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Abstract. The available evidence indicates a high performance of core cerebrospinal fluid (CSF) biomarkers in differentiating
between Alzheimer’s disease (AD) and other dementias, and suggests that their characteristic alterations can be detected even
at the prodromal stage of AD. On this basis, the ability of core CSF biomarkers to identify prodromal AD patients from
pre-dementia of all causes can be postulated, a concept that is reflected in recent revisions of AD research criteria and a
consensus statement. Following an overview on the role of biomarkers in the evolution of diagnostic criteria of AD in recent
decades, this paper provides a critical review of the widely applied CSF biomarker study designs and evaluating approaches
that address the ability of core CSF biomarkers to diagnose prodromal AD, with special focus on their potential limitations in
terms of clinical interpretation and utility. The findings together raise the question of whether we are indeed able to establish
a CSF biomarker-based diagnosis of AD at the prodromal stage.
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INTRODUCTION20

Alzheimer’s disease (AD) is known to be the21

most prevalent neurodegenerative disease worldwide,22

accounting for the highest proportion (∼60%) of all-23

cause dementia. The most representative pathological24

hallmarks of the disease were described by the Ger-25

man neuropathologist Alois Alzheimer as early as26

1906, detecting neurofibrillary tangles and the extra-27

cellular formation of amyloid plaques together with28

the substantial shrinkage of the brain of a patient who29
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died of a peculiar condition with a presenile deterio- 30

ration of cognitive functions, especially affecting the 31

memory. More than a century later, although substan- 32

tial advances have been achieved in the understanding 33

of the nature and pathophysiological background of 34

the disease, we still do not have any therapeutic tool 35

in hand with evidence to indicate that it is capable of 36

even influencing the disease course. At the expense 37

of an armada of clinical trials that have failed to prove 38

the therapeutic effect of their candidates having been 39

successful in preclinical settings, a novel concept has 40

started to take shape as to how we should view AD 41

and related disorders, and, more importantly, what we 42

should regard as AD. This review paper summarizes 43

the current understanding of the pathophysiology of 44
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AD with special focus on the biological markers45

