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Abstract From a model of focusing with lenses that includes the effects
of the lens variable thickness, material dispersion, aperture, spherical and
chromatic aberrations, we characterize the conditions under which a lens can
focus to few-cycle, transform-limited pulses propagating without distortion
along the focal region. A lens also allows to control the carrier-envelope
phase shift along the focus. The carrier-envelope phase shift is drastically
reduced by focusing with specific focal lengths and input spot sizes, which
are of the same order as those typically used in experiments involving fo-
cusing for phase-sensitive, light-matter interactions.

1 Introduction

In experiments involving focusing of visible or near-infrared pulses of dura-
tion of a few femtoseconds, comprising only a few oscillations of the electric
field, the use of lenses is prevented because of the widespread belief that
they strongly deteriorate the pulse quality. Elimination of the dispersion
introduced by the variable lens thickness is thought to require sophisticated
means, and the lens chromatic aberration is assumed to cause pulse broad-
ening and pulse front distortion in the focus. To avoid having to deal with
these undesirable effects, and to keep the bandwidth-limited duration of the
input pulse in the focal region, reflective optics is usually used in experi-
ments of high-harmonic generation with few-cycle driving pulses [1,2], in
attosecond pulse generation [3,4], in other phase-sensitive interactions with
matter [5–8], in devices that measure the carrier-envelope phase (CEP) of
the pulse based on these phase-sensitive interactions [9–11], or in compres-
sion of femtosecond pulses by filamentation [12,13].
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In the phase sensitive interactions with matter, it would be desirable to
maintain, in principle, a constant CEP in the interaction region, or at least
to know its variation along the focus to restrict the interaction region prop-
erly [14]. As it is well-known, the CEP experiences a total phase shift of −π
through the focal region due to Gouy phase shift, but the specific variation
within focus depends on the focusing geometry. Focusing with a mirror (i.e.,
with no chromatic aberration), the CEP variation can be controlled only by
imprinting suitable variations with frequency of the pulse spot size in front
of the mirror [7,15], but this method is difficult to implement in practice.
More recently, it has been shown that insertion of a dielectric slab in the
focusing path may result in nearly constant CEP in the second half of the
focal region [16], but as discussed below, this method only works for focal
depths in the micrometer range. There are no previous studies on how the
CEP varies along the focus of a lens.

The early studies on femtosecond pulse focusing with lenses dealt, in
fact, with the spatial and temporal distortions of the focused pulse due
to lens material dispersion, spherical and chromatic aberrations, to high-
light the differences between quasi-monochromatic and short pulse focusing
[17–22]. In addition, these studies consider uniform illumination [17–22], or
Gaussian illumination with spot size comparable to the lens aperture [22],
because an important concern was spatial resolution for applications such
as scanning microscopy. The choice of ultraviolet carrier wave lengths to
illustrate many examples [17,18] enhanced further the effects of chromatic
aberration. Resolution is not a relevant concern in the above phase-sensitive
interactions with matter. Mirrors are not uniformly illuminated, focusing is
not too tight in HHG or attosecond pulse generation experiments, and wave
lengths are typically in the near-infrared. To get an idea of the difference,
the propagation time difference between the marginal and axial rays in a
lens is a rough measure of pulse broadening at focus [17,18]. For a fused
silica lens of radius a = 1 cm and focal length 10 cm that is uniformly
illuminated with radiation at 800 nm, the propagation time difference is
about 50 fs, much larger the duration ∆T of few-cycle pulses. When illu-
minated with spot size s = 1 mm, the propagation time difference between
the “marginal” ray at s and the axial ray is instead 0.5 fs ≪ ∆T . In this
case pulse broadening is expected to be inappreciable.

In this paper, we model focusing with lenses of few-cycle pulses with
Gaussian transversal profile by means of a model based on a combination
of geometrical and wave optics, similar to that introduced in Ref. [23], and
that includes the effects of the lens aperture, its radially varying thickness,
spherical and chromatic aberrations (Sec. 2). From this starting point, we
first demonstrate that if the illuminated lens area is small enough, so that
truncation by the lens aperture and the effects of spherical aberration are
small, then the dispersion introduced by the lens material is substantially
the same as that introduced by a dielectric slab with thickness equal to
the lens center thickness (Sec. 3.1). Lens material dispersion then can be
pre-compensated with standard pulse shaping techniques, even for the broad
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bandwidths of pulses close to the single-cycle limit, if particularly thin lenses
are used. Next we characterize the limit to the lens chromatic aberration
below which the bandwidth-limited pulse obtained after the lens remains
as such and propagates without distortion along the focal region (Sec. 3.2).
Within this limit, we derive an approximate expression for the CEP shift
along the focus of the lens (Sec. 4). We find that the chromatic aberration
influences the CEP variation in the focus, and that a suitable (small) amount
of chromatic aberration, introduced with specific focal lengths and input
spot sizes, results in a constant CEP along the first half of the focus, and
therefore in an invariable electric field in this region.

