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Abstract
Alzheimer's disease (AD) is one of the major causes of dementia. The pathogenesis of the disease is not entirely understood, but the 
amyloid p peptide (Ap) and the formation of senile plaques seem to play pivotal roles. Oligomerization of the Ap is thought to 
trigger a cascade of events, including oxidative stress, glutamate excitotoxicity and inflammation. The kynurenine (KYN) pathway is 
the major route fo r the metabolism of the essential amino acid tryptophan. Some of the metabolites of this pathway, such as 
3-hydroxykynurenine and quinolinic acid, are known to have neurotoxic properties, whereas others, such as kynurenic acid, are puta­
tive neuroprotectants. Among other routes, the KYN pathway has been shown to be involved in AD pathogenesis, and connections 
to other known mechanisms have also been demonstrated. Oxidative stress, glutamate excitotoxicity and the neuroinflammation 
involved in AD pathogenesis have been revealed to be connected to the KYN pathway. Intervention at these key steps may serve as 
the aim of potential therapy.
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Alzheimer’s disease

Alzheimer's disease (AD) is one of the most common causes of 
dementias. A recent report forecast that the prevalence of AD 
was set to rise to 35.6 million people globally by 2010 [1, 2], 
w ith the imposition of an enormous financial burden. The key 
feature of the disease is the progressive deficit in several cogni­
tive domains [3 -7 ], paralleled by regionally specific brain atro­
phy [8- 11].

The first breakthrough towards an understanding of the pathome­
chanism of AD was the identification of amyloid p-peptide (Ap) 
in the meningeal vessels of AD patients and later in the senile plaques 
[12-14]. Ap is the product of the degradation of the amyloid precur­
sor protein (APP), the gene of which is located on chromosome 
21 [15-18]. The APP is cleaved by p- and 7 -secretases. Mutations 
of the presenilin 1 and 2 (the subcomponents of 7 -secretase), [19]

and the APP [20-24] result in the accumulation of the amyloido- 
genic form  of Ap and the clinical picture of AD, but the genetically 
determined form  of the disease is relatively rare. However, the 
oligomerization of Ap seems to be the pivotal step in the patho­
genesis of AD but the role of it was also questioned recently [25]. 
An intimate interaction between the oligomerization of Ap and 
several other pathomechanistic mechanisms leads to the hyper­
phosphorylation of T-proteins, the formation of neurofibrillary 
tangles, synaptic degeneration, oxidative stress, microglial and 
astrocytic activation, activation of the apoptotic cascade, cell 
death and transm itter deficiency (Figs 1 and 2). The aim of ther­
apeutic approaches is to modify one or other of these individual 
steps, generally by anti-am yloid, neuroprotective or neu­
rorestorative means.

Correspondence to: Professor László VÉCSEI,
Director, Department of Neurology, University of Szeged,
Faculty of Medicine, Albert Szent-Györgyi Clinical Center, 
Semmelweis u. 6., H-6725 Szeged,

©  2010 The Authors
Journal compilation ©  2010 Foundation for Cellular and Molecular

Hungary.
Tel.: +36(62)545351,545348
Fax: +36(62)545597
E-mail: vecsei@nepsy.szote.u-szeged.hu

doi:10.1111/j.1582-4934.2010.01123.x

ckwell Publishing Ltd

mailto:vecsei@nepsy.szote.u-szeged.hu


Fig. 1 Schematic outline of the pathomechanism of AD.

acid (KYNA) or by KYN hydroxylase to 3-hydroxykynurenine (3- 
OH-KYN), which is further metabolized to quinolinic acid (QUINA), 
the precursor of NAD (Fig. 3). These metabolites are usually 
referred to as neuroactive KYNs [27, 28]. KYNA is an antagonist 
of the strychnine-insensitive glycine-binding site of the N-methyl- 
D-aspartate (NMDA) receptor [29, 30], a weak antagonist of a - 
amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and 
kainite receptors [31] and also an inhibitor of the a 7 nicotinic 
receptor [32], which is involved in the pre-synaptic regulation of 
glutamate (L-Glu) release. Conversely, the neuroinhibitory effect 
of KYNA is concentration dependent: in nanomolar concentra­
tions, it facilitates field excitatory postsynaptic potentials (EPSPs) 
[33]. QUINA is neurotoxic [34], and has been shown to be a direct 
activator of NMDA receptors [35], to modulate the release or reup­
take inhibition of L-Glu [36] and to be involved in lipid peroxida­
tion [37, 38] and the production of reactive oxygen species (ROS) 
[38, 39]. 3-OH-KYN also leads to cell death involving apoptotic 
features by generating ROS [39-42].

