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We unveil the origin of the recently revealed polarization state changes of polarization-shaped few-cycle pulses
induced by free-space beam propagation. Simple rules are formulated to show how the orientation and el-
lipticity of the instantaneous polarization ellipse of the source and propagated pulses relate to each other.
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relevance. We show, for example, that pulses often used in high-harmonic generation or attosecond pulse pro-
duction rotate as a whole during free-space beam propagation or upon focusing. A pulse that may reverse its
ellipticity from right-handed to left-handed during propagation is also introduced. It is shown that these effects
are independent of the beam size and/or focal length. We also present how these instantaneous polarization
state changes could be noticed in classical measurements of light polarization using polarizers, phase retarders
and time-integrating detectors.
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1. Introduction

One of the most striking advances in optics in the last
decades is the development of methods for the genera-
tion and shaping of pulses of light a few femtoseconds
long, in which light frequencies spanning over the entire
visible spectrum are coherently superposed. Sophisti-
cated techniques allow to manipulate the individual fre-
quencies, shaping the electric field at a femtosecond tem-
poral scale [1, 2]. Moreover, polarization shaping tech-
niques allow to generate femtosecond pulses whose po-
larization state (ellipticity and orientation of the instan-
taneous polarization ellipse) varies within the pulse in a
precise way for their application in, for example, control
of quantum systems, photochemistry, high-harmonic or
attosecond pulse generation [3–5].

Suppose that such a polarization-shaped pulse is emit-
ted by a planar source of finite area, and propagates in
free space in the form of a highly directional beam. It
is generally presumed that the polarization state is un-
altered during propagation, particularly if the beam is
wide. Similarly, it is not questioned in the experiments
whether the instantaneous polarization state at a focus
is equivalent to the state prior focusing [1–5].
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It has been shown only recently that the polarization
state of these polarization-shaped pulses may change on
free-space propagation or focusing [6]. These changes
can be approximately evaluated with the formulas given
in Ref. [6]. However, the physical origin of this effect re-
mains obscure. Indeed, the variations of the orientation
and ellipticity of the instantaneous polarization ellipse
in the examples in Ref. [6] seem accidental, and for this
reason do not reveal the underlying reasons of this phe-
nomenon. It would also be desirable to know whether
these instantaneous polarization changes, which could
only be measured by means of sophisticated techniques
for the electric field reconstruction [7], has any reflect in
polarization state changes measured classically using po-
larizers, phase retarders and time-integrating detectors
[8].

In this paper we show that the change of the polar-
ization state on free-space beam propagation follows a
quite simple rule: a source pulse with a time-varying
ellipticity at a given time results in a propagated pulse
with a rotated instantaneous polarization ellipse at that
time, and vice versa, a source pulse with a time-varying
orientation of the polarization ellipse results in a propa-
gated pulse with a shifted ellipticity. This effect is seen
to originate in the contribution of Wolf’s effect (change
of the spectrum of light on propagation) that is due to
the finite extent of the source, even in vacuum and if the
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source is fully coherent [9, 10]. As such, these are more
fundamental changes of the polarization state that must
be distinguished from the ones that may additionally oc-
cur when the polarization is inhomogeneous across the
source or when light is tightly focused [11], and from
the changes of the partially polarized spectral compo-
nents emitted by partially coherent sources [12–14]. In-
deed, all spectral components of our polarization-shaped
pulses are fully polarized, and their polarization state is
unaltered during propagation.

We illustrate our results with two complementary ex-
amples, which clearly visualize the previously mentioned
rules of instantaneous polarization-state changes. First,
the “polarization gate” (PG) pulse [15], which is often
used in attosecond pulse generation experiments [5], il-
lustrates that propagation can induce a rotation of the
pulse as a whole by many degrees because of its time-
varying ellipticity, and that consequently, this effect is
easily observable as a rotation of the direction of max-
imum fluence after a polarizer. Second, a “rotating”
pulse [16], which shows that a pulse with a well-defined
right-handed helicity (the same positive ellipticity at all
instants of time) can result in a propagated pulse with
a well-defined left-handed helicity, and that this change
is directly observable in a classical measurement of the
ellipticity.