(biomarkers) of core pathophysiological alterations46

and their effect on our view on patients with cogni-47

tive decline and dementia. A critical overview is given48

here of the most typical study designs and evaluation49

approaches as regards the diagnostic accuracy and50

potential of core cerebrospinal fluid (CSF) biomark-51

ers in differentiating AD from other etiologies at52

both the dementia and pre-dementia (i.e., prodromal)53

stages.54

HALLMARK PATHOPHYSIOLOGICAL55

ALTERATIONS56

The most representative pathological alterations57

in AD include the region-selective synaptic and58

neuronal degeneration, deposition of extracellular59

amyloid consisting predominantly of an amyloid-�60

protein isoform with a length of 42 amino acids61

(A�42) responsible for the formation of neuritic62

plaques, diffuse plaques, cored plaques, subpial63

bands, and amyloid lakes, and the accumulation of64

hyperphosphorylated microtubule-associated protein65

Tau (pTau) in neuronal cells, leading to the formation66

of neurofibrillary tangles (NFTs) [1–3]. The preferen-67

tially affected brain territories include the entorhinal,68

hippocampal, temporal, and neocortical association69

areas, with the earliest and dominant psychologi-70

cal sign being the disturbance of episodic memory.71

While the association of the above changes in AD72

is apparent, the causative relationships between the73

alterations are subjects of extensive discussion.74

The amyloid hypothesis holds that the increased75

presence of A�42 in the brain formed by the cleav-76

age of amyloid-� protein precursor (A�PP) via the77

consecutive functions of �- and �-secretases (this78

is also known as the amyloidogenic cleavage path-79

way) is the primary pathogenic factor in the cascade80

of events leading to NFT formation and subsequent81

neuronal degeneration [4]. A�42 is prone to self-82

aggregate to soluble oligomers of different sizes,83

which have been widely demonstrated to be toxic to84

synapses and neurons, accounting for the majority85

of amyloid-related toxicity [5], with mitochondrial86

dysfunction and glutamate-mediated excitotoxicity87

being heavily implicated [6, 7]. A�42 also readily88

aggregates to �-sheets to form insoluble fibrils and89

eventually plaques, which probably serve as a reser-90

voir for toxic soluble forms and appear to be locally91

neurotoxic [8]. Furthermore, a body of experimen-92

tal evidence supports the hypothesis that amyloid93

oligomers per se drive the hyperphosphorylation of 94

Tau [9–13], providing a pathomechanistic rationale 95

for A� being a primary etiological factor in the cas- 96

cade of AD pathophysiological process. Notably, the 97

plaque burden itself appears to correlate poorly with 98

disease severity and cognitive impairment [14, 15], 99

and A� plaque pathology is frequently found among 100

the elderly without a symptomatic cognitive decline 101

[16–23], also supporting an indirect role of amyloid 102

deposition in neurodegeneration. 103

Microtubule-associated protein Tau is proposed to 104

stabilize axonal microtubules and promote axonal 105

function in a process regulated largely by the phos- 106

phorylation state of Tau by multiple phosphatases 107

and kinases [24]. In AD, the rate of phosphoryla- 108

tion is abnormally high. Hyperphosphorylated Tau 109

(pTau) is in turn prone to detach from microtubule 110

proteins, resulting in the loss of axonal integrity and 111

the cytosolic accumulation and aggregation of pTau 112

in the form of paired helical filaments, which leads to 113

the formation of NFTs and dystrophic neurites, ulti- 114

mately rendering the affected neurons to degenerate 115

and die [25]. The degree of neuronal loss and dis- 116

ease severity has generally been found to correlate 117

better with Tau pathology than with amyloid plaque 118

burden [14–16, 26]. Though alternative triggers such 119

as mitochondrial dysfunction [27], oxidative stress 120

[28], excitotoxicity, and neuroinflammation [29] have 121

also been proposed, hyperphosphorylation of Tau 122

is generally thought to be triggered by and there- 123

fore downstream of the amyloid pathology in the 124

disease continuum, and the biochemical fingerprints 125

of these pathologies are generally detectable in a 126

timeline corresponding with this hypothesis [30]. 127

However, recent publications of Braak and colleagues 128

report a substantially earlier presentation of Tau 129

histopathology especially in the subcortical areas of 130

the brain as compared with the amyloid pathology 131

[31, 32], whereas others have described a proportion 132

of patients presenting with signs of neurodegenera- 133

tion prior to the appearance of amyloid pathology via 134

imaging modalities [33], observations which leave 135

this question open for further discussion. 136

Although AD is characterized neuropathologically 137

by the presence of amyloid plaques and NFTs in 138

the predisposed brain areas affected by neurodegen- 139

eration, there is considerable evidence that elderly 140

people can present with substantial amyloid as well 141

as Tau pathology on autopsy without any signs of 142

cognitive involvement detected antemortem [16–23]. 143

Whereas such observations may theoretically suggest 144

that the pathology defined as AD-type might not be 145
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sufficiently specific to AD, the currently available146

