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Strain Kaplan of Pseudorabies Virus Genome Sequenced by PacBio 
Single-Molecule Real-Time Sequencing Technology
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Pseudorabies virus (PRV) is a neurotropic herpesvirus that causes Aujeszky’s disease in pigs. PRV strains are widely used as 
transsynaptic tracers for mapping neural circuits. We present here the complete and fully annotated genome sequence of strain 
Kaplan of PRV, determined by Pacific Biosciences RSII long-read sequencing technology.
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Pseudorabies virus (PRV), also known as Aujeszky’s disease vi­
rus or suid herpesvirus 1, a member of the Alphaherpesvirinae 

subfamily, causes significant abortion and morbidity in pigs, the 
natural host of the virus ( 1). PRV is a useful model organism for 
studies of the pathogenesis of herpesviruses. The genetically m od­
ified strains are powerful tracers for mapping neuronal circuits 
(2- 6 ), are tools in gene and cancer therapy (7), and serve as viral 
vectors for gene delivery into mammalian neurons (3, 4) and car­
diomyocytes (8); PRVs have also been employed as live vaccines 
against Aujeszky’s disease (9-11 ). Further, attenuated vaccine 
strains of PRV are valuable models for novel vaccine development 
against varicella-zoster virus (VZV) and herpes simplex virus 1 
and 2 (HSV-1 and HSV-2, respectively) ( 12).

The currently available genome sequences of PRV contain sev­
eral discrepancies, mainly in intergenic repetitive regions 
(GenBank accession no. JF797218.1), and the totally annotated 
version of genome sequence is a composite of six different PRV 
strains (GenBank accession no. NC_006151.1). We have se­
quenced the PRV Kaplan genome with Pacific Biosciences single­
molecule long-read sequencing technology (Pacific Biosciences, 
Menlo Park, CA, USA) in order to upgrade the draft sequences, 
reconstruct the GC-rich and repetitive regions of the genome, and 
extract epigenetic information. The availability of the completely 
annotated genome and the single-base resolution methylation 
map of strain Kaplan will aid in understanding the control of viral 
gene expression at different levels. Investigations of the PRV ge­
nome and gene functions are expected to result in the develop­
ment of effective vaccines and direct practical applications in gene, 
cancer, and antiviral therapies.

Sequencing of purified virion DNA was carried out on the Pa­
cific Biosciences RSII sequencer. SMRTbell template libraries 
were prepared from the DNA, as previously described ( 13, 14), 
using standard protocols for 6-kb and 20-kb library preparation. 
Sequencing was performed in five single-molecule real-time 
(SMRT) cells with P5 DNA polymerase and C3 chemistry (P5-C3) 
yielding a total of 78,111 reads and an extremely high coverage 
(1,200 X) throughout the genome.

The sequencing reads were processed and mapped to the respective 
reference sequences with the BLASR mapper (https://github.com/Pacific 
B i o s c i e n c e s / b l a s r ) and the Pacific Biosciences SMRT Analysis 
pipeline (https://github.com/PacificBiosciences/SMRT-Analysis 
/wiki /SMRT-Pipe-Reference-Guide-v2.0) using the standard 
mapping protocol.

The protein-coding genes were predicted by GATU ( 15). Man­
ual annotation was used to identify other genomic features. An­
notation of a previously unknown noncoding RNA (named Close 
to OriL [CTO]), a newly discovered splice site of the early protein
0 gene, and new isoforms of 11 protein-coding genes are based on 
RNAseq data (our unpublished data). MicroRNA (miRNA) an­
notation was based on the precursor miRNAs found in strains 
NIA-3 and Ea.

The complete genome of strain Kaplan of PRV is characterized 
as a double-stranded linear DNA composed of 143,423 bp, with an 
average G +  C content of 73.59%. PRV contains 70 protein-coding 
genes (11 genes have different isoforms), two latency-associated 
transcripts, and a long noncoding RNA, and its genome predicts 
16 miRNAs.

Nucleotide sequence accession number. The complete ge­
nome of strain Kaplan of pseudorabies virus was assigned DDBJ/ 
EMBL/GenBank accession no. KJ717942.
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