Through a series of examples, we show that the conditions for compens-
able lens material dispersion, for undistorted propagation of the bandwidth-
limited pulse along the focus, and for frozen CEP in the first half of the
focus, can be satisfied using standard lens materials, with focal lengths and
input spot sizes of the same order as those used in experiments involving
focusing for phase-sensitive interactions with matter, and along the typical
millimetric focal depths used in these experiments.

Throughout this article, prime signs denote differentiation with respect
to frequency, and subscripts 0 evaluation at the pulse carrier frequency ω0.
The symbols ∆ω and ∆T denote FWHM of spectral and temporal intensity,
respectively.

2 Accurate description of few-cycle pulse focusing with a lens

In our analysis of few-cycle pulse focusing with a lens, we follow the usual
procedure of propagating the monochromatic constituents from the entrance
plane of the lens up to the focal region, and superpose them to obtain the
pulse shape in that region.

As illustrated in Fig. 1, the wave front emerging from the lens is that
whose phase difference with the input plane wave front is (ω/c)nD, where
ω is the frequency of the selected monochromatic component, c the speed of
light in vacuum, n the lens refraction index, and D its center thickness. The
shape of the wave front is determined by tracing constant optical path nD
rays starting from the input wave front at different distances from the optical
axis. Snell’s law is used at the two spherical surfaces of the lens so the effect
of the lens thickness and its variation across the lens is accurately taken
into account. The aberration function [24] is determined as the distance
Γ = Q′Q between the point Q′ on the emerging wave front and the point Q
on the same ray on the reference sphere S, whose radius is equal to the back
paraxial focal length f , defined as the distance from the lens back vertex to
the paraxial focal point, and given by [24,25]

f =

[
(n− 1)

(
1

R1
+

1

R2

)
− (n− 1)2

n

D

R1R2

]−1

− R2D

n(R1 +R2 −D) +D
,

(1)
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Fig. 1 Geometrical construction, parameters and coordinate systems for the
evaluation of the focused monochromatic disturbances from the input plane,
monochromatic disturbance.

with the sign convention that the front and back surface radii, R1 and
R2, are positive if they are convex, and negative if concave. The aperture
a of the reference sphere is determined from the intersection of the input
marginal ray at the lens radius aL with the reference sphere. If the distance
of a typical point on the reference sphere from the optical axis is denoted
by ρa with ρ ranging from zero to unity, the primary spherical aberration
coefficient B is obtained by fitting the aberration function Γ (ρ) with the
fourth-order polynomial Bρ4. Note that the spherical aberration coefficient
B, the aperture a, and f depend on frequency because of the dependence
of n with frequency. In practice, all values of a are close to aL.

The monochromatic disturbance at the reference sphere can then be
written as ES(ω, ρ) = p(ω)e−(aρ/s)2ei(ω/c)[nD+Bρ4], where p(ω) carries the
amplitude and phase of each monochromatic component at the input wave
front. For the few-cycle pulses in this paper, p(ω) is a broad function of large
bandwidth ∆ω about the optical or near infrared carrier frequency ω0. The
transversal amplitude distribution is assumed to be the Gaussian function
e−(aρ/s)2 = e−κρ2

, where the spot size s depends in general on frequency,
and we have introduced the truncation parameter κ = (a/s)2 in the second
expression.

Once the disturbance at the reference sphere is found, the disturbance
at a point P in the vicinity of the focus, placed at an axial distance z from
the lens back vertex and at a distance r from the lens axis, is given by the
Huygens-Fresnel integral

E(ω, r, z) =
−i

λ

∫∫
S

ES(ω, ρ)
ei(ω/c)d

d
dS , (2)

where λ = 2πc/ω is the vacuum wave length, the integral extends to the
reference sphere S, and d = QP . In our case,

E(ω, r, z) =
−i

λ
p(ω)ei

ω
c nD

∫∫
S

e−κρ2 ei
ω
c [d+Bρ4]

d
dS . (3)
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This integral is the same as that in Ref. [24] for the study of the three-
dimensional light distribution near focus except for the Gaussian and aber-
ration factors. Thus, following the same procedure as in Ref. [24], and par-
ticularizing to r = 0, we obtain the on-axis disturbance for the frequency ω
as