evidence indicates that such cases might represent147

preclinical (or clinically inappropriately phenotyped148

prodromal) stages of AD at death, which would have149

progressed into AD dementia provided they had lived150

long enough [34]. This concept is similar to the151

one that regards incidental Lewy-body disease as a152

presymptomatic phase of Parkinson’s disease (PD)153

[35]. The picture has become even more complicated154

with the increasing recognition of the substantial155

heterogeneity of neuropathological alterations not156

only among the non-demented elderly [16], but157

also among patients with hippocampal-type demen-158

tia accompanied by a dominant AD-type pathology159

[1]. Indeed, neuropathological substrates of vascu-160

lar dementia (lacunary infarctions and white matter161

lesions as the most frequent concomitants [36]),162

frontotemporal lobar degeneration (FTLD; differen-163

tially localized NFTs and TDP-43 inclusions), diffuse164

Lewy-body disease (DLBD; �-synuclein deposits),165

PD (�-synuclein deposits pathognomically in the166

substantia nigra pars compacta), hippocampal scle-167

rosis, and argyrophilic grain disease are those that168

most commonly coincide with AD-type pathology169

in brains with ‘probable AD’ clinical phenotype [1],170

with a proposed rate of neuropathologically ‘pure171

AD’ of less than 60% [37]. At least in part due to172

this underlying heterogeneity, the differential diagno-173

sis of such conditions is often challenging, especially174

in cases of slowly progressive dementias with insid-175

ious onset. The real life importance of this issue is176

well indicated by data reporting the positive predic-177

tive value of the clinical diagnosis of AD as 70–81%178

when the endpoint includes AD as well as concomi-179

tant pathological conditions, decreasing to 38–44%180

when the evaluation is restricted to ‘pure’ AD cases181

[38]. In a more recent study in which the permissive182

threshold level for histopathological severity method183

was used to define autopsy-confirmed AD, i.e., a184

level considered sufficient to attribute to dementia185

irrespective of concomitant findings, the positive pre-186

dictive value of clinically ‘probable AD’ diagnosis187

was 62.2–83.3% with corresponding sensitivities and188

specificities of 70.9–76.6% and 59.5–70.8%, respec-189

tively (the values depended on the applied minimum190

threshold levels of histopathological severity, with191

more permissive neuropathological definitions result-192

ing in higher predictive value and specificity, and193

lower sensitivity) [39].194

The issue of low accuracy values for clinical diag-195

nosis in AD is of crucial importance in the setting196

of clinical trials, where the enrollment of clinically197

misdiagnosed patients or those with mixed pathology 198

1) seriously biases the statistical analysis, decreas- 199

ing the power of the study to confirm a therapeutic 200

effect, 2) raises the expense of the trials by treating 201

an unnecessarily high number of patients [40], and 3) 202

gives rise to ethical concerns as patients with different 203

etiological background should not hope for a rem- 204

edy from treatment approaches selectively targeting 205

AD-related pathomechanisms. All these difficulties 206

underpin the critical need for markers that reflect the 207

underlying pathology with high accuracy in vivo, and 208

are facile, standardized, and cost-effective enough 209

for research and eventually for clinical use. In the 210

past two decades, extensive efforts have been made 211

worldwide to meet this need. 212

BIOCHEMICAL FINGERPRINTS OF 213

CORE PATHOLOGICAL ALTERATIONS 214

IN AD 215

The increasing recognition that amyloid and 216

Tau/pTau pathologies are leading hallmarks in the 217

pathogenesis of AD led to the discovery of their bio- 218

chemical correlates in the CSF some 20–22 years 219

ago [41–46]. Indeed the CSF level of A�42 has 220

been found to be decreased by some 50%, and the 221

levels of Tau and pTau to be elevated by some 222

250–300% in AD as compared with non-demented 223

healthy individuals in multiple independent stud- 224

ies [47]. This constellation of alterations has often 225

been referred to as ‘the AD signature’, ‘the AD CSF 226

biomarker profile’, or briefly ‘the AD profile’, and 227

the three markers are often referred to as ‘the core 228

biomarkers’ of AD. Although the exact reason for 229

the decreased CSF concentration of A�42 has not 230

yet been fully elucidated, the increased formation 231

of oligomers and their sequestration in the form of 232

insoluble aggregates in the brain (thus the charac- 233

teristic imbalance in the amyloid homeostasis) are 234

generally thought to be attributable to the decrease 235

in the monomeric form measured. The elevation of 236

CSF Tau is thought to reflect axonal/neuronal degen- 237

eration and injury, whereas that of pTau most likely 238

mirrors the kinase/phosphatase imbalance character- 239

istic of the disease. The observed alterations appear to 240

correlate well with autopsy findings [48–52], though 241

contrasting reports have also been published [53]. In 242

line with these, the diagnostic application of the above 243

CSF alterations individually provide 79–86% sensi- 244

tivity and 79–92% specificity when differentiating 245

between AD subjects and healthy controls, with even 246
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higher values if used in combinations (85–94% sen-247

