1 as
n — oo. Let us introduce the function h:R? — R, x R by

h(B,A) := <eB,A/O1 eBs ds) = (g, A), (B, A) € R%

Note that h is bijective having inverse

h~'(o, A) = (log(g), ) =(B,4), (0, A) €Ryy xR

fol 0% ds
Theorem 3.4 will imply that the CLS estimator 9, of o is weakly consistent,
hence, for sufficiently large n € N with probability converging to 1, (9,,.4,)
falls into the set R, X R, and hence

n

(On, An) = argmin Z(Xk —0Xp_1— A)Q.
(0, A)eR 1 xR 1

Thus one can introduce a natural estimator of (B, A) by applying the inverse
of h to the CLS estimator of (p,.A), that is,

-~

(§n7A7L) = hil(b\n;ﬁn) = <1Og(§n)7 1) 5 ne N,

on the set {w € 2: (Bn(w), Ap(w)) € Ry x R}. We also obtain

n

1
(Bp, Ap) = argmin Z <Xk —eBPXi - A/ eBs ds) (3.6)
(B,A)eER? | 0
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for sufficiently large n € N with probability converging to 1, hence (En, ﬁn)
is the CLS estimator of (B, A) for sufficiently large n € N with probability
converging to 1. We would like to stress the point that the estimator (B,, A4,)
exists only for sufficiently large n € N with probability converging to 1.
However, as all our results are asymptotic, this will not cause a problem.

Theorem 3.1 Let (Xy)icr, be a CBI process with parameters (c,a,b,v, )
such that Xo =0, the moment conditions (2.7) hold with ¢=8, a#0 or
v#0, and B=0 (hence the process is critical). Then the probability of the
existence of the estimator (B\n,ﬁn) converges to 1 as m — oo and

D 1 [ JEVedM, — My [ Yy dt
4)

Jrvzde— ([ Vpdt)® (M fy Y2t — [} Vedt [, YedM,
(3.7)
as n — oo, where (Y;)ier, s the pathwise unique strong solution of the
SDE (29), and Mt = yt - At, te R+.
If, in addition, ¢ =0 and pu =0 (hence the process is a pure immigration
process), then

n(B, — B)

A, - A

3/2(B o a2 a1t
Zligigz 3 i; L2y Ny 0,/0 22 v(dz) l% i] as m — oo.
(3.8)
Remark 3.2 By Remark 2.7, if C =0, then M; =0, t € Ry, further, by
(3.7), n(gn—B)gO and A, — A -250 as n— oo. O

Remark 3.8 If C # 0 then the estimator En is not consistent. The same
holds for the discrete time analogues of A, for instance, the immigration mean
of a critical Galton—Watson branching process with immigration, see Wei and
Winnicki Wei and Winnicki (1990), or the innovation mean of a positive regular
unstable INAR(2) process, see Barczy et al. Barczy et al (2014). O

Theorem 3.1 will follow from the following statement.

Theorem 3.4 Under the assumptions of Theorem 3.1, the probability of the
existence of unique CLS estimator (0n,An) converges to 1 as m — oo and

n(Bn — g)] o, 1 [ Sy VedM; — My [y Yy dt
A, — A Jov2de— (f} Vedt)? [My fy VEdt— [, Vedt [} YedM,
(3.9)
as n — oQ.

If, in addition, ¢ =0 and p =0 (hence the process is a pure immigration
process), then

A

3/2(~ 0o A?
" (f" 2 i>/\/'2 0,/ 22 v(dz) 32
n/2(A4, — A) 0 g1

as n — o0.

M
S
—

(3.10)
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Proof of Theorem 3.1 Before Theorem 3.1 we have already investigated the
existence of (B, A,). Now we apply Lemma D.1 with S =T = R?, C = R?

6 — [n(Agn - Q)‘| _ [n(Agn -1)

)

A, —A A, — A

o 1 [ Jy Ved M, — My [y Yy dt ]
JrY2dt— (f) Vedt)? [My [y Y2t — [} Vedt [y YrdM, |’

with functions f:R? —R? and f,:R? — R? n €N, given by

(- o

for (z,y) € R? with = > —n, and f,(z,y) := 0 otherwise. We have
faoln(on — 1), A, — A) = (n(B, — B), A, — A) on the set {we 2:p,(w) €
Ry}, and fo(zn,yn) = f(z,y) as n— 0o if (zp,yn) — (z,y) as n — oo,
since

= y+ A B
Jo(1+ 2)sds

) nlog(1+ £)

lim log(l + x—”) = log(e”) =z,
n

n—oo

and lim,_, fol(l + %2)*ds =1, if x, -2 as n — oo, since the function

Ryy3uw— fol u®ds € R is continuous. Consequently, (3.9) implies (3.7).
Next we apply Lemma D.1 with S =T =R?, C = R?,

n3/2(0, — 0) D e ATZ 1™

2

o

[t

with functions f:R? — R? and f,:R? — R? n €N, given by

(L))~

n3/210g(1 + —Z7)

fn y : L 0(1+ #)s ds

0
0

xT

Y

] , (zy) €eR?

