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1 Introduction

Under some mild moment condition (see (2.3)), a continuous state and con-
tinuous time branching process with immigration (CBI process) can be rep-
resented as a pathwise unique strong solution of the stochastic differential
equation (SDE)

Xt = X0 +

∫ t

0

(a+BXs) ds+

∫ t

0

√
2cmax{0, Xs} dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0

z1{u6Xs−} Ñ(ds,dz, du) +

∫ t

0

∫ ∞

0

zM(ds, dz)

(1.1)
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for t ∈ [0,∞), where a, c ∈ [0,∞), B ∈ R, and (Wt)t>0 is a standard
Wiener process, N and M are Poisson random measures on (0,∞)3 and
on (0,∞)2 with intensity measures ds µ(dz) du and ds ν(dz), respectively,

Ñ(ds, dz, du) := N(ds,dz, du)−ds µ(dz) du is the compensated Poisson ran-
dom measure corresponding to N , the branching jump measure µ and the
immigration jump measure ν satisfy some moment conditions, and (Wt)t>0,
N and M are independent, see Dawson and Li (Dawson and Li 2006, The-
orems 5.1 and 5.2). The model is called subcritical, critical or supercritical
if B < 0, B = 0 or B > 0, see Huang et al. (Huang et al 2011, page
1105). Based on discrete time (low frequency) observations (Xk)k∈{0,1,...,n},
n ∈ {1, 2, . . .}, Huang et al. Huang et al (2011) derived weighted conditional
least squares (CLS) estimator of (B, a). Under some additional moment con-
ditions, they showed the following results: in the subcritical case the estimator
of (B, a) is asymptotically normal; in the critical case the estimator of B
has a non-normal limit, but the asymptotic behavior of the estimator of a
remained open; in the supercritical case the estimator of B is asymptotically
normal with a random scaling, but the estimator of a is not weakly consistent.

Overbeck and Rydén Overbeck and Rydén (1997) considered CLS and
weighted CLS estimators for the well-known Cox–Ingersoll–Ross model, which
is, in fact, a diffusion CBI process (without jump part), i.e., when µ = 0 and
ν = 0 in (1.1). Based on discrete time observations (Xk)k∈{0,1,...,n}, n ∈
{1, 2, . . .}, they derived CLS estimator of (B, a, c) and proved its asymptotic
normality in the subcritical case. Note that Li and Ma Li and Ma (2015)
started to investigate the asymptotic behaviour of the CLS and weighted CLS
estimators of the parameters (B, a) in the subcritical case for a Cox–Ingersoll–
Ross model driven by a stable noise, which is again a special CBI process (with
jump part).

For simplicity, we suppose X0 = 0. We suppose that c, µ and ν
are known, and we derive the CLS estimator of (B,A) based on discrete
time (low frequency) observations (Xk)k∈{1,...,n}, n ∈ {1, 2, . . .}, where

A := a+
∫∞
0
z ν(dz). In the critical case, i.e, when B = 0, under some moment

conditions, we describe the asymptotic behavior of these CLS estimators as
n→ ∞, provided that a ̸= 0 or ν ̸= 0, see Theorem 3.1. We point out that
the limit distributions are non-normal in general. In the present paper we do
not investigate the asymptotic behavior of CLS estimators of (B,A) in the
subcritical and supercritical cases, it could be the topic of separate papers.

2 CBI processes

Let Z+, N, R, R+ and R++ denote the set of non-negative integers, positive
integers, real numbers, non-negative real numbers and positive real numbers,
respectively. For x, y ∈ R, we will use the notations x ∧ y := min{x, y}
and x+ := max{0, x}. By ∥x∥ and ∥A∥, we denote the Euclidean norm
of a vector x ∈ Rd and the induced matrix norm of a matrix A ∈ Rd×d,
respectively. The null vector and the null matrix will be denoted by 0. By
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C2
c (R+,R) we denote the set of twice continuously differentiable real-valued

functions on R+ with compact support. Convergence in distribution and in

probability will be denoted by
D−→ and

P−→, respectively.

Definition 2.1 A tuple (c, a, b, ν, µ) is called a set of admissible parameters
if c, a ∈ R+, b ∈ R, and ν and µ are Borel measures on (0,∞) satisfying∫∞
0

(1 ∧ z) ν(dz) <∞ and
∫∞
0

(z ∧ z2)µ(dz) <∞. ⊓⊔

Theorem 2.2 Let (c, a, b, ν, µ) be a set of admissible parameters. Then there
exists a unique conservative transition semigroup (Pt)t∈R+ acting on the Ba-
nach space (endowed with the supremum norm) of real-valued bounded Borel-
measurable functions on the state space R+ such that its infinitesimal gen-
erator is

(Gf)(x) = cxf ′′(x) + (a+ bx)f ′(x) +

∫ ∞

0

(
f(x+ z)− f(x)

)
ν(dz)

+ x

∫ ∞

0

(
f(x+ z)− f(x)− f ′(x)(1 ∧ z)

)
µ(dz)

(2.1)

for f ∈ C2
c (R+,R) and x ∈ R+. Moreover, the Laplace transform of the

transition semigroup (Pt)t∈R+ has a representation∫ ∞

0

e−λyPt(x,dy) = e−xv(t,λ)−
∫ t
0
ψ(v(s,λ)) ds, x ∈ R+, λ ∈ R+, t ∈ R+,

where, for any λ ∈ R+, the continuously differentiable function R+ ∋ t 7→
v(t, λ) ∈ R+ is the unique locally bounded solution to the differential equation

∂tv(t, λ) = −φ(v(t, λ)), v(0, λ) = λ, (2.2)

with

φ(λ) := cλ2 − bλ+

∫ ∞

0

(
e−λz − 1 + λ(1 ∧ z)

)
µ(dz), λ ∈ R+,

and

ψ(λ) := aλ+

∫ ∞

0

(
1− e−λz

)
ν(dz), λ ∈ R+.

Remark 2.3 This theorem is a special case of Theorem 2.7 of Duffie et al. Duffie
et al (2003) with m = 1, n = 0 and zero killing rate. The unique existence
of a locally bounded solution to the differential equation (2.2) is proved by
Li (Li 2011, page 45). Here, we point out that the moment condition on µ
given in Definition 2.1 (which is stronger than the one (2.11) in Definition
2.6 in Duffie et al. Duffie et al (2003)) ensures that the semigroup (Pt)t∈R+

is conservative (we do not need the one-point compactification of Rd+), see
Duffie et al. (Duffie et al 2003, Lemma 9.2) and Li (Li 2011, page 45). For the
continuity of the function R+×R+ ∋ (t, λ) 7→ v(t, λ), see Duffie et al. (Duffie
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et al 2003, Proposition 6.4). Finally, we note that the infinitesimal generator
(2.1) can be rewritten in another equivalent form

(Gf)(x) = cxf ′′(x) +

(
a+

(
b+

∫ ∞

1

(z − 1)µ(dz)

)
x

)
f ′(x)

+

∫ ∞

0

(
f(x+ z)− f(x)

)
ν(dz) + x

∫ ∞

0

(
f(x+ z)− f(x)− zf ′(x)

)
µ(dz),

where b+
∫∞
1

(z − 1)µ(dz) is nothing else but B given in (2.5). ⊓⊔

Definition 2.4 A conservative Markov process with state space R+ and
with transition semigroup (Pt)t∈R+ given in Theorem 2.2 is called a CBI
process with parameters (c, a, b, ν, µ). The function R+ ∋ λ 7→ φ(λ) ∈ R is
called its branching mechanism, and the function R+ ∋ λ 7→ ψ(λ) ∈ R+ is
called its immigration mechanism. ⊓⊔

Note that the branching mechanism depends only on the parameters c, b
and µ, while the immigration mechanism depends only on the parameters a
and ν.