E(ω, z) =
−iωa2

2cf
p(ω)ei

ω
c (nD+z)I(u) , (4)

where

I(u) = 2

∫ 1

0

e−κρ2

ei[
ω
c Bρ4−u

2 ρ2]ρdρ , (5)

and u = (ω/c)(a/f)2(z − f) is the axial optical coordinate. Equations (4)
and (5) involve the Fresnel approximation, which is very accurate in all cases
of interest, and the Debye approximation. In all cases we will consider, the
input spot size s is sizably smaller than a ≃ aL, in which case the Debye
approximation is accurate if s2/λf ≫ 1 [24], implying that the focal shift
from the geometrical focus z = f is negligible. This condition is well satisfied
for the input spot sizes and focal lengths considered below.

The integral I(u) can be evaluated either numerically or analytically in
terms of Fresnel sine and cosine integrals [24] of complex arguments (due to
the Gaussian factor), which in turn can be expressed in terms of the error
functions with complex arguments [26]. For B ̸= 0, the analytical result is

I(u) = e−i û2

16β

(
π

2|β|

) 1
2 1 + i sgn(β)

2
× (6)

×
{
erf

[
1−i sgn(β)

2
(2|β|) 1

2

(
1− û

4β

)]
+erf

[
1−i sgn(β)

2
(2|β|) 1

2
û

4β

]}
,

where û = u− 2iκ, and β = (ω/c)B.

In short, Eqs. (4) and (6), with the focal length in Eq. (1), with the
refractive index given by a Sellmeier relation [27], and the spherical aberra-
tion coefficient B and aperture a determined by ray tracing from Snell’s law,
provide an accurate description of the focused monochromatic constituents
that includes the effects of the lens thickness and its variation with radial
distance, the effects of the lens aperture and of its spherical and chromatic
aberrations. Given the spot size s and complex weight p of each input Gaus-
sian monochromatic components, the inverse Fourier transform of E(ω, z)
yields the on-axis pulse form taking into account all these effects. This de-
tailed description of few-cycle pulse focusing with a lens is the starting point
of our analysis, and will be repeatedly used below for the accurate compu-
tation of the pulse temporal form along the focal region in order to check
the validity of our results.
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Fig. 2 Pulse shapes and envelopes after the lens and before the focal region
(see text for lens and input pulse details) without and with pre-compensation
of the lens center thickness GDD and TOD for different input spot sizes. Solid
black curves: The particular axial points where the pulse shapes are shown are
Z0 = z − f0 = −5LR,0 with LR,0 = 2cf2

0 /ω0s
2
0. Dashed gray curves: transform-

limited Gaussian pulse of duration ∆T = 8 fs. All pulses are normalized to unit
amplitude. Time is zero at the instant of arrival of a plane pulse of the same
carrier frequency at the a position z. The transform-limited Gaussian pulse is
conveniently shifted in time in each figure for a better comparison.

3 Focusing to transform-limited, non-reshaping, few-cycle pulses
with a lens

3.1 Compensation for the lens material dispersion

Assume that the lens aperture aL is sufficiently large compared with the
Gaussian spot size s so that the effects of the lens aperture and spherical
aberration can be neglected. The factor ei(ω/c)Bρ4

accounting for spherical
aberration in integral I(u) in Eq. (5) can be neglected if |Bρ4| < 0.9λ [24].
For uniform illumination, this condition requires B < 0.9λ, since ρ ≤ 1. For
Gaussian illumination, however, the maximum value of ρ with significant in-
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tensity is about s/aL, and the condition of negligible spherical aberration be-
comes |B(s/aL)

4| < 0.9λ, which can always be satisfied for sufficiently large

lens radius aL or small spot size s. Neglecting then the factor ei(ω/c)Bρ4

,
integral I(u) in Eq. (5) reduces to I(u) = (e−κ−iu/2−1)/(−κ− iu/2), which
behaves as I(u) ≃ 1/(κ + iu/2) for large truncation parameter κ (a ≫ s).
Introducing the Rayleigh range of the focused Gaussian beam and the axial
coordinate with origin at the geometrical focus at the given frequency,

LR =
2cf2

ωs2
, Z = z − f , (7)

respectively, we can also write I(u) ≃ (s/a)2[LR/(LR + iZ)], and from Eq.
(4),

E(ω, z) ≃ p(ω)ei
ω
c nDei

ω
c z −f

Z − iLR
. (8)

This is the usual formula that would be obtained from the standard Gaus-
sian beam formalism [28], in which the effect of the lens thickness is reduced
to introduce the phase (ω/c)nD corresponding to an optical length equal to
the lens center thickness D, and the effect of the lens chromatic aberration
is taken into account by the variation of the focal length with frequency.
We can then conclude that that if the effects of spherical aberration and
aperture are negligible, then a real lens acts as a slab of thickness equal to
the lens center thickness D and an ideal lens of focal length f and vanishing
thickness.