, otherwise.

We have again  f,,(Zn,yn) — f(z,y) as n — oo if (2,,yn) — (z,y) as
n — oo. Indeed,

1
1/2< n_l/zyn—i—A ) Un An1/2(1 —fo (1—&—”3”372)8 ds)
n T L L, A T3 - + i -
Jo U+ -55)5ds Jo +55)5ds Jo (4 -535)5 ds
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if z, > —n3/2. Moreover,

1 1
1/2 Tn \s 1/2 T s
n/<1—/0(1+n3/2) ds)—n/<1—/0(1+m) ds)

1
Ty — T 0, \s—1
372 /0 S(1+n3/2) ds

with 6, (depending on =z, and z) lying between z, and z, and with
some appropriate K > 0. Further, by L'Hospital’s rule,

1 s 1— M1+ n%2)*d
lim nl/Q(l—/ (1+i) ds):lim fo( +hz)* ds
0

— pl/2

n—00 n3/2 h—0 h
1
= — lim 3h2$/ s(1+h32)*tds=0.
0

Consequently, (3.10) implies (3.8). |
Theorem 3.4 will follow from the following statements by the continuous
mapping theorem and by Slutsky’s lemma, see below.

Theorem 3.5 Under the assumptions of Theorem 3.1, we have

n=2Xp_, Jy Vedt
n -3 2 1~y
Z " . UL Jo Vi dt as n — oo. (3.11)
k=1 n= My M,y
n=2 My X J3 YedM,

In case of C = 0 the third and fourth coordinates of the limit vector
is 0 in Theorem 3.5, since (V;)ier, Is the deterministic function Y, = At,
t € Ry (see Remark 2.7), hence other scaling factors should be chosen for
these coordinates, as given in the following theorem.

Theorem 3.6 Suppose that the assumptions of Theorem 3.1 hold. If C =0,
then

n
—92 P A
n E Xp1 — 3 as n — 00,
k=1
n
_ P
n=3 E X2 as mn — oo,
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Proof of Theorem 3.4 The statements about the existence of unique CLS esti-
mators (0n,A,) under the given conditions follow from Lemma C.1.

In order to derive (3.9) from Theorem 3.5, we can use the continuous
mapping theorem. Indeed,

@\n_Q
A, — A

n n 2 n n n n
n 3 2= (50 ) [ B0 25 X 2 M 3 Xy
k=1 k=1 - - - -

1 ny MpXp—1— > Mp >, Xps
k=1 = =

k=1 k=1

on the set H,. Moreover, since A # 0, by the SDE (2.9), we have IP’(yt =
0,¢ € [0,1]) = 0, which implies P(f} Y?dt > 0) = 1. By Remark 2.6,
P(Y; > 0,¢ € Ry) = 1, and hence P(f, Y, dt > 0) = 1. Next we show
P(fol YVidt— (fo1 N dt)Q > 0) = 1. We have fol Vi dt— (fol Vi dt)2 = fol (yt_
fol A ds)zdt > 0, and equality holds if and only if ), = fol V.ds for
almost every t € [0,1]. Since Y has continuous sample paths almost surely,
P(f) Y2dt — (f} V,dt)* =0) >0 holds if and only if P(¥; = [, Vs ds, ¥t €
[0,1]) > 0. Hence, since Yy = 0, this holds if and only if P(), =0, Vt €
[0,1]) > 0, which is a contradiction due to our assumption A € R4 ;. Indeed,

with the notations of the proof of Theorem 3.1 in Barczy et al. Barczy et al
(2013), {we :Vi(w)=0,Vt€[0,1]} = A; N A; = 0. Consequently,

|fl(§n - 9)1 N 1 [ Sy VedM; — My [y Yy dt
A, — A S V2dt— ([ yedt)? My f) Y2dt— [ Vedt [, Ved M,

as n — oo, and we obtain (3.9).
If, in addition, ¢ =0 and p =0, then we derive (3.10) from Theorem
3.6 applying the continuous mapping theorem and Slutsky’s lemma. We have

1 &y 1< P p A2 AN A2
MZXk_l(rﬂZXk_l> 4)?7 5 :E as mn — oQ.
k=1 k=1
Moreover,
4 n Y ey MieXi1 = 325y Mi 3oy Xie1
n
22:1 My, 22:1 X1§71 - ZZ:1 My Xy ZZ:I X1