Let (Xt)t∈R+ be a CBI process with parameters (c, a, b, ν, µ) such that
E(X0) <∞ and the moment condition∫ ∞

1

z ν(dz) <∞ (2.3)

holds. Then, by formula (3.4) in Barczy et al. Barczy et al (2015),

E(Xt |X0 = x) = eBtx+A

∫ t

0

eBu du, x ∈ R+, t ∈ R+, (2.4)

where

B := b+

∫ ∞

1

(z − 1)µ(dz), A := a+

∫ ∞

0

z ν(dz). (2.5)

Note that B ∈ R and A ∈ R+ due to (2.3). One can give probabilistic inter-
pretations of the modified parameters B and A, namely, eB = E(Y1 |Y0 = 1)
and A = E(Z1 |Z0 = 0), where (Yt)t∈R+ and (Zt)t∈R+ are CBI processes
with parameters (c, 0, b, 0, µ) and (0, a, 0, ν, 0), respectively, see formula
(2.4). The processes (Yt)t∈R+ and (Zt)t∈R+ can be considered as pure
branching (without immigration) and pure immigration (without branching)
processes, respectively. Consequently, eB and A may be called the branch-
ing and immigration mean, respectively. Moreover, by the help of the modified
parameters B and A, the SDE (1.1) can be rewritten as

Xt = X0 +

∫ t

0

(A+BXs) ds+

∫ t

0

√
2cX+

s dWs

+

∫ t

0

∫ ∞

0

∫ ∞

0

z1{u6Xs−} Ñ(ds,dz, du) +

∫ t

0

∫ ∞

0

z M̃(ds, dz)

(2.6)
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for t ∈ [0,∞), where M̃(ds,dz) :=M(ds,dz)− ds µ(dz).

Next we will recall a convergence result for critical CBI processes.

A function f : R+ → R is called càdlàg if it is right continuous with left
limits. Let D(R+,R) and C(R+,R) denote the space of all R-valued càdlàg
and continuous functions on R+, respectively. Let D∞(R+,R) denote the
Borel σ-field in D(R+,R) for the metric characterized by Jacod and Shiryaev
(Jacod and Shiryaev 2003, VI.1.15) (with this metric D(R+,R) is a complete
and separable metric space). For R-valued stochastic processes (Yt)t∈R+ and

(Y(n)
t )t∈R+ , n ∈ N, with càdlàg paths we write Y(n) D−→ Y as n → ∞

if the distribution of Y(n) on the space (D(R+,R),D∞(R+,R)) converges
weakly to the distribution of Y on the space (D(R+,R),D∞(R+,R)) as

n → ∞. Concerning the notation
D−→ we note that if ξ and ξn, n ∈ N,

are random elements with values in a metric space (E, ρ), then we also denote

by ξn
D−→ ξ the weak convergence of the distributions of ξn on the space

(E,B(E)) towards the distribution of ξ on the space (E,B(E)) as n→ ∞,
where B(E) denotes the Borel σ-algebra on E induced by the given metric
ρ.

The following convergence theorem can be found in Huang et al. (Huang
et al 2011, Theorem 2.3).

Theorem 2.5 Let (Xt)t∈R+ be a CBI process with parameters (c, a, b, ν, µ)
such that X0 = 0, the moment conditions∫ ∞

1

zq ν(dz) <∞,

∫ ∞

1

zq µ(dz) <∞ (2.7)

hold with q = 2, and B = 0 (hence the process is critical). Then

(X (n)
t )t∈R+ := (n−1X⌊nt⌋)t∈R+

D−→ (Yt)t∈R+ as n→ ∞ (2.8)

in D(R+,R), where (Yt)t∈R+ is the pathwise unique strong solution of the
SDE

dYt = Adt+

√
CY+

t dWt, t ∈ R+, Y0 = 0, (2.9)

where (Wt)t∈R+ is a standard Brownian motion and

C := 2c+

∫ ∞

0

z2µ(dz) ∈ R+. (2.10)

Remark 2.6 The SDE (2.9) has a pathwise unique strong solution (Y(y)
t )t∈R+

for all initial values Y(y)
0 = y ∈ R, and if the initial value y is nonnegative,

then Y(y)
t is nonnegative for all t ∈ R+ with probability one, since A ∈

R+, see, e.g., Ikeda and Watanabe (Ikeda and Watanabe 1989, Chapter IV,
Example 8.2). ⊓⊔
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Remark 2.7 Note that C = 0 if and only if c = 0 and µ = 0, when the
pathwise unique strong solution of (2.9) is the deterministic function Yt = At,
t ∈ R+. Further, C = Var(Y1 |Y0 = 1), see Proposition B.3, where (Yt)t∈R+

is a pure branching CBI process with parameters (c, 0, b, 0, µ). Clearly, C
depends only on the branching mechanism. ⊓⊔

3 Main results

Let (Xt)t∈R+ be a CBI process with parameters (c, a, b, ν, µ) such that the
moment condition (2.3) holds. For the sake of simplicity, we suppose X0 = 0.
In the sequel we also assume that a ̸= 0 or ν ̸= 0 (i.e., the immigration
mechanism is non-zero), equivalently, A ̸= 0 (where A is defined in (2.5)),
otherwise Xt = 0 for all t ∈ R+, following from (2.4). The parameter B
can also be called the criticality parameter, since (Xt)t∈R+ is critical if and
only if B = 0.

For k ∈ Z+, let Fk := σ(X0, X1, . . . , Xk). Since (Xk)k∈Z+
is a time-

homogeneous Markov process, by (2.4),

E(Xk | Fk−1) = E(Xk |Xk−1) = ϱXk−1 +A, k ∈ N, (3.1)

where

ϱ := eB ∈ R++, A := A

∫ 1

0

eBs ds ∈ R+. (3.2)

Note that A = E(X1 |X0 = 0), see (2.4). Note also that A depends both
on the branching and immigration mechanisms, although A depends only on
the immigration mechanism. Let us introduce the sequence

Mk := Xk − E(Xk | Fk−1) = Xk − ϱXk−1 −A, k ∈ N, (3.3)

of martingale differences with respect to the filtration (Fk)k∈Z+ . By (3.3), the
process (Xk)k∈Z+ satisfies the recursion

Xk = ϱXk−1 +A+Mk, k ∈ N. (3.4)

For each n ∈ N, a CLS estimator (ϱ̂n, Ân) of (ϱ,A) based on a sample
X1, . . . , Xn can be obtained by minimizing the sum of squares

n∑
k=1

(Xk − ϱXk−1 −A)2
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with respect to (ϱ,A) over R2, and it has the form

ϱ̂n :=

n
n∑
k=1

XkXk−1 −
n∑
k=1

Xk

n∑
k=1

Xk−1

n
n∑
k=1

X2
k−1 −

(
n∑
k=1

Xk−1

)2

Ân :=

n∑
k=1

Xk

n∑
k=1

X2
k−1 −

n∑
k=1

XkXk−1

n∑
k=1

Xk−1

n
n∑
k=1

X2
k−1 −

(
n∑
k=1

Xk−1

)2

(3.5)

on the set

Hn :=

{
ω ∈ Ω : n

n∑
k=1

X2
k−1(ω)−

(
n∑
k=1

Xk−1(ω)

)2

> 0

}
,

see, e.g., Wei and Winnicki (Wei and Winnicki 1989, formulas (1.4), (1.5)). In
the sequel we investigate the critical case. By Lemma C.1, P(Hn) → 1 as
n→ ∞. Let us introduce the function h : R2 → R++ × R by

h(B,A) :=

(
eB , A

∫ 1

0

eBs ds

)
= (ϱ,A), (B,A) ∈ R2.

Note that h is bijective having inverse

h−1(ϱ,A) =

(
log(ϱ),

A∫ 1

0
ϱs ds

)
= (B,A), (ϱ,A) ∈ R++ × R.

