%0 Journal Article %@ 1660-5446 %A Kurusa Árpád %A Lángi Zsolt %A Vígh Viktor %A Bolyai Intézet (Matematikai Intézet) SZTE / TTIK MI [2016-], %A Geometria Tanszék BME / TTK / MI GT [2000-], %A Geometriai Tanszék SZTE / TTIK / MI GT [2016-], %A MTA-BME Szilárd testek morfodinamikája Kutatócsoport BME / ÉPK / SZTT [2017-], %D 2020 %F publicatio:19353 %J MEDITERRANEAN JOURNAL OF MATHEMATICS %N 5 %P Azonosító: 156-Terjedelem: 15 p %T Tiling a circular disc with congruent pieces %U http://publicatio.bibl.u-szeged.hu/19353/ %V 17 %X In this note we prove that any monohedral tiling of the closed circular unit disc with $k \leq 3$ topological discs as tiles has a $k$-fold rotational symmetry. This result yields the first nontrivial estimate about the minimum number of tiles in a monohedral tiling of the circular disc in which not all tiles contain the center, and the first step towards answering a question of Stein appearing in the problem book of Croft, Falconer and Guy in 1994.