_ [_n1/222_1Xk1 nb/2 ][ n—1/2ZZ:1Mk ]
n'Y o Xy R X | [n TR My X

ro X— —
’I’L_3/2 0 _% 1 n 1/QZZ:1M’C
= _1/2 n_ X2_ noX —3/2 n ’
0 n k,:LS k—1 k_:ﬂ k=1 n / Zk:l Mka_l




12 Miédtyas Barczy et al.

hence, by Theorem 3.6 and Slutsky’s lemma,

n3/2(@\n - Q) n3/2 0 Z)\n — 0 D
~ = ~ — N5(0, %),
nl/2(A, — A) 0 n2| |4, - A (0, %)

as n — oo, where

12\ =, o [-5 L]t 2] [-2 F
XY= (/P)/ z7v(dz) A2 alla A
0 3 2 L =3

2 3
2 3
= <A2> /0 22 v(dz) [_1; Ajf E/o 22 v(dz) [_A £ ,
24 36 2 3
and we obtain (3.10). O

4 Proof of Theorem 3.5

Consider the sequence of stochastic processes
M(n) Lnt] n_le
zm .— ¢ = z" with z" .-

for t € Ry and k,n € N. Theorem 3.5 follows from the following theorem
(this will be explained after Theorem 4.1).

Theorem 4.1 Under the assumptions of Theorem 8.1, we have
zm 2, Z, as n — 0o, (4.1)

where the process (Z;)icr, with values in R2 s the pathwise unique strong
solution of the SDE

dzZ; = ’y(t, Zt) dW, te R+, (42)

with initial value Zo = 0, where (W;)ier, s a standard Wiener process,
and v:Ry xR =R is defined by

01/2 ((xl + At)+)1/2

'Y(f,(l:) = cl/2? ((x1+At)+)3/2

] , teRy, w:(xl,xg)TeRQ.

(Note that the statement of Theorem 4.1 holds even if C' =0.)
The SDE (4.2) has the form

CY2 (Mg + A2 dw,
CY2 (Mg + At)H)3/2dw,

dM;
AN

dZt =: l

] , teRy. (4.3)
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One can prove that the first equation of the SDE (4.3) has a pathwise unique

strong solution (Mﬁyo))teR . with arbitrary initial value ngO) =y € R.
Indeed, it is equivalent to the existence of a pathwise unique strong solution
of the SDE

ASY) = Adt 4+ CV2 (S HV2aw,,  teRy, (4.4)
with initial value Séyo) = 1y, since we have the correspondences
St(yo) _ ngo) 1 At, ngo) :St(yo) — At,

by It6’s formula. By Remark 2.6, the SDE (4.4) has a pathwise unique strong
solution (S**));ex . for all initial values S =y € R, and (S{*))* may
be replaced by St(yo) for all t € Ry in (4.4) provided that yo € Ry, hence
(M;+ At)* may be replaced by M; + At for all ¢ € Ry in (4.3). Thus the
SDE (4.2) has a pathwise unique strong solution with initial value Z, = 0,
and we have

Zf: lMt‘| _ |:ﬂ)tcl/2 (MS+AS)1/2dWS

,  teR,.
N, JHM, + As)dM, ] "

By continuous mapping theorem (see, e.g., the method of the proof of (%) N

X in Theorem 3.1 in Barczy et al. Barczy et al (2011)), one can easily derive

xm X
Z(n)l 2, lzl , as n — 09, (4.5)

where
Xt(") =n""X|nt), X, == M, + At, teRy, n € N.
By It6’s formula and the first equation of the SDE (4.3) we obtain
dX, = Adt + CV2(xHY2aw,  teRy,

hence the process (/'Eg)teﬂh satisfies the SDE (2.9). Consequently, X =).
Next, by continuous mapping theorem, convergence (4.5) implies (3.11), see,
e.g., the method of the proof of Proposition 3.1 in Barczy et al. Barczy et al
(2010).

Proof of Theorem 4.1 In order to show convergence zm 2, Z, we apply
Theorem E.1 with the special choices U := Z, U,(fb) = Z;C"), n,k € N,
(f,g"))kez+ := (Fr)rez, and the function ~ which is defined in Theorem
4.1. Note that the discussion after Theorem 4.1 shows that the SDE (4.2)

admits a pathwise unique strong solution (Z7)cr, for all initial values
ZF = z € R%. Applying Cauchy-Schwarz inequality and Corollary B.5, one

can check that ]E(||U,(€n)||2) < oo forall n,ke€N.



