relation: http://publicatio.bibl.u-szeged.hu/16252/
title: Dowker-type theorems for hyperconvex discs
creator:  Fejes Tóth Gábor
creator:  Fodor Ferenc
description: A hyperconvex disc of radius r is a planar set with nonempty interior that is the intersection of closed circular discs of radius r . A convex disc-polygon of radius r is a set with nonempty interior that is the intersection of a finite number of closed circular discs of radius r . We prove that the maximum area and perimeter of convex disc- n -gons of radius r contained in a hyperconvex disc of radius r are concave functions of n , and the minimum area and perimeter of disc- n -gons of radius r containing a hyperconvex disc of radius r are convex functions of n . We also consider hyperbolic and spherical versions of these statements.
date: 2015
type: Folyóiratcikk
type: PeerReviewed
format: text
identifier: http://publicatio.bibl.u-szeged.hu/16252/1/DOWKER-SZTEPubl.pdf
identifier:     Fejes Tóth Gábor;  Fodor Ferenc: Dowker-type theorems for hyperconvex discs.   PERIODICA MATHEMATICA HUNGARICA, 70 (2).  pp. 131-144.  ISSN 0031-5303 (2015)     
identifier: doi:10.1007/s10998-014-0071-y
relation: http://real.mtak.hu/33619
relation: 2488534
language: eng