The kynurenine pathway

Neuroactive kynurenines

The kynurenine (KYN) pathway is the major route for the metabo­
lism of the essential amino acid tryptophan (TRP) [26], the final 
product of which is nicotinamide adenosine dinucleotide (NAD) 
(Fig. 3). The first stable metabolite of the pathway is KYN, which 
is transformed either by KYN aminotransferase (KAT) to kynurenic

Enzymes of the kynurenine pathway

The rate-limiting step of the KYN pathway is TRP-KYN transfor­
mation, which is catalysed by indoleamine 2,3-dioxygenase (IDO) 
(Fig. 3.). IDO is known to be expressed by activated astrocytes, 
microglia and infiltrating macrophages [43], but neuronal expres­
sion has also been demonstrated [44].

The key enzyme in the production of putative neuroprotective 
KYNA is a transaminase. Four isoforms of KAT have been identi­
fied in the mammalian brain [45], which contribute differently to
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Fig. 2 Interactions of the major routes of the AD 
pathomechanism. The three main cellular compo­
nents -  the neuron, astrocyte and the microglia -  
are depicted in the figure. The central mechanism 
in the pathomechanism of AD is the aggregation 
of Ap , which in turn activates several parallel but 
interacting pathomechanistic pathways: oxidative 
stress, neuroinflammation, T -hyperphosphoryla- 
tion, glutamate excitotoxicity.
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Fig. 3 The KYN pathway of the tryptophan metabolism. International 
Classification Number of the depicted enzymes: tryptophan 2,3-dioxygenase: 
EC 1.13.11.11; formamidase: EC 3.5.1.9; kynurenine-3-hydroxylase: 
EC 1.14.13.9; kynurenine aminotransferase: EC 2.6.1.7; kynureninase: EC 
3.7.1.3; 3-hydroxyanthranilic acid oxidase: EC 1.13.11.6; quinolinic phos- 
phoribosyltransferase: EC 2.4.2.19.

KYNA production in the different species [46]. The substrate 
profile, pH optimum and localization are different fo r the four iso­
forms. The pH optimum of KAT I and KAT III is relatively high, at 
around 9.5 to 10.0, whereas KAT II operates best at physiological 
pH and has a relative substrate specificity fo r KYN. KAT II is there­
fore the major biosynthetic enzyme of KYNA production in the 
brain. However, recent results indicated that the higher pH opti­
mum of KAT I may well be due to methodological issues [47, 48].

Immunohistochemical studies indicated that KAT I and II are local­
ized preferentially in the astrocytes [49, 50], whereas KAT IV 
(m itochondrial aspartate aminotransferase) is also present in 
neurons [51],

Importantly, downstream enzymes of the KYN pathway, such 
as 3-hydroxyanthranilate oxygenase, which leads to QUINA 
production, are expressed in the microglia, macrophages and astro­
cytes, but not in the neurons [52-54], KYN hydroxylase seems to 
be an exception as it is not expressed in the astrocytes [55],