Theorem 3.4 will imply that the CLS estimator ϱ̂n of ϱ is weakly consistent,
hence, for sufficiently large n ∈ N with probability converging to 1, (ϱ̂n, Ân)
falls into the set R++ × R, and hence

(ϱ̂n, Ân) = argmin
(ϱ,A)∈R++×R

n∑
k=1

(Xk − ϱXk−1 −A)2.

Thus one can introduce a natural estimator of (B,A) by applying the inverse
of h to the CLS estimator of (ϱ,A), that is,

(B̂n, Ân) := h−1(ϱ̂n, Ân) =

(
log(ϱ̂n),

Ân∫ 1

0
(ϱ̂n)s ds

)
, n ∈ N,

on the set {ω ∈ Ω : (ϱ̂n(ω), Ân(ω)) ∈ R++ × R}. We also obtain

(B̂n, Ân) = argmin
(B,A)∈R2

n∑
k=1

(
Xk − eBXk−1 −A

∫ 1

0

eBs ds

)2

(3.6)
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for sufficiently large n ∈ N with probability converging to 1, hence
(
B̂n, Ân

)
is the CLS estimator of (B,A) for sufficiently large n ∈ N with probability

converging to 1. We would like to stress the point that the estimator
(
B̂n, Ân

)
exists only for sufficiently large n ∈ N with probability converging to 1.
However, as all our results are asymptotic, this will not cause a problem.

Theorem 3.1 Let (Xt)t∈R+ be a CBI process with parameters (c, a, b, ν, µ)
such that X0 = 0, the moment conditions (2.7) hold with q = 8, a ̸= 0 or
ν ̸= 0, and B = 0 (hence the process is critical). Then the probability of the

existence of the estimator (B̂n, Ân) converges to 1 as n→ ∞ and[
n(B̂n −B)

Ân −A

]
D−→ 1∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
[ ∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt

]
(3.7)

as n → ∞, where (Yt)t∈R+ is the pathwise unique strong solution of the
SDE (2.9), and Mt := Yt −At, t ∈ R+.

If, in addition, c = 0 and µ = 0 (hence the process is a pure immigration
process), then[

n3/2(B̂n −B)

n1/2(Ân −A)

]
D−→ N2

0,

∫ ∞

0

z2 ν(dz)

[
A2

3
A
2

A
2 1

]−1
 as n→ ∞.

(3.8)

Remark 3.2 By Remark 2.7, if C = 0, then Mt = 0, t ∈ R+, further, by

(3.7), n(B̂n −B)
D−→ 0 and Ân −A

D−→ 0 as n→ ∞. ⊓⊔

Remark 3.3 If C ̸= 0 then the estimator Ân is not consistent. The same
holds for the discrete time analogues of A, for instance, the immigration mean
of a critical Galton–Watson branching process with immigration, see Wei and
Winnicki Wei andWinnicki (1990), or the innovation mean of a positive regular
unstable INAR(2) process, see Barczy et al. Barczy et al (2014). ⊓⊔

Theorem 3.1 will follow from the following statement.

Theorem 3.4 Under the assumptions of Theorem 3.1, the probability of the
existence of unique CLS estimator (ϱ̂n, Ân) converges to 1 as n→ ∞ and[
n(ϱ̂n − ϱ)

Ân −A

]
D−→ 1∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
[ ∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt

]
(3.9)

as n→ ∞.
If, in addition, c = 0 and µ = 0 (hence the process is a pure immigration

process), then[
n3/2(ϱ̂n − ϱ)

n1/2(Ân −A)

]
D−→ N2

0,

∫ ∞

0

z2 ν(dz)

[
A2

3
A
2

A
2 1

]−1
 as n→ ∞.

(3.10)
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Proof of Theorem 3.1 Before Theorem 3.1 we have already investigated the
existence of (B̂n, Ân). Now we apply Lemma D.1 with S = T = R2, C = R2,

ξn =

[
n(ϱ̂n − ϱ)

Ân −A

]
=

[
n(ϱ̂n − 1)

Ân −A

]
,

ξ =
1∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
[ ∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt

]
,

with functions f : R2 → R2 and fn : R2 → R2, n ∈ N, given by

f

([
x

y

])
:=

[
x

y

]
, (x, y) ∈ R2, fn

([
x

y

])
:=

 n log
(
1 + x

n

)
y +A∫ 1

0
(1 + x

n )
s ds

−A


for (x, y) ∈ R2 with x > −n, and fn(x, y) := 0 otherwise. We have

fn(n(ϱ̂n − 1), Ân − A) = (n(B̂n − B), Ân − A) on the set {ω ∈ Ω : ϱ̂n(ω) ∈
R++}, and fn(xn, yn) → f(x, y) as n→ ∞ if (xn, yn) → (x, y) as n→ ∞,
since

lim
n→∞

log
(
1 +

xn
n

)n
= log(ex) = x,

and limn→∞
∫ 1

0
(1 + xn

n )s ds = 1, if xn → x as n→ ∞, since the function

R++ ∋ u 7→
∫ 1

0
us ds ∈ R is continuous. Consequently, (3.9) implies (3.7).

Next we apply Lemma D.1 with S = T = R2, C = R2,

ξn =

[
n3/2(ϱ̂n − ϱ)

n1/2(Ân −A)

]
, ξ

D
= N2

0,

∫ ∞

0

z2 ν(dz)

[
A2

3
A
2

A
2 1

]−1
 ,

with functions f : R2 → R2 and fn : R2 → R2, n ∈ N, given by

f

([
x

y

])
:=

[
x

y

]
, (x, y) ∈ R2,

fn

([
x

y

])
:=



 n3/2 log
(
1 + x

n3/2

)
n1/2

(
n−1/2y +A∫ 1

0
(1 + x

n3/2 )s ds
−A

) , (x, y) ∈ R2, x > −n3/2,

[
0

0

]
, otherwise.

We have again fn(xn, yn) → f(x, y) as n → ∞ if (xn, yn) → (x, y) as
n→ ∞. Indeed,

n1/2
(

n−1/2yn +A∫ 1

0
(1+ xn

n3/2 )s ds
−A

)
=

yn∫ 1

0
(1+ xn

n3/2 )s ds
+
An1/2

(
1−

∫ 1

0
(1+ xn

n3/2 )
s ds

)
∫ 1

0
(1+ xn

n3/2 )s ds
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if xn > −n3/2. Moreover,∣∣∣∣n1/2(1− ∫ 1

0

(1 +
xn
n3/2

)s ds
)
− n1/2

(
1−

∫ 1

0

(1 +
x

n3/2
)s ds

)∣∣∣∣
= n1/2

∣∣∣∣xn − x

n3/2

∫ 1

0

s
(
1 +

θn
n3/2

)s−1

ds

∣∣∣∣ 6 K
|xn − x|

n
→ 0 as n→ ∞

with θn (depending on xn and x) lying between xn and x, and with
some appropriate K > 0. Further, by L’Hospital’s rule,

lim
n→∞

n1/2
(
1−

∫ 1

0

(
1 +

x

n3/2

)s
ds

)
= lim
h→0

1−
∫ 1

0
(1 + h3x)s ds

h

= − lim
h→0

3h2x

∫ 1

0

s(1 + h3x)s−1 ds = 0.

Consequently, (3.10) implies (3.8). ⊓⊔
Theorem 3.4 will follow from the following statements by the continuous

mapping theorem and by Slutsky’s lemma, see below.

Theorem 3.5 Under the assumptions of Theorem 3.1, we have

n∑
k=1


n−2Xk−1

n−3X2
k−1

n−1Mk

n−2MkXk−1

 D−→


∫ 1

0
Yt dt∫ 1

0
Y2
t dt

M1∫ 1

0
Yt dMt

 as n→ ∞. (3.11)

In case of C = 0 the third and fourth coordinates of the limit vector
is 0 in Theorem 3.5, since (Yt)t∈R+

is the deterministic function Yt = At,
t ∈ R+ (see Remark 2.7), hence other scaling factors should be chosen for
these coordinates, as given in the following theorem.