2. Theoretical bases

2.A. Instantaneous polarization state

For the characterization of the instantaneous polariza-
tion state and its change on propagation, the complex
electric field E(t) = Ex(t)ux + Ey(t)uy of a femtosec-
ond pulse is seen to be conveniently expressed by means
of its left-handed and right-handed circularly polarized
orthogonal components as

E(t) = El(t)ul + Er(t)ur , (1)

where ul = (ux + iuy)/
√

2 and ur = (ux − iuy)/
√

2.
For a pulse of carrier angular frequency ω0, we write
Ex,y(t) = Ax,y(t)e−iω0t, or El,r(t) = Al,r(t)e

−iω0t,
where the complex envelopes in the x-y and l-r repre-
sentation relate by

Al(t) =
1√
2
[Ax(t) − iAy(t)], (2)

Ar(t) =
1√
2
[Ax(t) + iAy(t)] . (3)

As is well-known, the complex envelopes, and there-
fore the real amplitudes Al,r(t) = |Al,r(t)| and phases
Φl,r(t) = arg[Al,r(τ)], can be unambiguously deter-
mined from the electric field for pulses of duration (full
width at half maximum of intensity) as short as a single
optical period T0 = 2π/ω0 [17]. The instantaneous po-
larization state of the pulse is then also unambiguously
defined, and can be measured to the extent of experi-
mental reconstructibility of the electric field [7]. In the
l-r representation, the angle that the major axis of the

instantaneous polarization ellipse forms with the labo-
ratory x axis is given by

ψ(t) =
[Φr(t) − Φl(t)]

2
, (4)

and the ellipticity −π/4 ≤ χ(t) ≤ π/4 by

tanχ(t) =
Ar(t) −Al(t)

Ar(t) +Al(t)
, (5)

positive (negative) ellipticity meaning right (left) helic-
ity. For few-cycle pulses, the instantaneous polarization
ellipse looses its interpretation as the temporal trajec-
tory of the electric field, but retains its meaning as the
geometrical locus of points occupied by the electric field
when the pulse is subjected to phase transformations [6].

2.B. Pulsed beam propagation
Suppose a source at the plane z = 0 that emits the

pulse E(s)(t) = E(t)U(r), where U(r =
√
x2 + y2)

limits the amplitude to a finite area. In a spec-
tral approach to pulse propagation, the source spec-
trum Ê(s)(ω) = Ê(ω)U(r) is propagated using well-
known laws of diffraction of monochromatic light. For a
large source (whose linear dimensions are much larger
than the wavelength 2πc/ω for all relevant frequen-
cies), diffraction is accurately described in a quasi-scalar,
paraxial treatment, where the two transverse compo-
nents Êl,r(ω)U(r) are propagated independently, and
the longitudinal component can be neglected. For the
source spectrum Ê(s)(ω) = Ê(ω)U(r), the propagated

spectrum adopts the form Ê(p)(ω) = Ê(ω)U(r, z, ω),
where U(r, z, ω) contains the spectral phase and ampli-
tude acquired on propagation. For example, in the case
of U(r) = exp(−r2/s2), standard Gaussian beam prop-
agation formulas yield

U(r, z, ω) =
−iL(ω)

q(z, ω)
exp

[
iωr2

2cq(z, ω)

]
exp

[
i
ω

c
z
]
, (6)

where q(z, ω) = z − iL(ω) is the complex beam param-
eter and L(ω) is the Rayleigh range [18].

In time-domain, the complex electric field of the prop-
agated pulse can then be retrieved from

E(p)(t) =
1

π

∫ ∞

0

Ê(ω)U(r, z, ω) exp (−iωt) , (7)

and the propagated complex envelope of the left and
right components from

A(p)
l,r (t) =

1

π

∫ ∞

0

Êl,r(ω)U(r, z, ω) exp [−i(ω − ω0)t] ,

(8)
from which the polarization state can be extracted.