sitivity, 83–100% specificity) [54–56]. Notably, the248

individual specificity of these markers substantially249

decrease when the aim is to differentiate between250

AD and non-AD dementia (NONAD) (66–86%) [55].251

Indeed, decreased CSF levels of A�42 have also been252

described in dementia with Lewy bodies (DLB) [57,253

58], frontotemporal dementia (FTD) [59], and major254

depression [60], whereas elevated levels of Tau have255

been detected in multiple central nervous system256

(CNS) diseases associated with overt neuronal loss257

such as ischemic stroke [61], traumatic brain injury258

[62], DLB (though lower than in AD [57, 58, 63]),259

FTD [64], normal pressure hydrocephalus [65], and260

most prominently in Creutzfeldt-Jakob disease (CJD)261

[66]. The elevation of pTau is considered to be more262

specific to AD [67–69], even though the cytosolic263

aggregation of pTau filaments leading to NFT forma-264

tion are characteristic of all tauopathies. In addition265

to these, a number of studies have proposed ele-266

vated levels of Tau proteins as well as alterations267

in A�42 levels in the CSF of patients with multi-268

ple sclerosis, which findings, however, could not be269

confirmed by our group, among others [70]. Notably,270

whereas the individual markers fail to provide suf-271

ficient specificity to accurately distinguish between272

different forms of dementia, their combined applica-273

tion demonstrates median specificity and sensitivity274

values > 85% across multiple studies [71–82] and in275

a recent systematic review [55], suggestive of reach-276

ing the threshold of meeting the established criteria277

for the minimum required accuracy of biomarkers278

for clinical differential diagnosis [83, 84]. While279

this is indeed an advancement relative to the lower280

specificity values obtained from the purely clinical281

diagnosis of ‘probable AD’ alone, the true merit of282

a marker (or a panel of markers) would be the accu-283

rate identification of individuals who are at risk of284

developing AD dementia, but are either in prodro-285

mal (with cognitive changes suspicious of being due286

to AD, not yet demented) or asymptomatic (with-287

out cognitive impairment) stages of the disease at the288

time of sampling. This is of crucial importance as289

regards the designing of clinical trials, as the pathol-290

ogy of patients with full-blown AD dementia might291

be overly severe to be therapeutically influenced in292

a clinically meaningful extent. In line with this con-293

cept, current clinical trials tend to focus on patients294

with mild cognitive impairment (MCI) who are con-295

sidered to be at risk of developing AD dementia in the296

future. It is reasonable that the selective enrollment of297

MCI patients harboring the biochemical fingerprints298

of the underlying pathology of AD could decrease 299

the bias due to the overlapping phenomenology of 300

pre-dementias. In this respect, a huge effort has been 301

placed on a series of longitudinal follow-up studies 302

evaluating the performance of the individual and/or 303

combined use of core CSF biomarkers in predicting 304

conversion of MCI patients to dementia (i.e., reaching 305

the threshold of interfering with daily functioning) 306

during their follow-up periods. While some of these 307

studies have demonstrated promising sensitivity and 308

specificity values (>80–85%) for the combined use of 309

core CSF biomarkers [85–89], there are several limi- 310

tations which must be taken into consideration when 311

interpreting or meta-analyzing their performance in 312

distinguishing between AD and NONAD at the pro- 313

dromal stage, which will be specifically addressed in 314

the upcoming sections. However, important informa- 315

tion can be gleaned from theses analyses: Patients 316

with prodromal AD who develop CSF fingerprints of 317

both amyloid dyshomeostasis (i.e., A�42 decrease) 318

and neurodegeneration (i.e., Tau and pTau elevation) 319

are in advanced disease stage, and the expected time 320

to develop a disabling condition (i.e., dementia) is 321

rather short, generally a few years [90]. This con- 322

cept is in accordance with the observation that CSF 323

A�42 alteration may start earlier in the disease con- 324

tinuum, as in a longitudinal study with a median 325

follow-up of more than 9 years, the decrease in CSF 326

A�42 was observable in both the converters (who 327

progressed into dementia of the AD-type) and the 328

non-converters within the MCI group, though to dif- 329

ferent extents, whereas substantially high levels of 330

Tau or pTau were present only among early converters 331

(conversion within 0–5 years), but not in late convert- 332

ers (conversion within 5–10 years) [89]. This appears 333

to be in homology with findings on patients with auto- 334

somal dominantly inherited familial AD, reporting 335

the appearance of a decreased CSF A�42 and an ele- 336

vated CSF Tau to precede the expected symptomatic 337

onset by some 25 and 15 years, respectively [91]. 338

THE EMERGENCE OF IMAGING 339

BIOMARKERS: A BRIEF OVERVIEW 340

In parallel with the development of core bio- 341

chemical markers in the CSF, potential biomarkers 342

of different imaging modalities have been the sub- 343

jects of extensive research. Among them, positron 344

emission tomography (PET) CT scans involving the 345

use of 11C-labeled Pittsburgh compound B (PiB) 346

[92] or the more recently developed 18F radiotracers 347
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(florbetapir, flutemetamol, and florbetaben, among348

