TY - JOUR VL - 10882 TI - Automatic Detection and Characterization of Biomarkers in OCT Images JF - LECTURE NOTES IN COMPUTER SCIENCE A1 - Katona Melinda A1 - Kovács Attila A1 - Varga László A1 - Grósz Tamás A1 - Dombi József A1 - Dégi Rózsa A1 - Nyúl László Gábor SP - 706 Y1 - 2018/// UR - https://doi.org/10.1007/978-3-319-93000-8_80 N1 - A sorozat rendelkezik IF [és vagy] SJR értékkel a cikk megjelenési évében, ezért besorolása lehet szakcikk a központi MTMT adminisztrátorokkal történt egyeztetés alapján. (NM, SZTE admin5, 2023.05.26.) ID - publicatio28509 AV - public SN - 0302-9743 EP - 714 N2 - Optical Coherence Tomography (OCT) is one of the most advanced, non-invasive method of eye examination. Age-related macular degeneration (AMD) is one of the most frequent reasons of acquired blindness. Our aim is to develop automatic methods that can accurately identify and characterize biomarkers in OCT images, related to AMD. We present methods for quantizing hyperreflective foci (HRF) with deep learning. We also describe an algorithm for determining pigmentepithelial detachment (PED) and localizing outer retinal tubulation (ORT) that appears between the layers of the retina. ER -