3. First-order approach to pulse propagation and in-
stantaneous polarization change rules
To formulate simple rules for the propagation-induced
changes of the instantaneous polarization state of fem-
tosecond pulses, we apply the first-order approach de-
veloped in Ref. [18]. The effect of propagation on the
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temporal shapes of the orthogonal components can be
approximated by expanding the spectral phase acquired
on propagation, φ(r, z, ω) = arg[U(r, z, ω)], and the
spectral amplitude modification, a(r, z, ω) = |U(r, z, ω)|,
about the central angular frequency ω0 as φ(ω) ≃ φ0 +
φ′

0(ω − ω0) and a(ω) ≃ a0 + a′
0(ω − ω0). In the pre-

ceding expressions (and throughout the article) prime
signs denote differentiation with respect to ω, subscripts
0 evaluation at ω0 (and the dependence of φ0 and a0

on r and z is omitted for conciseness). Proceeding as in
Ref. [6], but for the l-r components instead of the x-y
components, Eq. (8) leads to the approximate relation

A(p)
l,r (τ) ≃ a0Al,r(τ) exp

[
i
a′
0

a0

d lnAl,r(τ)

dτ

]

× exp[i(φ0 − ω0φ
′
0)] (9)

between the source and propagated complex envelopes,
where τ = t − φ′

0 is the local time at the point (r, z).
The source and propagated real amplitudes and phases
are consequently related by

A
(p)
l,r (τ) ≃ a0 exp

[
−a′

0

a0

dΦl,r(τ)

dτ

]
Al,r(τ), (10)

Φ
(p)
l,r (τ) ≃ Φl,r(τ) + φ0 − ω0φ

′
0 +

a′
0

a0

d lnAl,r(τ)

dτ
,(11)

which explicitly show a reshaping of the phases and am-
plitudes depending on each other for each component.

3.A. Rotation of the orientation
From Eqs. (11) and (4), the instantaneous orientation

ψ(p)(τ) = [Φ
(p)
r (τ)−Φ

(p)
l (τ)]/2 of the polarization ellipse

of the propagated pulse is

ψ(p)(τ) ≃ ψ(τ) +
1

2

a′
0

a0

d ln[Ar(τ)/Al(τ)]

dτ
. (12)

Using that, from Eq. (5), d ln[Ar(τ)/Al(τ)]/dτ =
[2/(1 − tan2 χ)][d tanχ(τ)/dτ ], we obtain the result

ψ(p)(τ) ≃ ψ(τ) +
a′
0

a0

1

1 − tan2 χ(τ)

d tanχ(τ)

dτ
, (13)

where the instantaneous orientation is seen to be rotated
if the instantaneous ellipticity of the source pulse is time-
varying.

In particular, far from and in front of quite general
apertures U(r), or at the focus of an ideal focusing sys-

tem, the propagated spectrum has the form Ê
(p)
l,r (ω) ∝

−iωÊl,r(ω) exp(iωz/c), meaning that the pulse is pro-
portional to the time derivative of the source pulse [19].
The spectral amplitude is then filtered by a(ω) ∝ ω,
yielding a′

0/a0 = 1/ω0 and a far field rotation

ψ(p)(τ) − ψ(τ) ≃ 1

ω0

1

1 − tan2 χ(τ)

d tanχ(τ)

dτ
(14)

that is independent of the source radius. The rotation
vanishes when the characteristic time of variation of the
ellipticity is much larger than the carrier period T0, as
for quasi-monochromatic light.