14 Miédtyas Barczy et al.

Now we show that conditions (i) and (ii) of Theorem E.1 hold. The condi-
tional variance has the form

n=2 n3X,_,

Var(Z\™ | Fo_1) = Var(M,, | Fi_
(2| i) ar(M [ Fie1) [n_3Xk—1 n X2 |

for neN, ke{l,...,n}, and

MM+ As (MY + As)?

L ZM)y(s, 20T =C
Vs, 28 (s, 25Y) (M 4 A5)2 (M™ 4 As)?

S

for s € Ry, where we used that (Mﬁ") + As)T = Mé"’ + As, s € Ry,
n € N. Indeed, by (3.3), we get

[ns)
n 1 B 1
MM 4 As = - k§_1:(Xk —eP Xy = A) + As = — Xy +

ns — [ns

JA€R+

(4.6)

for s€ Ry, neN, since e =1 and A= A.
In order to check condition (i) of Theorem E.1, we need to prove that for
each T >0, as n — oo,

Lnt]

t
sup ZVar My | Fooy) — 0/ (MM + As)ds| — 0, (4.7)
t€[0,T) 0
Lnt]
sup Zxk 1 Var(My, | Fr_1) 0/ (M) + 4s)2ds| =50, (4.8)
te[0,T]
Lnt]
s[up] ZXk L Var(My, | Fr_1) 0/ (M + As)3ds| -5 0. (4.9)
te[0,T

First we show (4.7). By (4.6), fo /\/ls" + sA)ds has the form

|nt]—1

nt nt] + (nt — [nt])?
L% SRR UIESC T
n
By Proposition B.3 and B =0,
Var(My | Fr—1) = VXp—1 + Vo = CXg—1 + Vh. (4.10)
Thus, in order to show (4.7), it suffices to prove
n~2 sup X nt| LO, (4.11)
te[0,7]
n~? sup [|nt]+ (nt— |nt])?*] =0, (4.12)

t€[0,T]
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as m — oo. Using (B.5) with (¢,7) = (2,1), we have (4.11). Clearly, (4.12)
follows from |nt — [nt]| <1, n €N, t € Ry, thus we conclude (4.7).
Next we turn to prove (4.8). By (4.6),

[nt]—1 |nt]—1

(n) J
/O(M +5A)? Z Xi+ - A Z X+ X
(nt — |nt])? [nt] + (nt — [nt])* ),
Recalling formula (4.10), we obtain
[nt] |nt] [nt]
> Xy Var(Mi| Fre1) =C D X7 +Vo > Xios. (4.13)
k=1 k=1 k=
Thus, in order to show (4.8), it suffices to prove
[nT) ’
Y X — 0, (4.14)
k=1
n~3/% sup X|nt BN 0, (4.15)
t€[0,T]
n~? sup [|nt]+ (nt— |nt])*] =0 (4.16)

te[0,T]

as n — oo. Using (B.4) with (¢,7) = (2,1), we have (4.14). By (B.5) with
|

(4,%) = (3,1), we have (4.15). Clearly, (4.16) follows from |nt — [nt]| < 1,
n €N, ¢t € Ry, thus we conclude (4.8).
Now we turn to check (4.9). Again by (4.6), we have
+ 1 |nt]—1 [nt]—1 [nt]—1
/(Mgm+s,4)%15:7 X A Z Xk+ A2 Z X,
0 [ —
nt—[ t] 3(nt — [nt])?
+ 7 X s AX )
(nt — |nt])? |nt] + (nt — |nt])*
+ n4 A’ X Lnt) + Ans AP
Recalling formula (4.10), we obtain
[nt] [nt] [nt]
S OXP Var(My| Frer) =C Y Xp  +Vo > X7 . (4.17)

k=1
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Thus, in order to show (4.9), it suffices to prove

nT]

Y X250, (4.18)
k=1
nT]

N X 0, (4.19)
k=1

—4/3 gup X nt| i>O, (4.20)
t€[0,T]

n

n~* sup [|nt] + (nt — |nt])*] =0 (4.21)
t€[0,T)

as n — oo. Using (B.4) with (¢,7) = (4,2) and (¢,i) = (2,1), we have
(4.18) and (4.19), respectively. By (B.5) with (¢,4) = (4,1), we have (4.20).
Clearly, (4.21) follows again from |nt — |nt]| <1, n €N, t € Ry, thus we
conclude (4.9). Note that the proof of (4.7)—(4.9) is essentially the same as the
proof of (5.5)—(5.7) in Ispdny et al. Ispany et al (2014).