Theorem 3.6 Suppose that the assumptions of Theorem 3.1 hold. If C = 0,
then

n−2
n∑
k=1

Xk−1
P−→ A

2
as n→ ∞,

n−3
n∑
k=1

X2
k−1

P−→ A2

3
as n→ ∞,

n∑
k=1

[
n−1/2Mk

n−3/2MkXk−1

]
D−→ N2

(
0,

∫ ∞

0

z2 ν(dz)

[
1 A

2

A
2
A2

3

])
as n→ ∞.



Statistical inference for critical CBI processes 11

Proof of Theorem 3.4 The statements about the existence of unique CLS esti-
mators (ϱ̂n, Ân) under the given conditions follow from Lemma C.1.

In order to derive (3.9) from Theorem 3.5, we can use the continuous
mapping theorem. Indeed,[

ϱ̂n − ϱ

Ân −A

]

=
1

n
n∑
k=1

X2
k−1 −

(
n∑
k=1

Xk−1

)2

 n
n∑
k=1

MkXk−1 −
n∑
k=1

Mk

n∑
k=1

Xk−1

n∑
k=1

Mk

n∑
k=1

X2
k−1 −

n∑
k=1

MkXk−1

n∑
k=1

Xk−1


on the set Hn. Moreover, since A ̸= 0, by the SDE (2.9), we have P

(
Yt =

0, t ∈ [0, 1]
)
= 0, which implies P

(∫ 1

0
Y2
t dt > 0

)
= 1. By Remark 2.6,

P(Yt > 0, t ∈ R+) = 1, and hence P(
∫ 1

0
Yt dt > 0) = 1. Next we show

P
(∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
> 0
)
= 1. We have

∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
=
∫ 1

0

(
Yt−∫ 1

0
Ys ds

)2
dt > 0, and equality holds if and only if Yt =

∫ 1

0
Ys ds for

almost every t ∈ [0, 1]. Since Y has continuous sample paths almost surely,

P
(∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
= 0
)
> 0 holds if and only if P

(
Yt =

∫ 1

0
Ys ds, ∀t ∈

[0, 1]
)
> 0. Hence, since Y0 = 0, this holds if and only if P (Yt = 0, ∀t ∈

[0, 1]) > 0, which is a contradiction due to our assumption A ∈ R++. Indeed,
with the notations of the proof of Theorem 3.1 in Barczy et al. Barczy et al
(2013), {ω ∈ Ω : Yt(ω) = 0, ∀t ∈ [0, 1]} = Ã1 ∩A1 = ∅. Consequently,[
n(ϱ̂n − ϱ)

Ân −A

]
D−→ 1∫ 1

0
Y2
t dt−

(∫ 1

0
Yt dt

)2
[ ∫ 1

0
Yt dMt −M1

∫ 1

0
Yt dt

M1

∫ 1

0
Y2
t dt−

∫ 1

0
Yt dt

∫ 1

0
Yt dMt

]
as n→ ∞, and we obtain (3.9).

If, in addition, c = 0 and µ = 0, then we derive (3.10) from Theorem
3.6 applying the continuous mapping theorem and Slutsky’s lemma. We have

1

n3

n∑
k=1

X2
k−1 −

(
1

n2

n∑
k=1

Xk−1

)2
P−→ A2

3
−
(
A

2

)2

=
A2

12
as n→ ∞.

Moreover,

n−4

[
n
∑n
k=1MkXk−1 −

∑n
k=1Mk

∑n
k=1Xk−1∑n

k=1Mk

∑n
k=1X

2
k−1 −

∑n
k=1MkXk−1

∑n
k=1Xk−1

]

= n−4

[
−n1/2

∑n
k=1Xk−1 n5/2

n1/2
∑n
k=1X

2
k−1 −n3/2

∑n
k=1Xk−1

][
n−1/2

∑n
k=1Mk

n−3/2
∑n
k=1MkXk−1

]

=

[
n−3/2 0

0 n−1/2

]−∑n
k=1Xk−1

n2 1∑n
k=1X

2
k−1

n3 −
∑n

k=1Xk−1

n2

[ n−1/2
∑n
k=1Mk

n−3/2
∑n
k=1MkXk−1

]
,
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hence, by Theorem 3.6 and Slutsky’s lemma,[
n3/2(ϱ̂n − ϱ)

n1/2(Ân −A)

]
=

[
n3/2 0

0 n1/2

][
ϱ̂n − ϱ

Ân −A

]
D−→ N2(0,Σ),

as n→ ∞, where

Σ :=

(
12

A2

)2 ∫ ∞

0

z2 ν(dz)

[
−A

2 1

A2

3 −A
2

][
1 A

2

A
2
A2

3

][
−A

2
A2

3

1 −A
2

]

=

(
12

A2

)2 ∫ ∞

0

z2 ν(dz)

[
A2

12 −A3

24

−A3

24
A4

36

]
=

12

A2

∫ ∞

0

z2 ν(dz)

[
1 −A

2

−A
2

A2

3

]
,

and we obtain (3.10). ⊓⊔

4 Proof of Theorem 3.5

Consider the sequence of stochastic processes

Z(n)
t :=

[
M(n)

t

N (n)
t

]
:=

⌊nt⌋∑
k=1

Z
(n)
k with Z

(n)
k :=

[
n−1Mk

n−2MkXk−1

]

for t ∈ R+ and k, n ∈ N. Theorem 3.5 follows from the following theorem
(this will be explained after Theorem 4.1).

Theorem 4.1 Under the assumptions of Theorem 3.1, we have

Z(n) D−→ Z, as n→ ∞, (4.1)

where the process (Zt)t∈R+ with values in R2 is the pathwise unique strong
solution of the SDE

dZt = γ(t,Zt) dWt, t ∈ R+, (4.2)

with initial value Z0 = 0, where (Wt)t∈R+ is a standard Wiener process,
and γ : R+ × R2 → R is defined by

γ(t,x) :=

[
C1/2 ((x1 +At)+)1/2

C1/2 ((x1 +At)+)3/2

]
, t ∈ R+, x = (x1, x2)

⊤ ∈ R2.

(Note that the statement of Theorem 4.1 holds even if C = 0.)
The SDE (4.2) has the form

dZt =:

[
dMt

dNt

]
=

[
C1/2 ((Mt +At)+)1/2 dWt

C1/2 ((Mt +At)+)3/2 dWt

]
, t ∈ R+. (4.3)
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One can prove that the first equation of the SDE (4.3) has a pathwise unique

strong solution (M(y0)
t )t∈R+

with arbitrary initial value M(y0)
0 = y0 ∈ R.

Indeed, it is equivalent to the existence of a pathwise unique strong solution
of the SDE

dS(y0)
t = Adt+ C1/2 ((S(y0)

t )+)1/2 dWt, t ∈ R+, (4.4)

with initial value S(y0)
0 = y0, since we have the correspondences

S(y0)
t = M(y0)

t +At, M(y0)
t = S(y0)

t −At,

by Itô’s formula. By Remark 2.6, the SDE (4.4) has a pathwise unique strong

solution (S(y0)
t )t∈R+ for all initial values S(y0)

0 = y0 ∈ R, and (S(y0)
t )+ may

be replaced by S(y0)
t for all t ∈ R+ in (4.4) provided that y0 ∈ R+, hence

(Mt+At)+ may be replaced by Mt+At for all t ∈ R+ in (4.3). Thus the
SDE (4.2) has a pathwise unique strong solution with initial value Z0 = 0,
and we have

Zt =

[
Mt

Nt

]
=

[∫ t
0
C1/2 (Ms +As)1/2 dWs∫ t

0
(Ms +As) dMs

]
, t ∈ R+.