From a practical point of view, this means that to eliminate unwanted
dispersive effects caused by the propagation of the pulse through the lens
material it is enough to eliminate only those due to propagation a distance
equal to the lens center thickness. For the typical spot sizes of the order
of one millimeters used in experiments, lens apertures must be of the order
of centimeters for aperture and spherical aberration effects to be negligible.
Thicknesses of lenses with these apertures and typical focal lengths of tens
of centimeters are of the order of millimeters. For the broad band spectra
p(ω) of pulses with a few carrier oscillations, group-delay dispersion (GDD)
and third-order dispersion (TOD) opposite to those introduced by a few
millimeters of typical glasses can be easily introduced by using standard
pulse shaping techniques, as chirped mirrors, and generally suffice to obtain
a nearly transform-limited pulse after the lens. Approaching the single-cycle
limit, particularly thin lenses could be needed for pre-compensation to be
possible, as seen in the example in Sec. 4.

Figure 2 illustrates the above considerations in the case of a real lens
made of fused silica, taken from the commercial catalog in Ref. [29] (cen-
ter thickness D = 3.78 mm, aperture aL = 12.5 mm, surface radii R1 =
R2 = 91.08), and with paraxial back focal length f0 = 98.9 mm at the pulse
carrier frequency ω0 = 2.355 fs−1 (λ0 = 800 nm). All pulse shapes after
the lens shown in the figures (solid black curves) are calculated following
the procedure described in Sec. 2. The input spot sizes s = s0 = 9, 3 and 1
mm (independent of frequency) decrease from the top to the bottom panels.
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Figures 2(a), (b) and (c) on the left side show the pulse shapes at a point
after the lens, but before the focal region, in the case that a transform-
limited, three-cycle, Gaussian pulse of duration ∆T = 8 fs and spectrum
p(ω) = exp[−∆T 2(ω − ω0)

2/8 ln 2] is launched on the lens. For reference,
this transform-limited Gaussian pulse is plotted in all figures (dashed gray
curves). For all three input spot sizes, the pulse after the lens is enormously
broadened by the lens dispersion. Figures 2(d), (e) and (f) on the right
show the pulse shapes at the same points after the lens in case that pre-
compensation for the dispersion (GDD and TOD) of the lens center thick-
ness is introduced in the input pulse, i. e., the spectrum of the input pulse is
p(ω) = exp[−∆T 2(ω−ω0)

2/8 ln 2] exp[−iφ′′
0(ω−ω0)

2/2− iφ′′′
0 (ω−ω0)

3/6],
with φ′′

0 = 137 fs2 and φ′′′
0 = 110 fs3. For the largest input spot size s = 9

mm, spherical aberration is significant (|B0(s0/aL)
4| ≃ 3.6λ0 > 0.9λ0 at

ω0, and similar values for other frequencies). The pulse after the lens is
significantly shortened, but pre-compensation for the dispersion of the lens
center thickness is not sufficient to eliminate the actual dispersive effects
of the lens due to its variable thickness [Fig. 2(d)]. On the contrary, for
spot sizes s = 3 mm and s = 1 mm, spherical aberration is negligible
(|B0(s0/aL)

4| ≃ 0.04λ0 and |B0(s0/aL)
4| ≃ 5 × 10−4λ0, respectively), and

pre-compensation for the lens center thickness dispersion suffices to produce
an approximately transform-limited Gaussian pulse of duration ∆T = 8 fs
after the lens [Figs. 2(e) and (f)].

3.2 Minimizing pulse reshaping in the focal region

Even if a nearly transform-limited, few-cycle pulse is obtained after the lens
by pre-compensation, its chromatic aberration can result in severe pulse
broadening and reshaping during propagation through the focal region [17–
22]. In a converging lens, bluer spectral components are focused at shorter
distances than redder components. This causes a z-dependent spectral fil-
tering of the spectrum, that becomes shifted from ω0 and narrowed, and
that is observed as z-dependent blue or red shift of the carrier oscillations
and pulse broadening.