Relations of kynurenines 
to the pathomechanism of AD

Altered activation of the kynurenine pathway in AD

Alterations in the KYN pathway has been identified in several neu­
rological and more specifically neurodegenerative diseases [56, 
57], such as Huntington chorea [58], Parkinson's disease 
[59-62], multiple sclerosis [63, 64], focal dystonia [65] and 
migraine [66-69]. An increasing body of evidence indicates that 
the KYN pathway is involved in the pathogenesis of AD [70, 71]. 
Baran found slight decreases in the KYN and 3-OH-KYN levels in 
patients with pathologically confirmed AD [71]. A markedly 
increased content of KYNA was found selectively in the caudate 
nucleus and the putamen, which was correlated with increased 
KAT I activity. The level of aspartate aminotransferase in the cere­
brospinal fluid (CSF) was found to be elevated in AD patients [72]. 
The mitochondrial form  of the enzyme was identified as KAT IV 
[46]. The serum and red blood cell KYNA levels were decreased in 
A d patients, but there was no alteration in the KAT I or II activity 
[73]. Furthermore, the serum KYN/TRP ratio was found to be 
increased in AD patients, indicating and enhanced activity of IDO, 
the firs t key enzyme of the pathway [70]. Interestingly the 
TRP/KYN ratio also proved to be correlated with the cognitive per­
formance of the patients [70]. Another study demonstrated lower 
KYNA concentration in the lumbar CSF in AD patients [74]. No 
alteration in QUINA was found either in the CSF [74] or in the 
examined cortical, subcortical or cerebellar structures [75]. 
AP1-42 induced the expression of IDO and a significant increase in 
QUINA in human macrophages and microglia [76], but no similar 
effect of AP1-40 was found [77]. A human AD brain preparation 
involving a subset of senile plaques displayed IDO and QUINA 
immunoreactivity, and these plaques were characterized by high 
microglia and reactive astrocytic contents [44].

Connection of oxidative stress and kynurenines

The central nervous system (CNS) is prone to oxidative stress- 
caused damage as it is rich in polysulphated fatty acids, has a high 
metabolic oxidative activity, has a high content of transition
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metals and also exhibits relatively little antioxidant mechanism. 
Several lines of evidence indicate that oxidative stress has a key 
role in the pathogenesis of AD and especially in the initiation of 
pathological processes in sporadic AD [78-80]. In vitro studies 
have shown that Ap in aqueous solution fragments and generates 
free radicals [81]. Post-mortem and animal model studies have 
confirmed the oxidative stress hypothesis by revealing signs of 
oxidative damage: changes in antioxidants (Cu/Zn superoxide dis- 
mutase [SOD] and glutathione reductase) [82], lipid peroxidation 
[83], free carbonyls [81] and peroxynitration [84]. A direct con­
nection between Ap and free radicals was proved by McLellan 
et al, who demonstrated the co-localization of free radical- 
induced fluorescent staining with dense core plaques, but not with 
diffuse plaques in an in vivo transgenic mouse model and in 
ex vivo human AD tissue [85].

A close connection between APP/Ap and the mitochondria 
had already been established. The APP and Ap were found to be 
associated w ith the mithochondrial membrane [86, 87] and to 
bind to the mitochondrial matrix protein [88]. A p i-42 inhibits 
cytochrome oxidase activity in a Cu-dependent manner [89]. 
Devi et al. found that the APP accumulates in the protein import 
channels of the mitochondria of AD patients and inhibits entry of 
the nuclearly encoded cytochrome c oxidase subunits in associ­
ation with a decreased cytochrome activity and increased H2O2 
production [90]. Similarly, Sirk et al. showed that A p 25-35 in a 
sublethal dose can inhibit the import of nuclearly encoded pro­
teins to the mitochondria and that a sustained period of inhibited 
protein import leads to a reduced mitochondrial membrane 
potential and an increased level of ROS production [91]. 
Furthermore, Ap promotes permeability transition pores in m ito ­
chondria [92], th is  effect seeming to be dependent on 
cyclophilin D as cyclophilin-deficient m itochondria are resistant 
to Ap and Ca2+-induced mitochondrial swelling and permeabil­
ity transition [93].

In contrast, BACE an aspartyl protease with p-secretase 
activity [94, 95] can be induced by oxidative stress [96], which in 
turn leads to a proportional elevation of the carboxyl-terminal 
fragments of APP. This draws attention to the possible initiating 
role of oxidative stress in the pathogenesis of sporadic AD.