3.B. Change of the ellipticity
Reciprocally, the above approach predicts that a pulse
with an instantaneous time-varying orientation of the
polarization ellipse will change its instantaneous ellip-
ticity on propagation. To evaluate the instantaneous
ellipticity of the propagated pulse, we first note that,
from Eq. (10),

A(p)
r (τ) ±A

(p)
l (τ) ≃ a0 exp

[
−a′

0

a0

dΦM (τ)

dτ

]

×
{

[Ar(τ) ±Al(τ)] − a′
0

a0

dψ(τ)

dτ
[Ar(τ) ∓Al(τ)]

}
,(15)

where we have written ΦM (τ) ≡ [Φr(τ) + Φl(τ)]/2,
and approximated exp[±(a′

0/a0)(dψ/dτ)] ≃ 1 ±
(a′

0/a0)(dψ/dτ). The ellipticity tanχ(p)(τ) = [A
(p)
r (τ)−

A
(p)
l (τ)]/[A

(p)
r (τ) +A

(p)
l (τ)] is then given by

tanχ(p)(τ) ≃
tanχ(τ) − a′

0

a0

dψ(τ)

dτ

1 − a′
0

a0

dψ(τ)

dτ
tanχ(τ)

, (16)

or, keeping only terms up to the first order in a′
0/a0, by

tanχ(p)(τ) ≃ tanχ(τ) − a′
0

a0
[1 − tan2 χ(τ)]

dψ(τ)

dτ
. (17)

An instantaneous variation of the polarization ellipse ori-
entation thus induces a variation in the instantaneous
ellipticity upon propagation. In particular, at the far
field or a focus, the ellipticity variation is

tanχ(p)(τ) − tanχ(τ) ≃ 1

ω0
[1 − tan2 χ(τ)]

dψ(τ)

dτ
, (18)

which is independent of the source size and/or focal
length, and vanishes for quasi-monochromatic pulses.

3.C. On the physical origin of the instantaneous po-
larization state changes
The above first-order approach indicates that the rea-
son of the polarization state changes on propagation is
a spectral amplitude filtering caused by diffraction. In
more general terms, the change of the polarization state
can be said to be due to the Wolf’s effect, that is, the
change of the spectral density on propagation [9]. Specif-
ically, the change is by the reason of the finite size of the
source [10].

The spectra Ê
(s)
l,r (ω) = Êl,r(ω)U(r) of the two

components at the source transform into Ê
(p)
l,r (ω) =

Êl,r(ω)U(r, z, ω) ≡ Êl,r(ω)a(r, z, ω) exp[iφ(r, z, ω)] on
propagation, where φ(r, z, ω) is the spectral phase ac-
quired on propagation, and a2(r, z, ω) modifies the

spectral densities |Êl,r(ω)|2 of the two components.
The dependence of a(r, z, ω) on ω reflects that the
strength of diffraction depends on frequency, meaning
that diffraction is a dispersive phenomenon. Filtering

https://www.researchgate.net/publication/258798701_Propagation-induced_changes_in_the_instantaneous_polarization_state_phase_and_carrier-envelope_phase_of_few-cycle_pulsed_beams?el=1_x_8&enrichId=rgreq-e12e00042b35942aa7f93f3cbe8b7412-XXX&enrichSource=Y292ZXJQYWdlOzI2MzUxNzEzMTtBUzoyMjc5NTYwNjA1ODU5ODRAMTQzMTM2MDM2ODE1MQ==
https://www.researchgate.net/publication/13256305_Invariance_of_the_Spectrum_of_Light_on_Propagation?el=1_x_8&enrichId=rgreq-e12e00042b35942aa7f93f3cbe8b7412-XXX&enrichSource=Y292ZXJQYWdlOzI2MzUxNzEzMTtBUzoyMjc5NTYwNjA1ODU5ODRAMTQzMTM2MDM2ODE1MQ==
https://www.researchgate.net/publication/243576431_Changes_in_the_spectrum_of_a_partially_coherent_light_beam_propagating_in_free_space?el=1_x_8&enrichId=rgreq-e12e00042b35942aa7f93f3cbe8b7412-XXX&enrichSource=Y292ZXJQYWdlOzI2MzUxNzEzMTtBUzoyMjc5NTYwNjA1ODU5ODRAMTQzMTM2MDM2ODE1MQ==
https://www.researchgate.net/publication/243576505_Short_pulses_in_the_focal_region?el=1_x_8&enrichId=rgreq-e12e00042b35942aa7f93f3cbe8b7412-XXX&enrichSource=Y292ZXJQYWdlOzI2MzUxNzEzMTtBUzoyMjc5NTYwNjA1ODU5ODRAMTQzMTM2MDM2ODE1MQ==
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both components with a(r, z, ω) does not alter the ratio