Though the lens chromatic aberration can not be completely eliminated,
its effect reshaping can be minimized, and could be beneficial for the control
of the CEP, as discussed in Sec. 4. Envelope reshaping through the focal
region is expected to be small for focusing conditions such that the variation
with frequency of the focal length across the bandwidth ∆ω is much smaller
than the focal depth 2LR,0, that is, |∆f | ≃ |f ′

0|∆ω ≪ 2LR,0. Introducing
the dimensionless parameter

γ ≡ f ′
0

LR,0
ω0 , (9)
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Fig. 3 Pulse shapes and envelopes at Z0 = −LR,0, 0 and Z0 = +LR,0 in the
focal region (see text for lens and input pulse details) for the two input spot
sizes s0 = 3 mm and s0 = 1 mm in Fig. 2 for which pre-compensation for the lens
center thickness GDD and TOD produces a transform-limited pulse after the lens.
The dashed gray curves represent transform-limited Gaussian pulse of duration
∆T = 8 fs. All pulses are normalized to unit amplitude. Time is zero at the instant
of arrival of a plane pulse of the same carrier frequency at each position z. The
transform-limited Gaussian pulse is conveniently shifted in time in each figure for
a better comparison.

and the relation ∆ω = 2.773/∆T between the bandwidth and duration of a
transform-limited pulse, the above condition reads

|γ| ≪ ω0∆T

2.773
. (10)

Noticeably, this condition can also be obtained by imposing that the prop-
agation time difference from the input plane of the lens to the focus
|(s20/2cf2

0 )ω0f
′
0| = |f ′

0/LR,0| between an ray at s0 and an axial ray due to
the lens chromatic aberration is much smaller than the pulse duration ∆T
[17–19], as discussed in the introduction.

Fig. 3 continues the example of Fig. 2, and shows pulse shapes in the focal
region in the two cases (s = 3 mm and s = 1 mm) in which transform-limited
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pulses were obtained after the lens by pre-compensation. The derivative
of the focal length at the carrier frequency can be approached by f ′

0 ≃
−[n′

0/(n0 − 1)]f0 = −1.29 mm fs from the thin lens approximation to the
focal length in Eq. (1). For input spot size s = 3 mm, LR,0 = 0.282 mm,
yielding |γ| ≃ | − 10.8| > ω0∆T/2.773 ≃ 6.8. Accordingly, the pulse is seen
in Figs. 3(a), (b) and (c) to broaden and to reshape along the focal region
due to the lens chromatic aberration. Instead, for input spot size s = 1 mm,
LR,0 = 2.54 mm, and |γ| ≃ | − 1.2| ≪ ω0∆T/2.773 = 6.8. As seen in Figs.
3(d), (e) and (f), broadening and reshaping along the focal region is not
appreciable at the scale of the figure. The pulse continues to be a nearly
transform-limited of duration ∆T ≃ 8 fs in the entire focal region, the only
appreciable changes being envelope and carrier temporal shifts due to the
different group and phase velocities of the pulse, and therefore CEP shifts.

4 THE CEP SHIFT OF FEW-CYCLE PULSES ABOUT THE
FOCUS OF A LENS

In this section we obtain an approximate analytical expression for the CEP
shift along the focal region of the lens under the above conditions of neg-
ligible broadening and reshaping in the focal region of the lens. Following
the perturbation theory developed in [30] for the effects of diffraction or
focusing in the shape of few-cycle pulses, the monochromatic disturbance
in Eq. (8) is written as

E(ω, z) = p(ω)ei
ω
c nDα(ω, z)eiφ(z) , (11)

where the space-dependent amplitude α(ω, z) and phase φ(ω, z) of the
monochromatic Gaussian beam are given by

α(ω, z) =
f

LR

1√
1 + (Z/LR)2

, (12)

φ(ω, z) =
ω

c
z − π

2
− tan−1

(
Z

LR

)
, (13)

and where the last term is Gouy phase shift about the focus. The spec-
tral phase is approached with φ(ω, z) = φ(ω0, z) + φ′(ω0, z)(ω − ω0) +
φ′′(ω0, z)(ω − ω0)

2/2 in order to express the pulse temporal shape in the
form of the enveloped carrier oscillations

E(t, z) = A(τ, z)e−i[ω0t−φ(ω0,z)] , (14)

where τ = t−φ′(ω0, z) is the local time at position z, and where the envelope
is given by

A(τ, z)=

∫
dωp(ω)ei

ω
c nDα(ω, z)e

i
2 (ω−ω0)

2φ′′(ω0,z)e−i(ω−ω0)τ . (15)
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Pulse broadening due to the focusing process is accounted for by the factor
with φ′′(ω0, z) [30], and can be neglected under the focusing conditions de-
scribed in the preceding section. The spectral amplitude is also approached
by α(ω, z) = α(ω0, z) + α′(ω0, z)(ω − ω0) to obtain

A(τ, z) = α(ω0, z)A(τ) + iα′(ω0, z)
dA(τ)

dτ
, (16)

where

A(τ) =

∫
dωp(ω)ei

ω
c nDe−i(ω−ω0)τ (17)

is the envelope just after the lens. The second term in Eq. (16) describes en-
velope reshaping along the focal region due to the focusing process [30] and,
in particular, due to the spectral filtering caused by the chromatic aberra-
tion. Under the conditions explained in the preceding section, the envelope
in Eq. (16) can be approached by A(τ, z) ≃ α(ω0, z)A(τ) = α(ω0, z)A[t −
φ′(ω0, z)], that is, by an invariable temporal shape with a z-dependent am-
plitude and a z-dependent temporal shift.