By continuous mapping theorem (see, e.g., the method of the proof of X (n) D−→
X in Theorem 3.1 in Barczy et al. Barczy et al (2011)), one can easily derive[

X (n)

Z(n)

]
D−→

[
X̃
Z

]
, as n→ ∞, (4.5)

where

X (n)
t = n−1X⌊nt⌋, X̃t := Mt +At, t ∈ R+, n ∈ N.

By Itô’s formula and the first equation of the SDE (4.3) we obtain

dX̃t = Adt+ C1/2 (X̃+
t )1/2 dWt, t ∈ R+,

hence the process (X̃t)t∈R+ satisfies the SDE (2.9). Consequently, X̃ = Y.
Next, by continuous mapping theorem, convergence (4.5) implies (3.11), see,
e.g., the method of the proof of Proposition 3.1 in Barczy et al. Barczy et al
(2010).

Proof of Theorem 4.1 In order to show convergence Z(n) D−→ Z, we apply

Theorem E.1 with the special choices U := Z, U
(n)
k := Z

(n)
k , n, k ∈ N,

(F (n)
k )k∈Z+ := (Fk)k∈Z+ and the function γ which is defined in Theorem

4.1. Note that the discussion after Theorem 4.1 shows that the SDE (4.2)
admits a pathwise unique strong solution (Zz

t )t∈R+ for all initial values
Zz

0 = z ∈ R2. Applying Cauchy–Schwarz inequality and Corollary B.5, one

can check that E(∥U (n)
k ∥2) <∞ for all n, k ∈ N.
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Now we show that conditions (i) and (ii) of Theorem E.1 hold. The condi-
tional variance has the form

Var
(
Z

(n)
k | Fk−1

)
= Var(Mk | Fk−1)

[
n−2 n−3Xk−1

n−3Xk−1 n
−4X2

k−1

]
for n ∈ N, k ∈ {1, . . . , n}, and

γ(s,Z(n)
s )γ(s,Z(n)

s )⊤ = C

[
M(n)

s +As (M(n)
s +As)2

(M(n)
s +As)2 (M(n)

s +As)3

]

for s ∈ R+, where we used that (M(n)
s + As)+ = M(n)

s + As, s ∈ R+,
n ∈ N. Indeed, by (3.3), we get

M(n)
s +As =

1

n

⌊ns⌋∑
k=1

(Xk − eBXk−1 −A) +As =
1

n
X⌊ns⌋ +

ns− ⌊ns⌋
n

A ∈ R+

(4.6)

for s ∈ R+, n ∈ N, since eB = 1 and A = A.
In order to check condition (i) of Theorem E.1, we need to prove that for

each T > 0, as n→ ∞,

sup
t∈[0,T ]

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s +As) ds

∣∣∣∣ P−→ 0, (4.7)

sup
t∈[0,T ]

∣∣∣∣ 1n3
⌊nt⌋∑
k=1

Xk−1 Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s +As)2 ds

∣∣∣∣ P−→ 0, (4.8)

sup
t∈[0,T ]

∣∣∣∣ 1n4
⌊nt⌋∑
k=1

X2
k−1 Var(Mk | Fk−1)− C

∫ t

0

(M(n)
s +As)3 ds

∣∣∣∣ P−→ 0. (4.9)

First we show (4.7). By (4.6),
∫ t
0
(M(n)

s + sA) ds has the form

1

n2

⌊nt⌋−1∑
k=1

Xk +
nt− ⌊nt⌋

n2
X⌊nt⌋ +

⌊nt⌋+ (nt− ⌊nt⌋)2

2n2
A.

By Proposition B.3 and B = 0,

Var(Mk | Fk−1) = V Xk−1 + V0 = CXk−1 + V0. (4.10)

Thus, in order to show (4.7), it suffices to prove

n−2 sup
t∈[0,T ]

X⌊nt⌋
P−→ 0, (4.11)

n−2 sup
t∈[0,T ]

[
⌊nt⌋+ (nt− ⌊nt⌋)2

]
→ 0, (4.12)
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as n → ∞. Using (B.5) with (ℓ, i) = (2, 1), we have (4.11). Clearly, (4.12)
follows from |nt− ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we conclude (4.7).

Next we turn to prove (4.8). By (4.6),

∫ t

0

(M(n)
s + sA)2 ds =

1

n3

⌊nt⌋−1∑
k=1

X2
k +

1

n3
A

⌊nt⌋−1∑
k=1

Xk +
nt− ⌊nt⌋

n3
X2

⌊nt⌋

+
(nt− ⌊nt⌋)2

n3
AX⌊nt⌋ +

⌊nt⌋+ (nt− ⌊nt⌋)3

3n3
A2.

Recalling formula (4.10), we obtain

⌊nt⌋∑
k=1

Xk−1 Var(Mk | Fk−1) = C

⌊nt⌋∑
k=1

X2
k−1 + V0

⌊nt⌋∑
k=1

Xk−1. (4.13)

Thus, in order to show (4.8), it suffices to prove

n−3

⌊nT⌋∑
k=1

Xk
P−→ 0, (4.14)

n−3/2 sup
t∈[0,T ]

X⌊nt⌋
P−→ 0, (4.15)

n−3 sup
t∈[0,T ]

[
⌊nt⌋+ (nt− ⌊nt⌋)3

]
→ 0 (4.16)

as n → ∞. Using (B.4) with (ℓ, i) = (2, 1), we have (4.14). By (B.5) with
(ℓ, i) = (3, 1), we have (4.15). Clearly, (4.16) follows from |nt − ⌊nt⌋| 6 1,
n ∈ N, t ∈ R+, thus we conclude (4.8).

Now we turn to check (4.9). Again by (4.6), we have

∫ t

0

(M(n)
s + sA)3 ds =

1

n4

⌊nt⌋−1∑
k=1

X3
k +

3

2n4
A

⌊nt⌋−1∑
k=1

X2
k +

1

n4
A2

⌊nt⌋−1∑
k=1

Xk

+
nt− ⌊nt⌋

n4
X3

⌊nt⌋ +
3(nt− ⌊nt⌋)2

2n4
AX2

⌊nt⌋

+
(nt− ⌊nt⌋)3

n4
A2X⌊nt⌋ +

⌊nt⌋+ (nt− ⌊nt⌋)4

4n4
A3.

Recalling formula (4.10), we obtain

⌊nt⌋∑
k=1

X2
k−1 Var(Mk | Fk−1) = C

⌊nt⌋∑
k=1

X3
k−1 + V0

⌊nt⌋∑
k=1

X2
k−1. (4.17)
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Thus, in order to show (4.9), it suffices to prove

n−4

⌊nT⌋∑
k=1

X2
k

P−→ 0, (4.18)

n−4

⌊nT⌋∑
k=1

Xk
P−→ 0, (4.19)

n−4/3 sup
t∈[0,T ]

X⌊nt⌋
P−→ 0, (4.20)

n−4 sup
t∈[0,T ]

[
⌊nt⌋+ (nt− ⌊nt⌋)4

]
→ 0 (4.21)

as n → ∞. Using (B.4) with (ℓ, i) = (4, 2) and (ℓ, i) = (2, 1), we have
(4.18) and (4.19), respectively. By (B.5) with (ℓ, i) = (4, 1), we have (4.20).
Clearly, (4.21) follows again from |nt − ⌊nt⌋| 6 1, n ∈ N, t ∈ R+, thus we
conclude (4.9). Note that the proof of (4.7)–(4.9) is essentially the same as the
proof of (5.5)–(5.7) in Ispány et al. Ispány et al (2014).

Finally, we check condition (ii) of Theorem E.1, that is, the conditional
Lindeberg condition

⌊nT⌋∑
k=1

E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

∣∣Fk−1

) P−→ 0, as n→ ∞ (4.22)

for all θ > 0 and T > 0. We have E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

∣∣Fk−1

)
6

θ−2 E
(
∥Z(n)

k ∥4
∣∣Fk−1

)
and

∥Z(n)
k ∥4 6 2

(
n−4 + n−8X4

k−1

)
M4
k .