Êl(ω)/Êr(ω), and hence does not modify the polariza-
tion state of each spectral component (the ellipticity and
orientation of the polarization ellipse of each spectral
component), but alters differently the forms of Êl(ω) and

Êr(ω) as functions of frequency (differently the size of
the major axis of the spectral components), except when
the two orthogonal components are strictly proportional
(as in the case of a pulse with a time-independent po-
larization state), or unless the spectra of the two com-
ponents are very narrow (as for a quasi-monochromatic
pulse). In time domain, the two orthogonal components

E
(p)
l (t) and E

(p)
r (t) are then changed differently, with

the subsequent modification of the instantaneous polar-
ization state.

4. Examples
These polarization changes were illustrated in Ref. [6]
by means of a few example pulses. These were ran-
domly chosen to have time-varying polarization orien-
tation and time-varying ellipticity, which resulted in
quite random changes in both the instantaneous orienta-
tion and instantaneous ellipticity on propagation, caus-
ing large pulse distortions and obscuring the underlying
rules and their consequences written in Eqs. (13) and
(17). In view of these rules, we first show that a pulse
having an instantaneous polarization ellipse with time-
independent orientation (so its polarization direction is
well-defined and easily measurable) but possessing a
time-varying ellipticity, rotates almost rigidly and grad-
ually on propagation because of its finite transverse size.
Second, we show that a pulse with a time-independent
ellipticity but a time-varying ellipse orientation changes
its ellipticity progressively on propagation, for example
from positive to negative.

4.A. A pulse that rotates while propagating
Consider first the PG pulse

El(t) = A(t+ ∆t/2) exp[−iω0(t+ ∆t/2)] ,

Er(t) = A(t− ∆t/2) exp[−iω0(t− ∆t/2)] , (19)

[Fig. 1(a)] whose left-handed and right-handed circu-
larly polarized components are equal except that they
are delayed by a small time ∆t such that they partially
overlap [15]. The ellipticity of the PG pulse changes
gradually along the pulse from left-handed circular to
linear at the middle of the pulse (t = 0), and then to
right-handed circular. Choosing A(t) = exp(−t2/∆T 2)
for definiteness, the ellipticity grows monotonically from
−π/4 to +π/4 as tanχ(t) = tanh[(∆t/∆T 2)t] [solid gray
curve χ in Fig. 2(a)]. The instantaneous polarization
ellipse maintains however the time-independent orien-
tation ψ = ∆tω0/2 along the pulse [dashed black hor-
izontal line ψ in Fig. 2(a)]. The PG pulse then has a
well-defined polarization direction as a whole that can be
easily observed: sending the PG pulse through a polar-
izer, a standard detector (such as a photodiode) placed
behind it will provide the transmitted time-integrated
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Fig. 1. Time evolution of the electric field of: (a) the
PG pulse of carrier angular frequency ω0 = 2.355 fs−1

(800 nm carrier wavelength), Gaussian amplitude A(t) =
exp(−t2/∆T 2) of duration ∆T = 3.4 fs (the intensity FWHM
is 1.5 carrier cycles) and delay ∆t = 4.67 fs (see Eq. (19)),
(b) the PG pulse after propagation up to the far field, or
to a focus, when the pulse is emitted by the source with
U(r) = exp(−r2/s2). The straight dashed lines indicate
the simulated direction of the polarizer resulting maximum
transmitted fluence for the source and propagated PG pulse.
For better comparison, a global phase π/2 has been added to
the propagated pulse to eliminate the effect of Gouy phase
shift −π/2 (it does not alter the state of polarization) on
propagation from a finite source to the far field.

intensity, or fluence. As a function of the azimuthal an-
gle θ of the polarizer, the transmitted fluence is given
by F (θ) ∝ 1+exp(−∆t2/2∆T 2) cos(2θ−∆tω0) [dashed
curve θ in Fig. 2(b)], which has the appreciable contrast
exp(−∆t2/2∆T 2) (if the delay ∆t is not large), and is
maximum at the azimuthal angle θmax = ∆tω0/2 equal
to the orientation ψ of the ellipse.