Finally, we check condition (ii) of Theorem E.1, that is, the conditional
Lindeberg condition

[nT]

n P
Z E (||Z,(c )“21{||Z,i")||>9} | Fe1) — 0, as n — 00 (4.22)
k=1

forall 6 >0 and T > 0. We have E(|Z{"]21 0.0 |Fr1) <
k
0-2E (| Z2||* | Fe1) and

12711 <2 (0" + 070Xy M

Hence, for all # >0 and T >0, we have

[T}
Z E (|\Z§cn)||2]1{|‘zl(€n>”>9}) — 0, as n — 0o,
k=1

since E(M}) = O(k?) and E(MiX} ;) < /E(MPE(XS |) = O(k®) by
Corollary B.5. This yields (4.22). O

We call the attention that our moment conditions (2.7) with ¢ = 8 are
used for applying Corollaries B.5 and B.6.

5 Proof of Theorem 3.6

The first two convergences in Theorem 3.6 follows from the following approx-
imations.
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Lemma 5.1 Suppose that the assumptions of Theorem 3.1 hold. If C = 0,
then for each T > 0,

[nt]

tes%pT n2ZX’“ L —A—| 5o, as n — oo. (5.1)
Proof We have
[nt] tg [nt] 1 [nt] 2
’ZXk 1- A5 < QZ|Xk 1— A —1)+A‘n2kzl(k‘—1)—2,
where
1 Lnt] 2
t:;é%]ﬁz:(k—l)——%o, as m — 09,

k=1
hence, in order to show (5.1), it suffices to prove
1 7

— Z | X5 — Ak 0, as n — oo. (5.2)
k=1

Recursion (3.4) yields E(Xy) = E(Xk-1) + A, k € N, with intital value
E(Xo) =0, hence E(Xy)= Ak, k € N. For the sequence

Xp = Xp —E(Xy) = Xy — Ak,  keN, (5.3)

by (3.4), we get a recursion Xp = Xp_1 + M., k € N, with intital value
Xo = 0. Applying Doob’s maximal inequality (see, e.g., Revuz and Yor (Revuz
and Yor 1999, Chapter II, Theorem 1.7)) for the martingale X,, = > 7_, M,

n €N,
[nt] 2 [nT) 2 [nT)
E( sup |y M| | <AE ZMk 742 (n),
tel0,T]| 21
where we applied Corollary B.5. Consequently,
nt max | Xy — Ak| =n""! max | X =0 as n — oo.
ke{l,...,|nT]} ke{l,...,[nT]}
(5.4)
Thus,
[nT]
1 |nT |
— Xr — kAl < Xr — kA 0,
n? Z| k | n?  ke{l,.. ,LnTJ}| k | =

k=1

as n — oo, thus we conclude (5.2), and hence (5.1). O
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Lemma 5.2 Suppose that the assumptions of Theorem 3.1 hold. If C = 0,
then for each T > 0,
[nt]

sup n3ZXk 1—A2’ as n — oo. (5.5)

te[0,T)
Proof We have
EOERS

Zxk - A=

[nt] |nt]

1 2 2 2 2| 1 s
\Ezyxk,l—A (k—1)%+ A EZ(k—l) -3
k=1 k=1
where
1 [nt] 3
sup |— k—1)2——=| =0, as n — oo,
te[0,T) n3 Z( )

k=1
hence, in order to show (5.5), it suffices to prove

[nT] b

Z}X%—AijQ’ — 0, as m — 0o. (5.6)
k=1

1
n®
We have
|XZ — K2A% < | X, — kA|? + 2kA| Xy — kA,
hence, by (5.4),

n? | X7 — k2A%|
kG{l ..... L T/}
2 2|InT
< (rfl max | X% — kA|) an JA max | Xk — kA| LN 0,
ke{L,...,|nT]} n ke{L,...,|nT)}

as n — oo. Thus,

1 [nT) TJ
X2 - k2A2%| < X2 - k242 5o,
LSt < L g
as n — oo, and we conclude (5.6), and hence (5.5). O

The proof of the third convergence in Theorem 3.6 is similar to the proof
of Theorem 3.5. Consider the sequence of stochastic processes

[nt] 71/2M
=3z with zZM=| T, K
— n 32 ML X4

for t € Ry and k,n € N. The proof of the third convergence in Theorem
3.6 follows from Lemmas 5.1 and 5.2, and the following theorem.
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Theorem 5.3 If C' =0 then
zm 2, Z, as n — 0o, (5.7)

where the process (Z¢)ier, with values in R? s the pathwise unique strong
solution of the SDE

dZ, =y(t) Wy,  teRy, (5.8)
with initial value Z¢ = 0, where (Wt)te]R+ is a 2-dimensional standard
Wiener process, and ~: R, — R?*2 s defined by
1/2

) teRy,

1 At

v(t) := W
®) 0 At A2%¢2

where Vo = [;° 2% v(dz).