others [93]) as ligands are increasingly used to detect349

amyloid aggregate deposition in the brain, showing350

a rather good concordance with postmortem amy-351

loid burden [94–97] and also with alterations related352

to CSF A�42 or A�42/(p)Tau ratios [98–107]. Fur-353

thermore, the accuracy of amyloid PET was found354

comparable to that of CSF A�42/Tau or A�42/pTau355

ratios in a most recent study in differentiating pro-356

dromal AD patients from healthy controls, with no357

additional benefit when the two modalities were358

used together [108]. Likewise amyloid pathology at359

autopsy, both positive PET findings and decreased360

CSF A�42 levels may accompany patients without361

cognitive decline, which may be regarded as cases362

in the preclinical phase of the AD continuum [107].363

Notably, however, most recent results suggest that364

CSF A�42 decrease and amyloid PET retention rep-365

resent different aspects of amyloid pathology [105,366

109] and actually measure different forms of amy-367

loid, i.e., monomeric in the CSF versus aggregated368

fibrils by the tracers in the CNS. More recently,369

a number of PET ligands for the in vivo detec-370

tion of Tau pathologies have also been recently371

developed, the diagnostic applicability of which is372

under extensive research [67]. Of note, the ability373

of 2-(1-{6-[(2-(18)F-fluoroethyl)(methyl)amino]-2-374

naphthyl}ethylidene)malononitrile (18F-FDDNP), a375

PET tracer previously widely used to visualize both376

amyloid and Tau pathologies in the brain, has recently377

been questioned [110].378

Other forms of CT-based imaging modalities379

widely used in AD research include 18F-fluorode-380

oxyglucose (FDG) PET-CT to measure decreased381

glucose metabolism indicative of cellular dysfunction382

and loss [111, 112], and single-photon emission CT383

(SPECT) to measure cerebral hypoperfusion [113,384

114]. In both modalities, the typical brain regions385

detected to be predominantly involved in AD are the386

temporoparietal cortices. Magnetic resonance imag-387

ing (MRI) technology is a widely available modality388

utilized to rule out concomitant vascular or inflamma-389

tory etiology and to assess the characteristic atrophy390

of the medial temporal lobe (MTL) [115], an alter-391

ation that reflects regional neuronal loss in AD.392

Although the MTL (more specifically the entorhi-393

nal cortex and the hippocampus proper) is a region394

classically associated with MRI alterations in AD,395

the significant involvement of subcortical gray mat-396

ter structures [116–118] along with the alterations397

of white matter microstructure [119–122] have also398

been recently emphasized. The in-depth presentation399

of the different imaging modalities is beyond the 400

scope of this paper, and they have been extensively 401

reviewed by others [123]. 402

THE EVOLUTION OF DIAGNOSTIC 403

CRITERIA IN AD 404

Back in 1984, the National Institute of Neu- 405

rological and Communicative Diseases and 406

Stroke/Alzheimer’s Disease and Related Disorders 407

Association (NINCDS-ADRDA) published the 408

criteria for the definition of AD, which remained the 409

most widely applied diagnostic criteria in clinical 410

trials for some 27 years to come [124]. The NINCDS- 411

ADRDA recognized AD as a dementia characterized 412

by an amnestic syndrome of hippocampal type with 413

an insidious onset, and postulates that the diagnosis 414

is probabilistic when the patient is alive (probable 415

AD), whereas definite diagnosis could only be 416

provided by autopsy (definite AD). The subsequent 417

remarkable advances achieved in the fields of both 418

biochemical and imaging biomarkers as well as the 419

serial failures of clinical phase II and III trials to 420

provide confirmation of the therapeutic effect of 421

preclinically successful agents necessarily raised the 422

demand for the innovation of the long-standing clin- 423

ical diagnostic criteria of AD. As a result, in 2007, 424

the International Working Group (IWG) for New 425

Research Criteria for the Diagnosis of Alzheimer’s 426

Disease published a position paper with proposed 427

revised research criteria for probable AD [125]. Its 428

core clinical criterion is the presence of progressive 429

specific episodic memory impairment, whereas the 430

recommendation incorporated the abnormalities 431

of core CSF biomarkers in the supportive criteria, 432

together with the presence of MTL atrophy, a char- 433

acteristic PET pattern or an established autosomal 434

dominant mutation within the immediate family. 435

The paper proposes that the diagnosis of AD can 436

be established in the presence of the core clinical 437

criterion and at least one of the supportive criteria, 438

and in the absence of exclusive criteria [127]. The 439

main novelty in this concept is that it regards AD as a 440

disease continuum and it permits the diagnosis of AD 441

even in a prodromal phase, potentially based upon 442

the support of core CSF biomarkers. A refinement 443

for these criteria with a new lexicon of terms related 444

to AD, including ‘presymptomatic AD’, ‘asymp- 445

tomatic AD’, and ‘Alzheimer’s pathology’, was 446

published by the same group in 2010 [126]. One year 447

later, the National Institute on Aging–Alzheimer’s 448
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Association (NIA–AA) workgroups published an449