Hence, for all θ > 0 and T > 0, we have

⌊nT⌋∑
k=1

E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

)
→ 0, as n→ ∞,

since E(M4
k ) = O(k2) and E(M4

kX
4
k−1) 6

√
E(M8

k )E(X8
k−1) = O(k6) by

Corollary B.5. This yields (4.22). ⊓⊔
We call the attention that our moment conditions (2.7) with q = 8 are

used for applying Corollaries B.5 and B.6.

5 Proof of Theorem 3.6

The first two convergences in Theorem 3.6 follows from the following approx-
imations.
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Lemma 5.1 Suppose that the assumptions of Theorem 3.1 hold. If C = 0,
then for each T > 0,

sup
t∈[0,T ]

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

Xk−1 −A
t2

2

∣∣∣∣ P−→ 0, as n→ ∞. (5.1)

Proof We have

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

Xk−1 −A
t2

2

∣∣∣∣ 6 1

n2

⌊nt⌋∑
k=1

|Xk−1 −A(k − 1)|+A

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

(k − 1)− t2

2

∣∣∣∣,
where

sup
t∈[0,T ]

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

(k − 1)− t2

2

∣∣∣∣→ 0, as n→ ∞,

hence, in order to show (5.1), it suffices to prove

1

n2

⌊nT⌋∑
k=1

|Xk −Ak| P−→ 0, as n→ ∞. (5.2)

Recursion (3.4) yields E(Xk) = E(Xk−1) + A, k ∈ N, with intital value
E(X0) = 0, hence E(Xk) = Ak, k ∈ N. For the sequence

X̃k := Xk − E(Xk) = Xk −Ak, k ∈ N, (5.3)

by (3.4), we get a recursion X̃k = X̃k−1 +Mk, k ∈ N, with intital value

X̃0 = 0. Applying Doob’s maximal inequality (see, e.g., Revuz and Yor (Revuz

and Yor 1999, Chapter II, Theorem 1.7)) for the martingale X̃n =
∑n
k=1Mk,

n ∈ N,

E

(
sup
t∈[0,T ]

∣∣∣∣∣
⌊nt⌋∑
k=1

Mk

∣∣∣∣∣
2)

6 4E

(∣∣∣∣∣
⌊nT⌋∑
k=1

Mk

∣∣∣∣∣
2)

= 4

⌊nT⌋∑
k=1

E(M2
k ) = O(n),

where we applied Corollary B.5. Consequently,

n−1 max
k∈{1,...,⌊nT⌋}

|Xk −Ak| = n−1 max
k∈{1,...,⌊nT⌋}

|X̃k|
P−→ 0 as n→ ∞.

(5.4)
Thus,

1

n2

⌊nT⌋∑
k=1

∣∣Xk − kA
∣∣ 6 ⌊nT ⌋

n2
max

k∈{1,...,⌊nT⌋}

∣∣Xk − kA
∣∣ P−→ 0,

as n→ ∞, thus we conclude (5.2), and hence (5.1). ⊓⊔
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Lemma 5.2 Suppose that the assumptions of Theorem 3.1 hold. If C = 0,
then for each T > 0,

sup
t∈[0,T ]

∣∣∣∣ 1n3
⌊nt⌋∑
k=1

X2
k−1 −A2 t

3

3

∣∣∣∣ P−→ 0, as n→ ∞. (5.5)

Proof We have∣∣∣∣ 1n3
⌊nt⌋∑
k=1

X2
k−1 −A2 t

3

3

∣∣∣∣
6 1

n3

⌊nt⌋∑
k=1

∣∣X2
k−1 −A2(k − 1)2

∣∣+A2

∣∣∣∣ 1n3
⌊nt⌋∑
k=1

(k − 1)2 − t3

3

∣∣∣∣,
where

sup
t∈[0,T ]

∣∣∣∣ 1n3
⌊nt⌋∑
k=1

(k − 1)2 − t3

3

∣∣∣∣→ 0, as n→ ∞,

hence, in order to show (5.5), it suffices to prove

1

n3

⌊nT⌋∑
k=1

∣∣X2
k −A2k2

∣∣ P−→ 0, as n→ ∞. (5.6)

We have
|X2

k − k2A2| 6 |Xk − kA|2 + 2kA|Xk − kA|,
hence, by (5.4),

n−2 max
k∈{1,...,⌊nT⌋}

|X2
k − k2A2|

6
(
n−1 max

k∈{1,...,⌊nT⌋}
|Xk − kA|

)2
+

2⌊nT ⌋
n2

A max
k∈{1,...,⌊nT⌋}

|Xk − kA| P−→ 0,

as n→ ∞. Thus,

1

n3

⌊nT⌋∑
k=1

∣∣X2
k − k2A2

∣∣ 6 ⌊nT ⌋
n3

max
k∈{1,...,⌊nT⌋}

∣∣X2
k − k2A2

∣∣ P−→ 0,

as n→ ∞, and we conclude (5.6), and hence (5.5). ⊓⊔

The proof of the third convergence in Theorem 3.6 is similar to the proof
of Theorem 3.5. Consider the sequence of stochastic processes

Z(n)
t :=

⌊nt⌋∑
k=1

Z
(n)
k with Z

(n)
k :=

[
n−1/2Mk

n−3/2MkXk−1

]
for t ∈ R+ and k, n ∈ N. The proof of the third convergence in Theorem
3.6 follows from Lemmas 5.1 and 5.2, and the following theorem.
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Theorem 5.3 If C = 0 then

Z(n) D−→ Z, as n→ ∞, (5.7)

where the process (Zt)t∈R+ with values in R2 is the pathwise unique strong
solution of the SDE

dZt = γ(t)W̃t, t ∈ R+, (5.8)

with initial value Z0 = 0, where (W̃t)t∈R+ is a 2-dimensional standard
Wiener process, and γ : R+ → R2×2 is defined by

γ(t) := V0

[
1 At

At A2t2

]1/2
, t ∈ R+,

where V0 =
∫∞
0
z2 ν(dz).

The SDE (5.8) has a pathwise unique strong solution with initial value
Z0 = 0, for which we have

Zt = V
1/2
0

∫ t

0

[
1 As

As A2s2

]1/2
dW̃s, t ∈ R+.

Proof of Theorem 5.3 We follow again the method of the proof of Theorem
4.1. The conditional variance has the form

Var
(
Z

(n)
k | Fk−1

)
= Var(Mk | Fk−1)

[
n−1 n−2Xk−1

n−2Xk−1 n
−3X2

k−1

]

for n ∈ N, k ∈ {1, . . . , n}. Moreover, γ(s)γ(s)⊤ takes the form

γ(s)γ(s)⊤ = V0

[
1 As

As A2s2

]
, s ∈ R+.

In order to check condition (i) of Theorem E.1, we need to prove only that
for each T > 0,

sup
t∈[0,T ]

∣∣∣∣ 1n
⌊nt⌋∑
k=1

Var(Mk | Fk−1)− V0

∫ t

0

ds

∣∣∣∣ P−→ 0, (5.9)

sup
t∈[0,T ]

∣∣∣∣ 1n2
⌊nt⌋∑
k=1

Xk−1 Var(Mk | Fk−1)− V0A

∫ t

0

sds

∣∣∣∣ P−→ 0, (5.10)

sup
t∈[0,T ]

∣∣∣∣ 1n3
⌊nt⌋∑
k=1

X2
k−1 Var(Mk | Fk−1)− V0A

2

∫ t

0

s2 ds

∣∣∣∣ P−→ 0, (5.11)

as n→ ∞.
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By Proposition B.3, the assumption C = 0 yields Var(Mk | Fk−1) = V0 =∫∞
0
z2 ν(dz), hence (5.9), (5.10) and (5.11) follow from Lemmas 5.1 and 5.2,

respectively.
Finally, we check condition (ii) of Theorem E.1, that is, the conditional

Lindeberg condition

⌊nT⌋∑
k=1

E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

∣∣Fk−1

) P−→ 0, as n→ ∞ (5.12)

for all θ > 0 and T > 0. We have E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

∣∣Fk−1

)
6

θ−2 E
(
∥Z(n)

k ∥4
∣∣Fk−1

)
and

∥Z(n)
k ∥4 6 2

(
n−2 + n−6X4

k−1

)
M4
k .

