%T Automatic Detection and Characterization of Biomarkers in OCT Images %A Katona Melinda %A KovĂĄcs Attila %A Varga LĂĄszlĂł %A GrĂłsz TamĂĄs %A Dombi JĂłzsef %A DĂŠgi RĂłzsa %A NyĂşl LĂĄszlĂł GĂĄbor %P 706-714 %L publicatio28509 %I szte %J LECTURE NOTES IN COMPUTER SCIENCE %O A sorozat rendelkezik IF [ĂŠs vagy] SJR ĂŠrtĂŠkkel a cikk megjelenĂŠsi ĂŠvĂŠben, ezĂŠrt besorolĂĄsa lehet szakcikk a kĂśzponti MTMT adminisztrĂĄtorokkal tĂśrtĂŠnt egyeztetĂŠs alapjĂĄn. (NM, SZTE admin5, 2023.05.26.) %X Optical Coherence Tomography (OCT) is one of the most advanced, non-invasive method of eye examination. Age-related macular degeneration (AMD) is one of the most frequent reasons of acquired blindness. Our aim is to develop automatic methods that can accurately identify and characterize biomarkers in OCT images, related to AMD. We present methods for quantizing hyperreflective foci (HRF) with deep learning. We also describe an algorithm for determining pigmentepithelial detachment (PED) and localizing outer retinal tubulation (ORT) that appears between the layers of the retina. %R MTMT:3389828 10.1007/978-3-319-93000-8_80 %V 10882 %D 2018