The CEP at a point z is the phase of the carrier oscillations at the time
at which the amplitude |A(τ, z)| is maximum (assuming there is only one).
Then, if this time is τp at a position z in the focal region, the CEP at z is
given, from Eq. (14), by Φ(z) = −ω0[τp+φ′(ω0, z)]+φ(ω0, z)+ϕ, where ϕ is
the phase of A(τp, z). Under the condition of negligible envelope reshaping
during propagation through the focus, the peak local time τp and phase ϕ
are the same at any z. The CEP shift ∆Φ(z), taking the geometrical focus
at the carrier frequency f0 as a convenient reference point, is then simply
given by

∆Φ(z) = [−ω0φ
′(ω0, z) + φ(ω0, z)]

− [−ω0φ
′(ω0, f0) + φ(ω0, f0)] . (18)

The CEP shift in this equation reflects the difference between the phase
and group velocities of the pulse, which originates from, but is not equal
to, Gouy phase shift of the monochromatic components along the focus, the
specific CEP variation depending on the input pulse, on how it is focused
[7,15,16], and in our case, on the lens chromatic aberration.

Evaluation of the CEP shift from Eq. (18) is a straightforward calcula-
tion of derivatives of the spectral phase in Eq. (13), which becomes, however,
quite involved if LR, f and Z = z− f are functions of frequency because of
the lens chromatic aberration. The result of these long calculations is

∆Φ(z) = − tan−1

(
Z0

LR,0

)
+

1

1 +

(
Z0

LR,0

)2

[
g

(
Z0

LR,0

)
+ γ

(
Z0

LR,0

)2
]
, (19)

where Z0 = z − f0 is the axial distance from the geometrical focus at the
carrier frequency,

g = −
L′
R,0

LR,0
ω0 ≃ 1 + 2

s′0
s0

ω0 + 2
n′
0

n0 − 1
ω0 ≃ 1 + 2

s′0
s0

ω0 , (20)
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and γ is given by Eq. (9), or by

γ ≃ − n′
0

n0 − 1

f0
LR,0

ω0 . (21)

For the approximate equalities in Eqs. (20) and (21) we have used the re-
lation f ′

0 = −[n′
0/(n0 − 1)]f0 obtained from the thin lens approximation

to Eq. (1). An expression similar to Eq. (19) has been previously obtained
for focusing without chromatic aberration [15], e. g., with a spherical mir-
ror, and also for focusing with a mirror inserting a dielectric dispersive slab
in the focusing path for the purpose of controlling the CEP shift through
the focus [16]. Eq. (19) is expected to hold under the condition of negligible
envelope reshaping along the focal region, and therefore requires small chro-
matic aberration such that |γ| ≪ ω0∆T/2.773, as explained in the preceding
section.

The approximate linear variation of the CEP with negative slope −1 (in
units of LR,0) due to Gouy phase shift − tan−1(Z0/LR,0) is modified by the
approximate linear variation with of the term with g. Both linear variations
compensate when g = 1. The contribution to the value of g of the term with
2n′

0ω0/(n0 − 1) in Eq. (20) is negligible for any real lens, so that in practice
g ≃ 1+2(s′0/s0)ω0 depends only on the possible variation with frequency of
the spot size of the Gaussian beam components in front of the lens [15]. For
example g = 1 corresponds to the simplest hypothesis of an input pulsed
Gaussian beam with constant spot size (s = const.). However, g = 0, i.e.,
an input isodiffracting pulsed Gaussian beam (constant Rayleigh range)
[31,32] fits better experimental observations, in which values of the CEP
shift compatible with Gouy phase shift were measured [7,11]. We will then
take g = 0 as the most realistic value and for simplicity in the illustrative
examples below, though the considerations about the CEP control hold
irrespective of the value of g with straightforward modifications.