Hence, for all θ > 0 and T > 0, we have

⌊nT⌋∑
k=1

E
(
∥Z(n)

k ∥21{∥Z(n)
k ∥>θ}

)
→ 0, as n→ ∞,

since E(M4
k ) = O(1) and E(M4

kX
4
k−1) 6

√
E(M8

k )E(X8
k−1) = O(k4) by

Corollary B.5. This yields (5.12). ⊓⊔

A Appendix: SDE for CBI processes

One can rewrite the SDE (1.1) in a form which does not contain integrals with respect to
non-compensated Poisson random measures (see, SDE (2.6)), and then one can perform a
linear transformation in order to remove randomness from the drift as follows, see Lemma
4.1 in Barczy et al. Barczy et al (2016+). This form is very useful for handling Mk, k ∈ N.

Lemma A.1 Let (c, a, b, ν, µ) be a set of admissible parameters such that the moment
condition (2.3) holds. Let (Xt)t∈R+

be a pathwise unique R+-valued strong solution to
the SDE (1.1) such that E(X0) < ∞. Then

Xt = eB(t−s)Xs +

∫ t

s
eB(t−u)Adu+

∫ t

s
eB(t−u)

√
2cXu dWu

+

∫ t

s

∫ ∞

0

∫ ∞

0
eB(t−u)z1{v6Xs−} Ñ(du, dz, dv) +

∫ t

s

∫ ∞

0
eB(t−u)z M̃(du,dz)

for all s, t ∈ R+, with s 6 t. Consequently,

Mk =

∫ k

k−1
eB(k−u)

√
2cXu dWu +

∫ k

k−1

∫ ∞

0

∫ ∞

0
eB(k−u)z1{v6Xs−} Ñ(du, dz, dv)

+

∫ k

k−1

∫ ∞

0
eB(k−u)z M̃(du, dz), k ∈ N.

Proof The last statement follows from (3.3), since A
∫ k
k−1 e

B(k−u) du = A
∫ 1
0 eB(1−u) du =

A. ⊓⊔
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Note that the formulas for (Xt)t∈R+
and (Mk)k∈N in Lemma A.1 can be found as

the first displayed formula in the proof of Lemma 2.1 in Huang et al. Huang et al (2011),
and formulas (1.5) and (1.7) in Li and Ma Li and Ma (2015), respectively.

Lemma A.2 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such that

X0 = 0, a ̸= 0 or ν ̸= 0, and B = 0 (hence it is critical). Suppose that C = 0 and the
moment conditions (2.7) hold with q = 2. Then

Mk =

∫ k

k−1

∫ ∞

0
z M̃(du, dz), k ∈ N.

and the sequence (Mk)k∈N consists of independent and identically distributed random
vectors.

Proof The assumption C = 0 implies c = 0 and µ = 0 (see, Remark 2.7), thus, by
Lemma A.1, we obtain the formula for Mk, k ∈ N.

A Poisson point process admits independent increments, hence Mk, k ∈ N, are
independent.

For each k ∈ N, the Laplace transform of the random variable Mk has the form

E(e−θMk ) = exp

{
−
∫ k

k−1

∫ ∞

0

(
1− e−θr

)
ds ν(dr)

}

= exp

{
−
∫ 1

0

∫ ∞

0

(
1− e−θr

)
du ν(dr)

}
= E(e−θM1 )

for all θ ∈ R+, see, i.e., Kyprianou (Kyprianou 2014, page 44), hence Mk, k ∈ N, are
identically distributed. ⊓⊔

B Appendix: On moments of CBI processes

In the proof of Theorem 3.1, good bounds for moments of the random variables (Mk)k∈Z+

and (Xk)k∈Z+
are extensively used. The following estimates are proved in Barczy and Pap

(Barczy and Pap 2016+, Lemmas B.2 and B.3).

Lemma B.1 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such that

E(Xq
0 ) < ∞ and the moment conditions (2.7) hold with some q ∈ N. Suppose that B = 0

(hence the process is critical). Then

sup
t∈R+

E(Xq
t )

(1 + t)q
< ∞. (B.1)

In particular, E(Xq
t ) = O(tq) as t → ∞ in the sense that lim supt→∞ t−q E(Xq

t ) < ∞.

Lemma B.2 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such that

E(Xq
0 ) < ∞ and the moment conditions (2.7) hold, where q = 2p with some p ∈ N.

Suppose that B = 0 (hence the process is critical). Then, for the martingale differences

Mn = Xn − E(Xn |Xn−1), n ∈ N, we have E(M2p
n ) = O(np) as n → ∞ that is,

supn∈N n−p E(M2p
n ) < ∞.

We have Var(Mk | Fk−1) = Var(Xk |Xk−1) and Var(Xk |Xk−1 = x) = Var(X1 |X0 =
x) for all x ∈ R+, since (Xt)t∈R+

is a time-homogeneous Markov process. Hence
Proposition 4.8 in Barczy et al. Barczy et al (2016+) implies the following formula for
Var(Mk | Fk−1).
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Proposition B.3 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such

that E(X2
0 ) < ∞ and the moment conditions (2.7) hold with q = 2. Then for all k ∈ N,

we have
Var(Mk | Fk−1) = V Xk−1 + V0,

where

V := C

∫ 1

0
eB(1+u) du,

V0 :=

∫ ∞

0
z2 ν(dz)

∫ 1

0
e2Bu du+AC

∫ 1

0

(∫ 1−u

0
eBv dv

)
e2Bu du.

Note that V0 = Var(X1 |X0 = 0). Moreover, if B = 0, i.e., in the critical case, we
have V = C.

Proposition B.4 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such

that E(Xq
0 ) < ∞ and the moment conditions (2.7) hold with some q ∈ N. Then for all

j ∈ {1, . . . , q}, there exists a polynomial Pj : R → R having degree at most ⌊j/2⌋, such
that

E
(
Mj

k | Fk−1

)
= Pj(Xk−1), k ∈ N. (B.2)

The coefficients of the polynomial Pj depends on c, a, b, ν, µ.

Proof We have

E
(
Mj

k | Fk−1

)
= E

[
(Xk − E(Xk |Xk−1))

j |Xk−1

]
and

E
[
(Xk − E(Xk |Xk−1))

j |Xk−1 = x
]
= E

[
(X1 − E(X1 |X0 = x))j |X0 = x

]
for all x ∈ R+, since (Xt)t∈R+

is a time-homogeneous Markov process. Replacing w by

eBt in the formula for E
[
(we−Bt(Yt −E(Yt))k

]
in the proof of Barczy et al. (Barczy et al

2016+, Theorem 4.5), and then using the law of total probability, one obtains

E
[
(Xt − E(Xt))

j
]
= j(j − 1)c

∫ t

0
ejB(t−s) E

[
(Xs − E(Xs))

j−2Xs
]
ds

+

j−2∑
ℓ=0

(j
ℓ

)∫ ∞

0
zj−ℓ µ(dz)

∫ t

0
ejB(t−s) E

[
(Xs − E(Xs))

ℓXs
]
ds

+

j−2∑
ℓ=0

(j
ℓ

)∫ ∞

0
zj−ℓ ν(dz)

∫ t

0
ejB(t−s) E

[
(Xs − E(Xs))

ℓ
]
ds

(B.3)

for all t ∈ R+ and j ∈ {1, . . . , q}, and hence, for each t ∈ R+ and j ∈ {1, . . . , q}, there
exists a polynomial Pt,j : R → R having degree at most ⌊j/2⌋, such that

E
[
(Xt − E(Xt))

j
]
= E

[
Pt,j(X0)

]
,

where the coefficients of the polynomial Pt,j depends on c, a, b, ν, µ, which clearly implies
the statement with Pj := P1,j . ⊓⊔

Corollary B.5 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such that

X0 = 0, a ̸= 0 or ν ̸= 0, and B = 0 (hence the process is critical). Suppose that the
moment conditions (2.7) hold with some q ∈ N. Then

E(Xi
k) = O(ki), E(M2j

k ) = O(kj)
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for i, j ∈ Z+ with i 6 q and 2j 6 q.
If, in addition, C = 0, then

E(|Mk|i) = O(1)

for i ∈ Z+ with i 6 q.