Propagation of the PG pulse from the Gaussian aper-
ture U(r) = exp(−r2/s2) up to the far field and in front
of the aperture (z ≫ ω0s

2/2c, r = 0) is seen to result in
the almost rigidly rotated PG pulse shown in Fig. 1(b).
Similar rotation of equal magnitude [of about 10◦ coun-
terclockwise in the example of Fig. 1] is observed for
other choices of U(r), for example, a hard circular aper-
ture. The rotation of the pulse is a result of the rota-
tion of the instantaneous polarization ellipse by approxi-
mately the same angle at all instants of time [solid black
curve ψ(p) in Fig. 2(a)]. These values are close to the
constant value ψ(p) − ψ ≃ ∆t/ω0∆T

2 predicted by Eq.
(14) [dotted black line in Fig. 2(a)] from our first-order
approach. At the same time, the instantaneous ellip-
ticity is unaltered on propagation [dashed-dotted black
curve χ(p) in Fig. 2(a)], fitting also to the prediction
tanχ(p)(τ) = tanχ(τ) of Eq. (18), since the instanta-
neous orientation is time-independent (dψ/dτ = 0). The
expression ψ(p) − ψ ≃ ∆t/ω0∆T

2 also accounts for the
facts that rotation vanishes for a linearly polarized pulse
(∆t = 0), and is clockwise when the ellipticity decreases
monotonically (∆t < 0).

The rotation of the instantaneous polarization ellipse
at the far field is easily observable as shift of the az-
imuthal angle of maximum fluence transmitted through
a polarizer placed at the far field by about the same
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Fig. 2. (a) Time variation of the orientation (dashed black
curve ψ) and ellipticity (solid gray curve χ) of the momentary
polarization ellipse of the PG pulse in Fig. 1(a), and the
same properties for the propagated PG pulse in Fig. 1(b)

(solid black curve ψ(p) and dashed-dotted black curve χ(p)).
The dotted black curve stands for the predicted polarization
rotation by Eq. (13). (b) Simulated fluence after a polarizer
for the PG pulse in Fig. 1(a) (dashed curve) and for the
propagated pulse in Fig. 1(b) (solid curve) as a function
of the transmission direction of the polarizer. (c) and (d)
Simulated rotation of the direction θmax of polarizer yielding
the maximum fluence behind it as a function of propagation
distance z. For the collimated pulse in (c) the distance z is
in units of the diffraction length ω0s

2/2c, and for the focused
pulse in (d) the distance z is measured from the focal point
and is in units of the focal depth 2cf2/ω0s

2.

angle as the rotation of the instantaneous ellipse [solid
curve θ(p) in Fig. 2(b)]. Figure 2(c) shows the gradual
rotation of the direction θmax of polarizer yielding max-
imum fluence at increasing propagation distances from
the source up to the far field. If as in most of the appli-
cations, the PG pulse is focused (the source amplitude
U(r) is multiplied by exp(−iωr2/2cf)), the same rota-
tion effect is observed upon focusing. Figure 2(d) shows
the gradual rotation on propagation, with a maximum
rotation at the focal point equal to that at the far field,
independently of the source radius and the focal length
f .

Equation (13) also predict that these propagation-
induced changes disappear when the typical scale of
time-variation of the ellipticity is much larger than the
carrier period. Figure 3(a) summarizes the values of

the observable rotation |θ(p)
max − θmax| of the PG pulse at

the far field or at the focus when the pulse is scaled-up
in time (increasing proportionally ∆t and ∆T ). In the
limit of a quasi-monochromatic PG pulse, the rotation
vanishes. At the typical durations of PG pulses used in
experiments (for example, 10 fs), rotation is small but

0

3

6

9

12

0 10 20 30 40

F
a
r

fi
el

d
ro

ta
ti

on
[d

eg
re

es
]