QUINA is known to cause an increased level of lipid peroxida­
tion [37, 97], an effect that seems to be NMDA receptor dependent: 
MK-801, an NMDA receptor antagonist, can completely abolish 
QUINA-induced lipid peroxidation [97]. Another study raised the 
possibility that the lipid peroxidation effect of QUINA depends on 
iron and is likely to involve iron chelation by QUINA [98]. QUINA 
not only induces oxidative stress through the production of ROS, 
but also appears to influence the antioxidative mechanisms. The 
concentrations of reduced (GSH) and oxidized (GSSG) glutathione 
were decreased and increased, respectively, whereas the level of 
glutathione peroxidase remained stable, indicating a non­
enzymatic conversion of GSH to GSSG [99]. The same study also 
showed that the cytosolic Cu/Zn SOD activity decreased, whereas 
the mitochondrial Mn SOD was unchanged after intrastriatal 
QUINA treatment [99], signifying the immediate cytoplasmatic 
effects of QUINA. Although ROS production seems to be a general

feature of QUINA treatment, the lipid peroxidation effect is region­
ally specific in rat synaptosomes: the striatum and hippocampus 
displayed increased production of peroxidized lipids after QUINA 
treatment [38]. Furthermore, lipid peroxidation and oxidative 
stress could be antagonized by Nm-nitra-L-arginine, a selective 
antagonist of nitrogen monoxide synthase [100]. Nm-nitro-L- 
arginine was further shown to diminish KYNA synthesis by reduc­
ing the activities of KAT I and II [101, 102].

The importance of ROS production in QUINA toxicity was also 
demonstrated by the finding that free radical scavengers are able 
to attenuate the functional structural and behavioural effect of 
QUINA toxicity [103, 104].

Glutamatergic excitotoxicity

The key feature of glutamatergic neurotransmission is the rapid 
and efficient removal of L-Glu from the synaptic cleft with high- 
affinity transporters to prevent receptor over stimulation. L-Glu is 
taken up by the astrocytes, converted to L-glutamine, transported 
to the neurons and then recycled to L-Glu and finally packed into 
synaptic vesicles for reuse. Pathological accumulation of L-Glu 
leads to prolonged, tonic activation, sustained local depolarization 
and the influx of cations that trigger the further release of L-Glu. 
This vicious circle triggers intracellular events [105], primarily 
swelling of the neurons because of the increased cation concen­
tration and consequent water influx, and secondly a delayed Ca2+- 
dependent neuronal degeneration [106]. Neuronal degeneration is 
mediated by calpain I, which brings about cytoskeletal breakdown 
[107]. Phospholipases break down the cell membranes and gen­
erate arachnoidal acid [108], the metabolism of which generates 
free oxygen radicals and initiates apoptosis [109]. It has been 
shown that the NMDA receptor is closely linked to protein phos­
phatase 2A (PP2A), and stimulation of the NMDA receptor leads to 
the dissociation of PP2A and a reduction of the phosphatase activ­
ity [110]. This NMDA receptor-mediated mechanism may be 
involved in T-hyperphosphorylation, a key step in the formation of 
neurofibrillary tangles [111].

As mentioned above, QUINA is the direct activator of NMDA 
receptors [35] and the neurotoxicity of the compound in sub­
physiological concentrations is blocked by the NMDA receptor 
blockers MK-801 and memantine [112]. The neurotoxicity of 
QUINA was related in this experiment to the depletion of NAD+ , 
the activation of poly(ADP-ribose) polymerase, extracellular 
lactate dehydrogenase release and the induction of inducible and 
neuronal nitric oxide synthase [112]. The other possible mecha­
nism by which QUINA induces AD pathology is PPA2-mediated 
T-phosphorylation, which can be abrogated by memantine [111]. 
Interestingly, this effect of memantine seems to be unrelated to 
the glycine or L-Glu binding site of the NMDA receptor as PP2A 
inhibition-induced hyperphosphorylation could not be prevented 
by the NMDA antagonist 5,7-dichlorokynurenic acid or by D(-)-2- 
amino-5-phosphopentanoic acid [113].