The SDE (5.8) has a pathwise unique strong solution with initial value
Z9 =0, for which we have

Zt:VOW/t
0

Proof of Theorem 5.3 We follow again the method of the proof of Theorem
4.1. The conditional variance has the form

1/2

1 As _
dWs, teR,.

As A2s?

Var(Z\" | Fy_1) = Var(My, | Fi,_1) [n

for neN, ke {l,...,n}. Moreover, v(s)y(s)' takes the form

()T =10 | R
v(s)v(s)' = , seER,.
0A5A232 *

In order to check condition (i) of Theorem E.1, we need to prove only that
for each T > 0,

Lnt) t
1
sup |— E Var(Mk|fk_1)—Vo/ ds

tefo, ) |1 T 0

5o, (5.9)

n

Lnt)

t
sup 7ZX1€_1V&I'(M1€|]:;€_1)—V0A/ sds LO’ (5.10)
tefo, 7] | 1 0

1 [nt] ¢ .
sup *BZXg_lVar(Mﬂfk—ﬂ—VoAZ/ s?ds| — 0, (5.11)
tefo,T] | T 1 0

as n — oQ.
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By Proposition B.3, the assumption C' =0 yields Var(My | Fy—1) = Vo =
IS 22 v(dz), hence (5.9), (5.10) and (5.11) follow from Lemmas 5.1 and 5.2,
respectlvely.

Finally, we check condition (ii) of Theorem E.1, that is, the conditional
Lindeberg condition

LnT ]

n P
ST E(|Z >H2]1{”Z§:,>H>G} | Fie1) — 0,  as n— oo (5.12)
k=1

forall 6 >0 and T > 0. We have E(|Z{"[21y 0. |Fr1) <
k
0=2E (| Z7||* | Fe1) and

1Z{)* <2 (n~2 + 075X ,) ML

Hence, for all 6 >0 and T > 0, we have

nT]
Z E (|‘Z,(€n)||2]l{|\zfc”>|\>9}) — 0, as n — 0o,
k=1

since E(M}}) = O(1) and E(MpX! ;) < JEWME(X;_,) = O(k*) by
Corollary B.5. This yields (5.12). O

A Appendix: SDE for CBI processes

One can rewrite the SDE (1.1) in a form which does not contain integrals with respect to
non-compensated Poisson random measures (see, SDE (2.6)), and then one can perform a
linear transformation in order to remove randomness from the drift as follows, see Lemma
4.1 in Barczy et al. Barczy et al (20164). This form is very useful for handling My, k € N.
Lemma A.1 Let (c,a,b,v,u) be a set of admissible parameters such that the moment

condition (2.3) holds. Let (Xt)ier, be a pathwise unique Ry -valued strong solution to
the SDE (1.1) such that E(Xp) < co. Then

t t
Xt:eB“*S)Xﬁ/ eB(t’")Adu-i-/ Bt /2c X, AW,

/ / / eBt- “)zﬂ{v<x ) N(du,dz,dv) +/ / eBlt= “)ZM(du dz)

for all s,t € Ry, with s <t. Consequently,

k
Mk:/ Bk “)\/2chqu+/ / / eBE= 21 e x,_y N(du,dz, dv)

/ / B 4 M (du, dz), k€ N.
k—1

Proof The last statement follows from (3.3), since A flf—l eBk—u) qy = A fol eB(1—u) qy =
A. m|
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Note that the formulas for (Xt)t€R+ and (Mg)ken in Lemma A.1 can be found as
the first displayed formula in the proof of Lemma 2.1 in Huang et al. Huang et al (2011),
and formulas (1.5) and (1.7) in Li and Ma Li and Ma (2015), respectively.

Lemma A.2 Let (Xt)te]R+ be a CBI process with parameters (c,a,b,v,pu) such that
X0=0, a#0 or v#0, and B=0 (hence it is critical). Suppose that C =0 and the
moment conditions (2.7) hold with ¢ =2. Then

k co
Mk:/ / z M(du,dz), ke N.
k—1J0

and the sequence (My)ren consists of independent and identically distributed random
vectors.

Proof The assumption C = 0 implies ¢ =0 and pu =0 (see, Remark 2.7), thus, by
Lemma A.1, we obtain the formula for M, k € N.

A Poisson point process admits independent increments, hence My, k € N, are
independent.

