%0 Journal Article
%@ 1660-5446
%A  Kurusa Árpád
%A  Lángi Zsolt
%A  Vígh Viktor
%A Bolyai Intézet (Matematikai Intézet) SZTE / TTIK MI [2016-],
%A Geometria Tanszék BME / TTK / MI GT [2000-],
%A Geometriai Tanszék SZTE / TTIK / MI GT [2016-],
%A MTA-BME Szilárd testek morfodinamikája Kutatócsoport BME / ÉPK / SZTT [2017-],
%D 2020
%F publicatio:19353
%J MEDITERRANEAN JOURNAL OF MATHEMATICS
%N 5
%P Azonosító: 156-Terjedelem: 15 p
%T Tiling a circular disc with congruent pieces
%U http://publicatio.bibl.u-szeged.hu/19353/
%V 17
%X In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not all tiles contain the center, and the first step towards answering a question of Stein appearing in the problem book of Croft, Falconer and Guy in 1994.