update on the clinical diagnostic recommenda-450

tions of the NINCDS-ADRDA, incorporating CSF451

biomarkers in the guideline as well [127]. However,452

the guideline proposes that demented patients453

meeting the core clinical criteria of AD and having454

signs of AD pathophysiological process either in455

terms of alterations in core CSF biomarkers or as456

regards characteristic changes in PET and MRI can457

be regarded as ‘probable AD with evidence of AD458

pathophysiological process’, which feature only459

increases the certainty that AD is the underlying460

etiology of the patients’ dementia, but does not461

per se support the diagnosis. In the same year,462

an update was published by the same workgroups463

on the diagnostic research criteria for MCI [128],464

postulating that the evidence of (either CSF or465

imaging) biomarkers for both amyloid deposition466

and neurodegeneration yields ‘a high likelihood’467

that MCI is due to AD, whereas the likelihood is468

considered ‘intermediate’ when there is evidence469

for only one of these two biomarker categories.470

In contrast, the IWG published their most recent471

revision for the research criteria of AD in 2014472

[129] in a position paper postulating that ‘typical473

AD’ can be diagnosed at any stage of the disease474

continuum (either prodromal or dementia stages)475

when the core clinical criteria are accompanied by in476

vivo evidence of AD, including either the presence477

of ‘the CSF AD signature’ (i.e., the AD profile),478

increased amyloid PET tracer retention, or a proven479

mutation of an autosomal dominant familial AD480

gene (structural MRI and FDG-PET alterations were481

no longer included due to insufficient specificity).482

Focusing on core CSF biomarkers, the paper argues483

that the CSF AD signature has high accuracy in484

diagnosing AD at a prodromal stage, with ∼90%485

specificity and sensitivity in AD. In line with this,486

the Alzheimer’s Diseases Standardization Initiative487

published a consensus paper stating that ’changes in488

A�42, Tau, and pTau allow diagnosis of AD in its489

prodromal stage’, since ‘when all three classical AD490

CSF biomarkers are abnormal, a patient with MCI491

should be defined as having prodromal AD’ [130].492

LIMITATIONS FOR CLINICAL493

INTERPRETATION494

The following sections provide a critical review495

of the scientific background that promoted the evo-496

lution of the diagnostic criteria of AD, with special497

focus on the possible limitations of distinct types of 498

CSF biomarker studies that aim to assess the differen- 499

tial diagnostic performance of core CSF biomarkers 500

in the prodromal phase. Focus is not placed herein 501

on but recognition is expressed of the enormous 502

efforts of the Alzheimer’s Disease Association Qual- 503

ity Control program [131, 132], the Penn Biomarker 504

Core of Alzheimer’s Disease Neuroimaging Initiative 505

(ADNI) [30], the Alzheimer’s Biomarker Standard- 506

ization Initiative [130, 133], the Global Biomarker 507

Standardization Consortium (GBSC) [134], and the 508

early cNEUPRO [135] in the field of the elaboration 509

and standardization of pre-analytical and analyti- 510

cal protocols of CSF biomarker measurements in 511

AD for different analytical platforms, including the 512

singleplex ELISA tests and the multiplex Luminex 513

xMAP and Inno-Bia Alzbio3 immunoassay. Their 514

joint efforts will certainly move biomarker develop- 515

ment closer to overcoming current methodological 516

limitations such as the significant inter-laboratory 517

variability and the lack of CSF-based standard ref- 518

erence material, which will undeniably promote the 519

establishment of the methodological basis for the 520

research and probably later clinical utility of CSF 521

biomarkers in the diagnostics of AD. 522

As described above, in recent updates of the 523

research diagnostic criteria for AD, arguments can 524

be found supported by numerous references that 525

scientific evidence is available indicating that CSF 526

biomarkers can distinguish AD patients from other 527

dementias with high accuracy, even at the prodro- 528

mal stage. To analyze the validity of these arguments, 529

we have systematically reviewed the literature in this 530

field, identified the main questions addressed, and 531

critically analyzed the most frequent approaches to 532

answer them in terms of their ability to provide appro- 533

priate answers. 534

CSF biomarker-related studies can generally be 535

divided into three categories. The first cross- 536

sectional-type group that examines differences 537

between the target disease (i.e., AD) and healthy 538

controls and estimates the diagnostic accuracy of 539

biomarkers to distinguish between them are out of 540

scope of this section. The second (from the current 541

perspective) more relevant type of study examines 542

differences between the target disease and related 543

