%0 Journal Article
%@ 1463-9076
%A  Ballay Boldizsar
%A  Szűcs Tímea
%A  Papp Dóra
%A  Czakó Gábor
%A Fizikai Kémiai és Anyagtudományi Tanszék SZTE / TTIK / KI FKAT [2016-],
%A MTA-SZTE Lendület Elméleti Reakciódinamika Kutatócsoport SZTE / TTIK / KI / FKAT [2019-],
%D 2023
%F publicatio:31846
%J PHYSICAL CHEMISTRY CHEMICAL PHYSICS
%N 42
%P 28925-28940
%T Phosphorus-centered ion-molecule reactions: benchmark ab initio characterization of the potential energy surfaces of the X<SUP>-</SUP> + PH<sub>2</sub>Y [X, Y = F, Cl, Br, I] systems
%U http://publicatio.bibl.u-szeged.hu/31846/
%V 25
%X In the present work we determine the benchmark relative energies and geometries of all the relevant stationary points of the X- + PH2Y [X, Y = F, Cl, Br, I] identity and non-identity reactions using state-of-the-art electronic-structure methods. These phosphorus-centered ion-molecule reactions follow two main reaction routes: bimolecular nucleophilic substitution (S(N)2), leading to Y- + PH2X, and proton transfer, resulting in HX + PHY- products. The S(N)2 route can proceed through Walden-inversion, front-side-attack retention, and double-/multiple-inversion pathways. In addition, we also identify the following product channels: H--formation, PH2-- and PH2-formation, (PH)-P-1- and (PH)-P-3-formation, H-2-formation and HY + PHX- formation. The benchmark classical relative energies are obtained by taking into account the core-correlation, scalar relativistic, and post-(T) corrections, which turn out to be necessary to reach subchemical (<1 kcal mol(-1)) accuracy of the results. Classical relative energies are augmented with zero-point-energy contributions to gain the benchmark adiabatic energies.
%Z Export Date: 8 December 2023                         CODEN: PPCPF                         Correspondence Address: Papp, D.; MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Rerrich Béla tér 1, Hungary; email: dorapapp@chem.u-szeged.hu                         Correspondence Address: Czakó, G.; MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Rerrich Béla tér 1, Hungary; email: gczako@chem.u-szeged.hu