QUINA was shown to increase the basal L-Glu release in an 
NMDA receptor-mediated manner [36, 114].
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QUINA not only modulates the release of L-Glu but also Inhibits 
the uptake of L-Glu to the astrocytes, which Is considered to be 
one of the major processes In maintaining the L-Glu concentration 
below toxic levels [36], A recent experiment demonstrating that 
KYN pre-treatment, which presumably leads to the production of 
KYNA in the astrocytes, is able to prevent the neurotoxic effect of 
L-Glu is indicative of the potential beneficial effect of KYN in neu­
rodegenerative diseases [115],

Inflammation

An increased amount of reactive microglia is commonly found in 
the brain of AD patients [116, 117], Most of them are around the 
Ap-containing compact plaques [118-120], Both immunohisto­
chemical and i n  vivoimaging studies have revealed microgliosis- 
related signal changes in AD [121], Furthermore, Edison et al 
found that PET detected microglia activation, but not the amyloid 
burden correlated with the cognitive performance of the patients 
[122], A role of the microglia has been proposed in the degrada­
tion of Ap [123], but microglial activation also leads to activation 
of the complement system and the release of cytokines, 
chemokines and acute phase proteins (for reviews see 
[124-126]), which might also play a role in AD pathogenesis,

The KYN pathway is known to be involved in inflammatory 
processes with various mechanisms, Inflammation due to focal 
poliovirus is accompanied by the up-regulation of IDO, the rate- 
limiting step in the KYN pathway that results in increased levels of 
QUINA, KYN and KYNA [127, 128], It has also been demonstrated 
that the sources of QUINA are the macrophages and to a lesser 
degree microglia, A human foetal brain culture consisting of neu­
rons and astrocytes transformed TRP to KYN when stimulated by 
7 -interferon, but QUINA was formed only when macrophages 
were added to the culture [127, 129], The abilities of macrophages 
and microglia to produce QUINA differ [130]; this is related to the 
lower expressions of three key enzymes of the KYN pathway in the 
microglia: IDO, kynureninase and KYN hydroxylase [131], Ap is 
known to induce phenotypic activation of the microglia and also to 
modulate the acute and chronic expression of pro-inflammatory 
genes [132, 133] that may produce potentially toxic products, 
Interestingly, besides many other pro-inflammatory genes, the 
expressions of the enzymes of the KYN pathway are also sign ifi­
cantly altered by Ap [124, 132], Importantly, only AP1-42 , but not 
AP1-40 or AP25-35 activated THP-1 cells (a human monocytic cell 
line) [134], Administration of 7 -interferon after AP1-42 pre-treat­
ment, but not interleukin-1b, tum our necrosis factor-a or inter­
leukin-6, induced the expression of IDO [134], Microarray analy­
sis of the gene expression profile of the Ap stimulated microglia 
indicated an average increase of more than 40-fold (278-fold by 
real-time PCR) in IDO production at 24 hrs, which remained sig­
nificantly elevated at 96 hrs [132], Similarly, the expression of 
kynureninase was elevated (3,6-fold), but not that of KAT II, These 
data show that Ap stimulation of the microglia shifts the KYN 
pathway in the direction of the production of neurotoxic QUINA 
relative to the putative neuroprotectant KYNA, In a recent study by

Guillemin et al,  IDO and QUINA were overproduced in human AD 
hippocampus preparations [44], Immunoreactivity of IDO and 
QUINA was detected in the microglia and astrocytes and also in 
the neurons, The intracytoplasmatic vesicular neuronal QUINA 
immunoreactivity is thought to be a result of the uptake rather 
than the de novo neuronal synthesis of QUINA as it was earlier 
shown that the neurons produce IDO, but not QUINA [135], 
Further, the astrocytes lack KYN hydroxylase and consequently the 
uptake of QUINA might be part of the neuroprotective mechanism 
[43], Additionally, QUINA induces astrogliosis and the production 
of chemokines such as interleukin 1p, MCP-1 (CCL2), RANTES 
(CCL5) and interleukine-8 (CXCL8) [136-139],