disorders, in our case between AD and NONAD(s), 544

and estimates the diagnostic accuracy of biomarkers 545

to distinguish between them. This type of cross- 546

sectional studies will be referred to throughout 547

this chapter as ‘differential diagnostic studies’. The 548

third main group of studies examines the diagnostic 549
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AD                
one 

particular 
NONAD

AD mixed 
NONAD

Potential limitations of  accuracy values derived from AD vs NONAD study designs include:

1. Lack of autopsy validation of clinical diagnosis

2. Interpretation not adjusted to differential prevalences

3.a Questionable utility in the clinical context         3.b Disproportionate representation of 
diagnoses within the NONAD group

vs vs

Fig. 1. Limitations of cross-sectional differential diagnostic studies in terms of clinical interpretation.

accuracy of biomarkers to identify patients with MCI550

who have an AD pathological background or are at551

risk of converting to AD within a certain period of552

time. These studies are often dedicated to assess-553

ing the possibility of the prodromal diagnosis of AD,554

which is a topic of special importance for adequate555

patient enrollment in clinical trials to come. As such556

longitudinal studies use the conversion to dementia as557

a dichotomized outcome within the defined follow-558

up period in MCI patients, they will be collectively559

referred to as ‘conversion studies’.560

Differential diagnostic studies561

The majority of studies report sensitivity and562

specificity data, and less frequently predictive val-563

ues, likelihood ratios, C-indices, and the area under564

the receiver operating characteristic curve (AUROC)565

values to characterize the performance of CSF566

biomarkers in differentiating AD dementia from other567

dementias. Though such studies provide fairly high568

accuracy values and are therefore promising, they569

appear to have several limitations. First of all, a570

remarkable proportion of studies establish diagnostic571

groups based solely on clinical consensus diagnosis,572

without autopsy confirmation. Even if the diagnosis573

is blinded to the CSF results (which is not always the574

case), the approach of estimating accuracy values for575

biomarkers based on diagnoses uncertain enough to576

drive and urge the development of the same particu-577

lar biomarkers is on the edge of circular reasoning.578

Secondly, specificity values from these studies are579

obtained from diverse comparator groups ranging580

from isolated diseases (i.e., FTD, DLB, subcorti-581

cal vascular dementia, etc.) to NONAD as a whole,582

which makes their collective clinical interpretation583

rather difficult. From a clinical perspective, accuracy584

values obtained from one-to-one comparisons (per- 585

formed by a remarkable proportion of studies) can 586

be useful when the differential diagnosis of a certain 587

case has already been narrowed to AD versus one 588

particular other form of dementia; however, the true 589

predictive values in the real clinical context should 590

be estimated as values controlled for the distinct 591

prevalence rates of AD and the respective compara- 592

tor condition, which adjusted values are usually not 593

provided by the studies themselves (Fig. 1). As in 594

a real clinical scenario, the differential diagnosis in 595

many cases cannot be narrowed to two conditions, a 596

real merit of CSF biomarkers would be to distinguish 597

AD from all other relevant conditions potentially 598

causing dementia, and accuracy values from studies 599

examining AD versus NONAD would therefore be 600

clinically helpful in the diagnosis (Fig. 1). In such 601

a scenario, however, valid specificity and thus pre- 602

dictive values could be provided only if the NONAD 603

group consisted of conditions that are represented in 604

proportions reflecting the relations of real life preva- 605

lence rates of the respective conditions, otherwise the 606

obtained specificity as well as other ‘negative-side’- 607

related parameters such as predictive values are fairly 608

biased, and are clinically less meaningful (Fig. 1). For 609

example, the overrepresentation of CJD (as a rare 610

differential diagnosis) within a NONAD group can 611

falsely increase the specificity value of the combined 612

use of CSF biomarkers, whereas the disproportion- 613

ally low presence of vascular dementia, for instance 614

(as a frequent differential diagnosis), could evoke the 615

opposite effect. In fact, studies assembling NONAD 616

groups from diverse conditions in proportions ade- 617

quately reflecting their relative prevalence rates in the 618

population are scarce. Once the comparator popula- 619

tion is representative in terms of its constitution, the 620

obtained predictive values should again be adjusted 621
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for the relative prevalence rates of AD versus the all-622