For each k € N, the Laplace transform of the random variable M) has the form

E(e?Mk) = exp{— /:_1 /Ooo (1 - e*‘”) ds V(dr)}
= exp{— /01 /Ooo (1 - e*“”) duu(dr)} =E(e 7M1

for all 6 € Ry, see, i.e., Kyprianou (Kyprianou 2014, page 44), hence My, k € N, are
identically distributed. O

B Appendix: On moments of CBI processes

In the proof of Theorem 3.1, good bounds for moments of the random variables (Mk)kez+
and (Xk)keLr are extensively used. The following estimates are proved in Barczy and Pap
(Barczy and Pap 2016+, Lemmas B.2 and B.3).

Lemma B.1 Let (Xt)teR+ be a CBI process with parameters (c,a,b,v,p) such that

E(X{) < oo and the moment conditions (2.7) hold with some q € N. Suppose that B =0
(hence the process is critical). Then

E(X{)
P Tt B

In particular, E(X])=0(t?) as t — oo in the sense that limsup,_, ., t"9E(X]) < co.

Lemma B.2 Let (Xt)t€R+ be a CBI process with parameters (c,a,b,v,u) such that
E(X{) < oo and the moment conditions (2.7) hold, where q = 2p with some p € N.
Suppose that B = 0 (hence the process is critical). Then, for the martingale differences
M, = X —E(Xn | Xn_1), n €N, we have E(MZP) = O(nP) as n — oo that is,
sup, ey n P E(MZ2F) < oco.

We have Var(My | Fr—1) = Var(Xy | Xx—1) and Var(Xy | Xi_1 =) = Var(X1 | Xo =
z) for all z € Ry, since (X¢)ter, is a time-homogeneous Markov process. Hence
Proposition 4.8 in Barczy et al. Barczy et al (20164) implies the following formula for
Var(My, | F—1)-
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Proposition B.3 Let (Xt)teR+ be a CBI process with parameters (c,a,b,v,pu) such

that E(X2) < co and the moment conditions (2.7) hold with q=2. Then for all k € N,
we have
Var(My | Fp—1) = VXp—1 + Vo,

where

1
V= c/ eBUHu) gy,
0

oS} 1 1 1—u
Vo ::/ 22 V(dz)/ e2Bu du+AC’/ (/ eBv dv) e2B qu.
0 0 0 0

Note that Vp = Var(X1|Xo = 0). Moreover, if B = 0, i.e., in the critical case, we
have V =C.

Proposition B.4 Let (Xt)teR+ be a CBI process with parameters (c,a,b,v,u) such
that E(XJ) < oo and the moment conditions (2.7) hold with some q € N. Then for all
J€{l,...,q}, there exists a polynomial Pj:R — R having degree at most |j/2], such
that

E(M]|Fyr) = Pi(Xy1),  kEN (B.2)
The coefficients of the polynomial P; depends on c, a, b, v, p.

Proof We have
B (M] | Fi1) = B[(X — E(X | Xpo1)) | Xe1]

and
E [(Xp — E(Xg | Xp—1)) | X1 = 2] = E [(X1 — E(X1| X0 = 2))7 | X0 = 2]

for all € Ry, since (Xt)teﬂh is a time-homogeneous Markov process. Replacing w by

eBt in the formula for E[(we™B%(Y; —E(Y%))*] in the proof of Barczy et al. (Barczy et al
2016+, Theorem 4.5), and then using the law of total probability, one obtains

E[(X: —EX))] =40 - l)c/t IBU) B[(X, — E(X,))?72X,] ds
0

ji=2 . o .
J - . s
+ [2:;) (Z) /0 LIt n(dz) /0 I B(t—s) E[(XS — E(Xs))‘Xs] ds (B.3)

j—2

+30(0) [T wtan) [ P Bl0x, - B0 ds

=0

forall t€ R4y and j € {1,...,q}, and hence, for each t € Ry and j € {1,...,q}, there
exists a polynomial P; ; : R — R having degree at most |j/2], such that

E [(X: — E(X¢))] = E[P;,;(Xo)],

where the coefficients of the polynomial P; ; dependson c, a, b, v, p, which clearly implies
the statement with P; := Py ;. m]

Corollary B.5 Let (Xt)ier, be a CBI process with parameters (c,a,b,v,u) such that
Xo=0, a#0 or v#0, and B =0 (hence the process is critical). Suppose that the
moment conditions (2.7) hold with some q € N. Then

E(X})=O0(k"),  EMY)=0(k)
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for i, €Zy with i<q and 2j <q.

If, in addition, C =0, then

E(|My|") = O(1)

for i€ Zy with i<q.
Proof The first and second statements follow from Lemmas B.1 and B.2, respectively.