A future therapeutic approach: 
modulating the kynurenine pathway

The foregoing data indicate the significant involvement of the KYN 
pathway in the pathogenesis of AD, The key seems to be the shift 
in the TRP metabolism in the direction of neurotoxic agents and 
the relative reduction of neuroprotectant products, This shift has 
profound, but surely not independent effects on different patho- 
mechanistic pathways in AD: oxidative stress, L-Glu neurotrans­
mission and inflammation, Re-establishment of the physiological 
metabolite ratios, or even a shift of the TRP metabolism in the 
neuroprotectant direction may serve as a potential therapeutic 
approach [27, 140], Synthetic KYNs such as KYNA are of limited 
therapeutic use as they penetrate the blood-brain barrier only 
poorly [141], an exception being 4-Cl-KYN that readily enters the 
brain and is transformed to 7-Cl-KYN by KAT [142], The systemic 
administration of 4-Cl-KYN increased the level of 7-Cl-KYN in the 
hippocampus and reduced the kainite-induced seizure activity 
[142], Similarly, 4-Cl-KYN reduced the neurotoxic effect of QUINA 
in the rat hippocampus and striatum [143, 144], In contrast, the 
synthetic KYN derivative, NMDA antagonist 5,7-dichlorokynurenic 
acid did not attenuate PP2A inhibition-induced T-hyperphospory- 
lation [113], A substantial effort is being made to develop 
new KYNA derivatives that cross the blood-brain barrier
[145] , We recently demonstrated that a novel KYN analogue, 
2-(2-N ,N-dim ethylam inoethylam ine-1-carbonyl)-1H -quinolin-4- 
one hydrochloride, exhibits features similar to those of KYNA
[146] , In the micromolar range, its administration decreased the 
amplitude of the field EPSPs in the CA1 region of the hippocam­
pus, Preclinical and subsequent clinical investigations of the com­
pound are needed to evaluate its usefulness in neurodegenerative 
diseases such as AD,

Another possibility via which to increase the level of neuropro­
tectant KYNA is to modulate the activities of the individual 
enzymes of the KYN pathway, Nicotinylalanine, an agent that 
inhibits kynureninase and KYN hydroxylase activity, administered 
together with KYN and probenicid (an inhibitor of organic acid 
transport), increased the brain KYNA level and inhibited QUINA- 
induced neurotoxicity [147, 148], Another such enzyme is KYN
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hydroxylase, loss of function mutation of which in yeast reduces 
mutant huntingtin fragment toxicity [149], Ro 61-8048, a high- 
affinity inhibitor of KYN hydroxylase significantly reduced the 
mutant huntingtin-induced production of 3-OH-KYN, but not that 
of QUINA production, and did not ameliorated ROS production 
[149], In a recent study Amori et al. selectively inhibited KAT or 
KYN hydroxylase and reported the reduction of 3-OH-KYN -  
QUINA and KYNA production, respectively [150], Interestingly 
pre-treatment w ith intrastriatal QUINA UPF 648 not only 
decreased the levels of 3-OH-KYN and QUINA, but also moderately 
elevated KYNA production [150],

Concluding remarks

There is appreciable evidence that the neurodegeneration in AD is 
mediated, at least partly, by neurotoxic products of the KYN path­
way, Possible therapeutic approaches could be to reduce the 
expression of these neurotoxic agents or to increase the produc­
tion of putative neuroprotectant KYNA or make use of its ana­
logues, However, the specific involvement of the KYN pathway in 
AD, it also has to be emphasized that neurodegenerative diseases

share several common features. Among other common mecha­
nisms the shift in the KYN pathway seems to be general over d if­
ferent neurodegenerative diseases [27, 56, 58, 62-65] and such, 
neuroprotective therapies influencing the KYN pathway may be 
beneficial in several neurological pathologies.

Further research is needed to elucidate the exact role of the 
KYN pathway in the pathomechanism of these neurodegenerative 
processes in an effort to promote the development of novel ther­
apeutic agents.
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