Pulse duration ∆T [fs](a)

|θ
(p)
max − θmax|

-20

-15

-10

-5

0

5

0 10 20 30 40F
a
r

fi
el

d
el

li
p
ti

ci
ty

[d
eg

re
es

]

Pulse duration ∆T [fs](b)

χ

χ(p)

Fig. 3. (a) Rotation of the observable polarization direction
of the PG pulse upon propagation up to the far field or a focus
for different pulse durations. The time delay ∆t is scaled
proportionally with the pulse duration ∆T to retain a similar
pulse shape (∆t/∆T =

√
2 ln 2), see Eq. (19). All other pulse

properties are the same as in Fig. 1. (b) Ellipticity of the
rotating pulse at the far field or at a focus for different pulse
durations. During scaling pulse duration ∆T the product
ωd∆T is kept constant to retain similar pulse shape (ωd∆T =

π/
√

2 ln 2), see Eq. (20). Note that this means that for small
values of ∆T the ωd ≪ ω0 assumption is not true. Other
pulse properties are detailed later in Fig. 4.

still noticeable (about 3◦).
We stress that the rotation of the instantaneous po-

larization direction at all times by approximately the
same angle does not involve any rotation of the po-
larization direction of the spectral components. The
spectra of the l and r components of the PG pulse
in Eq. (19) are Êl,r(ω) = Â(ω) exp(∓iω∆t/2), where

Â(ω) is the Fourier transform of A(t). According to
Eqs. (4) and (5) applied to a particular frequency,
the spectral polarization ellipse orientation and ellip-
ticity are ψ(ω) = ω∆t/2 and tanχ(ω) = 0, that
is, all frequencies are linearly polarized but along
different directions. Similarly, the spectra of the l
and r components of the propagated PG pulse are

Ê
(p)
l,r (ω) = Â(ω) exp(∓i∆tω/2)a(r, z, ω) exp[iφ(r, z, ω)],

whose polarization orientation and ellipticity are also
ψ(p)(ω) = ω∆t/2 and tanχ(p)(ω) = 0, since the two
orthogonal components are affected by the same factor
a(r, z, ω) exp[iφ(r, z, ω)].

4.B. A pulse that reverses its helicity while propa-
gating

Consider now the “rotating” pulse of components

El(t) = alA(t) exp[−i(ω0 + ωd)t] ,

Er(t) = arA(t) exp(−iω0t) , (20)

[Fig. 4(a)]. It is a superposition of left- and right-
handed circularly polarized pulses of slightly different
frequencies (ωd ≪ ω0) and amplitudes, characterized
by the constant ellipticity tanχ = (ar − al)/(ar + al)
along the pulse, while the orientation of the ellipse
ψ(t) = ωdt/2 is monotonously rotating, in a similar
way as the pulse in Ref. [16]. With adequate choice
of al < ar, the ellipticity is slightly positive [dashed
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Fig. 4. Temporal evolution of the electric field of (a) the ro-
tating pulse with ω0 = 2.355 fs−1 ωd = 0.235 fs−1, Gaussian
amplitude A(t) = exp(−t2/∆T 2) of duration ∆T = 11.3 fs,
al = 0.95, and ar = 1.0 (see Eq. (20)), and (b) of the rotat-
ing pulse after propagation up to the far field when the pulse
is emitted by the source with U(r) = exp(−r2/s2).
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Fig. 5. (a) Temporal variation of the orientation (solid gray
curve ψ) and the ellipticity (dashed black curve χ) of the
instantaneous ellipse of the rotating pulse in Fig. 4(a), and
the same properties for the propagated rotating pulse in Fig.
4(b) (dashed-dotted black curve ψ(p) and solid black curve

χ(p)). The dotted black curve stands for the ellipticity pre-
diction by Eq. (17). (b) Change of the ellipticity with prop-
agation distance as it would be obtained by standard polari-
metric techniques. The propagation distance z is in units of
the diffraction length ω0s

2/2c.