The term with γ introduces an approximate quadratic variation of the
CEP, and already appeared in the form γ = (n′

0δ/n
2
0LR,0)ω0 as the result

of placing a dielectric slab of thickness δ and refractive index n between a
spherical mirror and the focal region [16]. Values of γ of the order of unity
were shown to result in a nearly constant CEP in the second half of the
focal region. The required slab thickness for this effect to take place takes
a reasonable value of the order of a millimeter in half focal depths LR,0 of
several tens of micrometers [16], but of the order of a meter for the half focal
depths in the millimeter range used in most of experiments, what renders
the slab method useless in these cases.

Here, the term with the quadratic variation originates from the chro-
matic aberration of the lens. For lens materials in their transparency region,
n′
0 > 0, so that γ < 0. In the example of Fig. 4, the CEP shift in absence

of chromatic aberration, i. e., with γ = 0 is equal to Gouy phase shift, but
the CEP with small chromatic aberration such that γ = −1 is nearly con-
stant in the first half of the focus. Note that |γ| = 1 ≪ ∆Tω0/2.773 down
to single-cycle pulses at typical carrier frequencies, and therefore this small
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Fig. 4 Prediction of Eq. (19) for the CEP shift from the focus for input isod-
iffracting pulsed Gaussian beam (g = 0) and increasing (but small) chromatic
aberration γ = 0,−0.5,−1,−2 and −3. The value γ = −1 produces a nearly
constant CEP in the first half of the focal region.

chromatic aberration does not involve appreciable pulse broadening or re-
shaping along the focal region. The effect of nearly constant CEP in the first
half of the focus can be understood from the fact that higher frequencies
in the spectrum are focused at focal lengths f < f0. In their particular fo-
cus, these frequencies are both enhanced in amplitude, and shifted towards
the leading part of the pulse due to their Gouy phase shift. The result is
an increase of the pulse group velocity, which can then match the pulse
superluminal phase velocity about the focus, reducing the CEP variation.

In a practical application, one may wish to obtain this effect in a given
half depth of focus LR,0. The condition γ = −1 of nearly constant CEP,
with γ given by Eq. (21), in a length LR,0 = 2cf2

0 /ω0s
2
0, is satisfied with

focal length and input spot size

f0 =
n0 − 1

n′
0

LR,0

ω0
, s0 =

√
2cf2

0

ω0LR,0
. (22)

Note that the focal length and input spot size for constant CEP in given LR,0

are completely determined by the dispersive properties of the lens material
at the carrier frequency. According to Eq. (22), these focal length and input
spot size are larger as the lens material has higher refraction index and as
is less dispersive. For example, pulses at 800 nm will focus to constant CEP
in LR = 3 mm using a fused silica lens (n0 = 1.453, n′

0ω0 = 0.014) of focal
length f0 = 9.8 cm illuminated with spot size s0 = 0.91 mm, or using a
potassium fluoride lens (n0 = 1.36, n′

0ω0 = 6.2 × 10−3) with f0 = 17.3 cm
and s0 = 1.60 mm. The values of n0 and n′

0 for the evaluation of f0 and s0
are taken from corresponding Sellmeier relations [27].



14 Miguel A. Porras et al.

For CEP-sensitive interactions with matter involving extremely powerful
laser pulses, as in HHG or attosecond pulse generation experiments, focal
lengths of the order of a meter and input spot sizes in the centimeter range
are desirable in order to minimize nonlinear and heating effects in the lens.
Fused silica, potassium fluoride, or BK7 lenses with these large focal lengths
and input spot sizes will induce larger chromatic aberration, and hence
faster variation of the CEP, as in Fig. 4 for γ < −1. To freeze the CEP
with input spot sizes of the order of a centimeter, one may instead use a
Thallium Bromide/Chloride (KRS-6) lens with the high refraction index
n0 = 2.196 and low dispersion n′

0ω0 = 1.61× 10−3 at 800 nm, yielding the
large focal length f0 = 2.223 m and input input spot size s0 = 2.05 cm
for LR,0 = 3 mm, or f0 = 1.111 m and s0 = 1.45 cm for LR,0 = 1.5 mm.
In these cases, the lens aperture must be large enough to avoid truncation
and spherical aberration effects. Other materials, or several materials in a
doublet, can be investigated to control the chromatic aberration, fitting f0
and s0 to experimental requirements. A detailed study of these combinations
is beyond the scope of this paper.