If C = 0, then, by Lemma A.2, My, k € N, are independent and identically
distributed, thus ] )

E(|Mp|*) = E(|M1]*) = O(1)

for 1 € Z4 with i <gq. O
Corollary B.6 Let (Xt)tE]RJr be a CBI process with parameters (c,a,b,v,pn) such that
Xo0=0, a#0 or v#0, and B =0 (hence the process is critical). Suppose that the

moment conditions (2.7) hold with some £ € N. Then
(i) forall i€ Zy with i< |£/2], and for all 6 > i+ 1, we have

n
n~? Z Xt o0 as n — oo, (B.4)
k=1

(ii) for all i€ Zy with i< £, forall T >0, and for all 0 > i+ %, we have
n~% sup thfl 0 as n — oo, (B.5)
t€(0,7]
(iii) for all i € Zy with i< |£/4], for all T >0, and for all 6 > i+ %, we have
Lnt]

n=% sup Z (Xi —E(X} | Fr_1)] 0 as n — oco. (B.6)
te[0,7T] | ,—1

Proof The statements can be derived exactly as in Barczy et al. (Barczy et al 2014, Corollary
9.2 of arXiv version). O

C Appendix: CLS estimators

Lemma C.1 If (X,g)tG]RJr is a CBI process with parameters (c,a,b,v,p) such that B =0
(hence it is critical), E(Xo) < oo, and the moment condition (2.3) holds, then P(H,) — 1

as m — oo, and hence, the probability of the existence of a unique CLS estimator (0n,An)
converges to 1 as n — oo, and this CLS estimator has the form given in (3.5) on the
event H,.

Proof First, note that for all n € N,

n n 2
Q\Hp={weR:> XZ  (w)— % <in_1(w)> =0
=1

k=1

n n 2
weE N: Z (Xk—l(w) — iZXi_l(w)> =0

k=1 i=1
1 n
= {w €EN: Xp_1(w)=— ZXi—l(w)7 ke {1,...,n}}
iz

={weN:0=Xo(w)=X1(w) ="+ =Xpn-1(w)}

= {wEQ: ;ZXil(w):O},

=1
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where we used that Xo =0 and Xy >0, k€ Zy.
By continuous mapping theorem, we obtain

1 & !
—ZXk 2, Ve dt as n — oo, (C.1)
et 0

see, e.g., the method of the proof of Proposition 3.1 in Barczy et al. Barczy et al (2010).
By the proof of Theorem 3.4, we have ]P’(fo1 Ve dt > O) = 1. Thus the distribution
function of fol Vi dt is continuous at 0, and hence, by (C.1),

n 1 n 1
P(Hn)—P<i_ZlXi_1>0> —P(ngi_1>o> —>IP(/0 ytdt>0) =1

as n — oo. O

D Appendix: a version of the continuous mapping theorem

The following version of continuous mapping theorem can be found for example in Kallenberg
(Kallenberg 2002, Theorem 4.27).

Lemma D.1 (Kallenberg) Let (S,dg) and (T,dr) be metric spaces and (&n)nen, &
be random elements with values in S such that &, 2, £ as n—oo. Let f:S—T and
fn:S—=T, n€N, be measurable mappings and C € B(S) such that P(6 € C)=1 and

limp 00 d7(fn(sn), £(s)) =0 if limp oo dg(sn,s) =0 and s € C. Then fn(&n) —>
f(&) as n — oco.

E Appendix: convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process,
see Ispdny and Pap Ispdany and Pap (2010). This result is used for the proof of convergence
(4.1).
Theorem E.1 Let ~ : Ry xR% — RX" be a continuous function. Assume that uniqueness
in the sense of probability law holds for the SDE
dU: = ~(t,U) dWy, te Ry, (E.1)

with initial value Ug = ug for all ug € R, where (Wt)t5R+ is an r-dimensional
standard Wiener process. Let (Ut)ier, be a solution of (E.1) with initial value Uo =
0 € RY.

For each n €N, let (U;(:))keN be a sequence of d-dimensional martingale differences
with respect to a filtration (-F;gn))kez+ , that is, E(UEC") |]-'li71>1) =0, neN, keN. Let

[nt]

u£n> :ZUIE:n)7 teRy, neN
k=1

Suppose that E (||U,(€n)H2) < oo for all n,k € N. Suppose that for each T >0,

J n n n n
S Var(U [ FM)) = [y (s, Ul )y (s,ul) Tds|| - 0,

k=1

(i) sup
t€(0,T]

[nT]
() 5 E(UI

P
T |F™) S50 forall 6> 0,

where i) denotes convergence in probability. Then U™ 3)1/{ as n — 00.

Note that in (i) of Theorem E.1, || -| denotes a matrix norm, while in (ii) it denotes
a vector norm.
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