black curve χ in Fig. 5(a)]. At the far field, the ap-
proximate Eqs. (13) and (17) predict ψ(p)(τ) ≃ ψ(τ)
and tanχ(p) ≃ (ar − ale

ωd/ω0)/(ar + ale
ωd/ω0). The el-

lipticity is still constant in time, but its value may be
shifted to a negative value [dotted black curve in Fig.
5(a)]. Numerical evaluation of the propagated electric
field with A(t) = exp(−t2/∆T 2) [Fig. 4(b)] and of its
instantaneous polarization state confirms that the ellip-
ticity becomes negative at all times [solid black curve
χ(p) in Fig. 5(a)], and that the orientation is unchanged
[solid gray curve ψ and dashed-dotted black curve ψ(p)

in Fig. 5(a)].
Helicity reversal is clearly observable in a polarimetric

measurement of the helicity. For example, the Stokes pa-
rameters can be determined by s0 = F (0, 0)+F (90◦, 0),
s1 = F (0, 0)−F (90◦, 0), s2 = F (45◦, 0)−F (135◦, 0) and
s3 = F (45◦, 90◦) − F (135◦, 90◦) [8], where

F (θ, ϵ)=

∫ ∞

−∞
dt{Re[E(p)(t, θ, ϵ)]}2 =

1

2

∫ ∞

−∞
dt|E(p)(t, θ, ϵ)|2

(21)
is the measured time-integrated intensity of the trans-

mitted electric field E(p)(t, θ, ϵ) = E
(p)
x (t) cos θ +

E
(p)
y (t)eiϵ sin θ after a polarizer of azimuthal angle θ,

and a retarder causing ϵ phase shift [8]. Evaluation of

the ellipticity sin(2χ(p)) = s3/
√
s21 + s22 + s23 from the

numerically propagated field at increasing distances z
[solid curve in Fig. 5(b)] shows its change from right-
to left-handed values [from χ = +3.6◦ at the source to
χ(p) = −3.0◦ at far field in Fig. 5(b)].

As in the case of the PG pulse, these observable po-
larization changes vanish in the limit of long pulses. In
Fig. 3(b) the ellipticity at the far field or a focus is seen
to approach its original value at the source when the
rotating pulse is scaled-up in time so that it becomes
quasi-monochromatic.

5. Summary and concluding remarks

To summarize, our study has shown that the polariza-
tion state of polarization-shaped ultrashort pulses can
change during free-space beam propagation due to the
different reshaping of the spectra of the orthogonal com-
ponents when the source has a finite extent. Along with
revealing the source of these changes, we have found sim-
ple rules to predict the propagation-induced variations of
the instantaneous polarization state, provided that they
are small. These rules show that the correlation between
the parameters of the instantaneous polarization ellipse
is the following: time-varying ellipticity causes orienta-
tion rotation during propagation, and vice versa, if the
orientation changes in time, the ellipticity is shifted on
propagation.

We used two examples to demonstrate our findings.
The first example is a pulse generally used for isolated
attosecond pulse generation. The above rules imply that
this pulse rotates as a whole upon propagation up to the
far field or to a focus. Based on the fact that the high
harmonic generation efficiency depends on the polariza-
tion state of the fundamental field, this phenomenon
could have an effect on the outcome of these experi-
ments. A variant of the second example has been pro-
posed to measure the carrier-envelope phase. In this
case, the ellipticity shifts from positive to negative on
propagation. All these changes are predicted to be eas-
ily observable in standard measurements of the polar-
ization state. We have also found that at the far field
or at the focus of an ideal focusing system these effects
are independent of the source shape, size and/or the fo-
cal length, being solely determined by the polarization-
shaped structure of the pulse.

We suspect, to conclude, that these easily observable
polarization changes have gone unnoticed because they
are not expected. Also, since the development of a uni-
fied theory of partial coherence and polarization, polar-
ization changes are expected in connection with partially
coherent sources, and studies focus on the spectral po-
larization changes of stationary random beams [12–14].
For a deterministic pulse, the spectral polarization state
is indeed invariant, being the instantaneous polarization
state that becomes relevant experimentally.
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