Figure 5 illustrates all preceding results with the example of focusing to a
transform-limited, propagation-invariant pulse of duration ∆T = 4 fs at 800
nm carrier wave length (one and a half cycle) with a nearly constant CEP
in a length LR,0 = 3 mm by using a CaF2 lens. From Eq. (22), the needed
focal length and spot size for γ = −1 in LR,0 = 3 mm are f0 = 15.359 cm
and s0 = 1.422 mm. A CaF2 lens with this focal length can be constructed,
for instance, with equal surface radii R1 = R2 = 133.018 cm and center
thickness D = 0.7 mm. This small thickness is chosen in order that GDD
and TOD are the only significant dispersive effects for the 4 fs long pulse, at
the same time that the lens radius aL can be even much larger than s0. The
maximum lens radius of a lens with these surface radii and thickness is 9.641
mm, so that we can set aL = 9.0 mm ≫ s0. The spectrum of the input pulse
is then p(ω) = exp[−∆T 2(ω − ω0)

2/8 ln 2] exp[−iφ′′
0(ω − ω0)

2/2− iφ′′′
0 (ω −

ω0)
3/6], where φ′′

0 = 20.2 fs2 and φ′′′
0 = 14.0 fs3 compensate for the lens

center thickness GDD and TOD, and the input spot size s = s0(ω0/ω)
0.5

presents the characteristic dependence on frequency of isodiffracting pulsed
Gaussian beams (g = 0).

Figure 5(a) depicts the CEP evolution along the focal region, eval-
uated from the approximate formula in Eq. (19) (solid curve), and ex-
tracted directly from the pulse temporal shapes along the focal region
(closed circles), which are calculated from the rigorous procedure of Sec.
2. For the input isodiffracting Gaussian pulsed beam, the CEP evolution in
absence of chromatic aberration coincides with Gouy phase shift (dashed
curve). The approximate formula in Eq. (19) reproduces accurately the ac-
tual CEP evolution, since the condition of negligible envelope reshaping
|γ| = 1 ≪ ω0∆T = 3.4 is satisfied. In particular, the CEP is seen in Fig.
5(a) to remain approximately constant in the first 3 mm of the focal region.
Figs. 5 (b), (c) and (d) confirm that the envelope does not appreciably
change from the entrance to the exit of the focal region (black solid curves)
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Fig. 5 For the input pulse and lens specified in the text, (a) CEP shift along the
focal region predicted by Eq. (19) (black solid curve), exact CEP shift obtained
from the temporal pulse forms along the focal region calculated numerically (closed
circles), and CEP shift in absence of any chromatic aberration (gray solid curve);
(b) (c) and (d) pulse shapes and envelopes at the entrance, middle and exit of
the focal region (solid curves), and the envelope of a transform-limited Gaussian
pulse of duration ∆T = 4 fs (gray dashed curve). Time is zero at the instant
of arrival of a plane pulse of the same carrier frequency at each position. The
transform-limited Gaussian pulse is differently shifted in time in each figure for a
better comparison.

and does not differ substantially from that of the nearly transform-limited
Gaussian pulse of duration ∆T = 4 fs (gray dashed curves), the small devia-
tions being caused by small fourth-order dispersion in the lens. In addition,
Figs. 5(b) and (c) evidence that not only the envelope but also the electric
field does not change appreciably in the first half of the focus because the
CEP is approximately constant in this region.

5 Conclusions

To summarize, we have shown that lenses can be used to focus to transform-
limited, few-cycle pulses with propagation-invariant envelope shape along
the focus, and with partially frozen carrier-envelope phase. First, if the
illuminated lens area is small enough for aperture and spherical aberra-
tion effects to be negligible, elimination of the dispersive effects of the lens
amounts to eliminate the dispersive effects of a slab of thickness equal to
the lens central thickness, which is technically possible by dispersion pre-
compensation for input pulses with several cycles for typical lens thicknesses,
and for pulses close to the limit of a single cycle for particularly thin lenses.
Second, the nearly transform-limited pulse after the lens obtained by pre-
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compensation remains transform-limited and propagates undistorted along
the focal region if the lens chromatic aberration is small. Given a lens mate-
rial, a focal depth and the pulse duration, this condition is characterized by
Eq. (10). Within these conditions, we have found the simple expression in
Eq. (19) for the carrier-envelope phase shift experienced by the pulse along
the focal region. Finally, the specific small chromatic aberration introduced
by focusing with the focal length and input spot size given by Eq. (22) re-
sults in a constant carrier-envelope phase in any desired half focal depth,
and therefore in an electric field with constant temporal shape in that half
focal depth. All these situations can be given at usual carrier wavelengths
using common lens glasses or crystals, and with input spot sizes and focal
lengths of the same order as those typically used in experiments involving
focusing of few-cycle pulses for phase-sensitive interactions with matter. The
validity of these conclusions has been verified from a realistic wave model of
lens focusing in which the lens variable thickness and material dispersion,
lens aperture, spherical and chromatic aberrations are accurately taken into
account.
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