Proof The first and second statements follow from Lemmas B.1 and B.2, respectively.
If C = 0, then, by Lemma A.2, Mk, k ∈ N, are independent and identically

distributed, thus
E(|Mk|i) = E(|M1|i) = O(1)

for i ∈ Z+ with i 6 q. ⊓⊔

Corollary B.6 Let (Xt)t∈R+
be a CBI process with parameters (c, a, b, ν, µ) such that

X0 = 0, a ̸= 0 or ν ̸= 0, and B = 0 (hence the process is critical). Suppose that the
moment conditions (2.7) hold with some ℓ ∈ N. Then
(i) for all i ∈ Z+ with i 6 ⌊ℓ/2⌋, and for all θ > i+ 1, we have

n−θ
n∑

k=1

Xi
k

P−→ 0 as n → ∞, (B.4)

(ii) for all i ∈ Z+ with i 6 ℓ, for all T > 0, and for all θ > i+ i
ℓ
, we have

n−θ sup
t∈[0,T ]

Xi
⌊nt⌋

P−→ 0 as n → ∞, (B.5)

(iii) for all i ∈ Z+ with i 6 ⌊ℓ/4⌋, for all T > 0, and for all θ > i+ 1
2
, we have

n−θ sup
t∈[0,T ]

∣∣∣∣∣∣
⌊nt⌋∑
k=1

[Xi
k − E(Xi

k | Fk−1)]

∣∣∣∣∣∣ P−→ 0 as n → ∞. (B.6)

Proof The statements can be derived exactly as in Barczy et al. (Barczy et al 2014, Corollary
9.2 of arXiv version). ⊓⊔

C Appendix: CLS estimators

Lemma C.1 If (Xt)t∈R+
is a CBI process with parameters (c, a, b, ν, µ) such that B = 0

(hence it is critical), E(X0) < ∞, and the moment condition (2.3) holds, then P(Hn) → 1

as n → ∞, and hence, the probability of the existence of a unique CLS estimator (ϱ̂n, Ân)
converges to 1 as n → ∞, and this CLS estimator has the form given in (3.5) on the
event Hn.

Proof First, note that for all n ∈ N,

Ω \Hn =

ω ∈ Ω :

n∑
k=1

X2
k−1(ω)−

1

n

(
n∑

i=1

Xi−1(ω)

)2

= 0


=

ω ∈ Ω :
n∑

k=1

(
Xk−1(ω)−

1

n

n∑
i=1

Xi−1(ω)

)2

= 0


=

{
ω ∈ Ω : Xk−1(ω) =

1

n

n∑
i=1

Xi−1(ω), k ∈ {1, . . . , n}
}

= {ω ∈ Ω : 0 = X0(ω) = X1(ω) = · · · = Xn−1(ω)}

=

{
ω ∈ Ω :

1

n2

n∑
i=1

Xi−1(ω) = 0

}
,
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where we used that X0 = 0 and Xk > 0, k ∈ Z+.
By continuous mapping theorem, we obtain

1

n2

n∑
k=1

Xk
D−→
∫ 1

0
Yt dt as n → ∞, (C.1)

see, e.g., the method of the proof of Proposition 3.1 in Barczy et al. Barczy et al (2010).

By the proof of Theorem 3.4, we have P
(∫ 1

0 Yt dt > 0
)
= 1. Thus the distribution

function of
∫ 1
0 Yt dt is continuous at 0, and hence, by (C.1),

P(Hn) = P

(
n∑

i=1

Xi−1 > 0

)
= P

(
1

(n− 1)2

n∑
i=1

Xi−1 > 0

)
→ P

(∫ 1

0
Yt dt > 0

)
= 1

as n → ∞. ⊓⊔

D Appendix: a version of the continuous mapping theorem

The following version of continuous mapping theorem can be found for example in Kallenberg
(Kallenberg 2002, Theorem 4.27).

Lemma D.1 (Kallenberg) Let (S, dS) and (T, dT ) be metric spaces and (ξn)n∈N, ξ

be random elements with values in S such that ξn
D−→ ξ as n → ∞. Let f : S → T and

fn : S → T , n ∈ N, be measurable mappings and C ∈ B(S) such that P(ξ ∈ C) = 1 and

limn→∞ dT (fn(sn), f(s)) = 0 if limn→∞ dS(sn, s) = 0 and s ∈ C. Then fn(ξn)
D−→

f(ξ) as n → ∞.

E Appendix: convergence of random step processes

We recall a result about convergence of random step processes towards a diffusion process,
see Ispány and Pap Ispány and Pap (2010). This result is used for the proof of convergence
(4.1).

Theorem E.1 Let γ : R+×Rd → Rd×r be a continuous function. Assume that uniqueness
in the sense of probability law holds for the SDE

dUt = γ(t,Ut) dWt, t ∈ R+, (E.1)

with initial value U0 = u0 for all u0 ∈ Rd, where (Wt)t∈R+
is an r-dimensional

standard Wiener process. Let (Ut)t∈R+
be a solution of (E.1) with initial value U0 =

0 ∈ Rd.
For each n ∈ N, let (U

(n)
k )k∈N be a sequence of d-dimensional martingale differences

with respect to a filtration (F(n)
k )k∈Z+

, that is, E(U (n)
k | F(n)

k−1) = 0, n ∈ N, k ∈ N. Let

U(n)
t :=

⌊nt⌋∑
k=1

U
(n)
k , t ∈ R+, n ∈ N.

Suppose that E
(
∥U (n)

k ∥2
)
< ∞ for all n, k ∈ N. Suppose that for each T > 0,

(i) sup
t∈[0,T ]

∥∥∥∥∥⌊nt⌋∑
k=1

Var
(
U

(n)
k | F(n)

k−1

)
−
∫ t
0 γ(s,U(n)

s )γ(s,U(n)
s )⊤ds

∥∥∥∥∥ P−→ 0,

(ii)
⌊nT⌋∑
k=1

E
(
∥U (n)

k ∥21
{∥U(n)

k
∥>θ}

∣∣F(n)
k−1

) P−→ 0 for all θ > 0,

where
P−→ denotes convergence in probability. Then U(n) D−→ U as n → ∞.

Note that in (i) of Theorem E.1, ∥ · ∥ denotes a matrix norm, while in (ii) it denotes
a vector norm.
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Duffie D, Filipović D, Schachermayer W (2003) Affine processes and applications in finance.
Ann Appl Probab 13(3):984–1053, DOI 10.1214/aoap/1060202833

Huang J, Ma C, Zhu C (2011) Estimation for discretely observed continuous state
branching processes with immigration. Statist Probab Lett 81(8):1104–1111, DOI
10.1016/j.spl.2011.03.004

Ikeda N, Watanabe S (1989) Stochastic differential equations and diffusion processes, North-
Holland Mathematical Library, vol 24, 2nd edn. North-Holland Publishing Co., Ams-
terdam; Kodansha, Ltd., Tokyo
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