cause prevalence of the respective NONAD group to623

provide clinically meaningful and valid estimates.624

Conversion studies625

The main limitations of conversion studies are626

related in part to similar problematics as differen-627

tial diagnostic studies. In addition to the complete628

absence of autopsy-confirmed diagnoses, and the629

high variability of follow-up periods, a number of630

concerns are fundamentally related to study design.631

On the basis of the published conclusions, we have632

found that conversion-type studies typically address633

two questions (sometimes merged into one): 1) By634

how many years does the appearance of the complete635

(or partial) CSF AD profile precede the conversion to636

AD dementia in prodromal AD patients?; 2) To what637

accuracy can CSF biomarkers identify MCI patients638

who will eventually develop dementia due to AD639

(i.e., who have prodromal AD)?640

While the two questions are related, they are641

in fact slightly different entities, the first being a642

disease course-oriented question with in part patho-643

physiological interest, whereas the second being a644

prodromal differential diagnosis-oriented question645

with clinical interest, and their adequate answering646

requires slightly different study designs and evalua-647

tion approaches.648

As regards the first, disease course-oriented ques-649

tion, an idealistic study design would enroll MCI650

patients with CSF samples obtained at baseline,651

documenting their latency to convert to AD (or652

any other forms of dementia) during the follow-up,653

excluding patients not meeting the criteria of AD at654

autopsy as a standard of truth (less probably includ-655

ing patients with alternative clinical diagnosis but656

diagnosed as having AD at autopsy), and estimat-657

ing the frequencies of patients of complete or partial658

AD-type biomarker profiles (i.e., sensitivities) within659

subgroups stratified on the basis of well-defined inter-660

vals of the latency to convert into AD. This descriptive661

approach also enables the estimation of overall as662

well as latency-to-convert-adjusted sensitivity values,663

which have different roles in the interpretation of the664

diagnostic performance of CSF biomarkers (Fig. 2).665

We are aware of a single study that had a sufficiently666

long follow-up period (up to almost 12 years) to667

allow a similar way of stratification; its clinical diag-668

noses, however, have not yet been autopsy-confirmed669

[89]. To our knowledge, no conversion studies have670

yet been published with autopsy-validated diagnoses.671

The vast majority of studies estimate sensitivities for 672

the prediction of clinical conversion within signifi- 673

cantly shorter arbitrarily defined follow-up periods 674

(usually 1–3 years). 675

As regards the second, prodromal differential 676

diagnosis-oriented question, which aims to deter- 677

mine the accuracy of CSF biomarkers in predicting 678

the diagnosis of AD in the prodromal phase, an ide- 679

alistic study design would enroll consecutive MCI 680

patients with CSF samples obtained at baseline, fol- 681

lowing them up through their conversion of different 682

types of dementia (or remaining stable until death), 683

confirming (or overwriting) their clinical diagnoses 684

by autopsy as a standard of truth, and estimating the 685

diagnostic accuracy of CSF biomarkers to differenti- 686

ate between those who converted to AD (MCI-AD) 687

and those who converted to any other developed 688

forms of dementia (MCI-NONAD) pooled with the 689

group of patients who remained stable or in infrequent 690

cases became ‘backwashed’ to normal until death 691

(study design MCI-AD versus MCI-NONAD+MCI- 692

permanently stable, Fig. 2). This design provides a 693

realistic differential diagnostic situation in the pro- 694

dromal phase, is free from the uncertainty of clinical 695

diagnosis alone, and is theoretically free from the 696

bias of the potentially disproportionate representa- 697

tion of diagnoses within the MCI-NONAD group 698

(as compared with a potentially significant bias 699

addressed above regarding the cross-sectional ‘AD 700

versus NONAD’ studies) as the development of dif- 701

ferent types of dementias from a heterogeneous MCI 702

group with consecutive patients enrolled without any 703

a priori filtering is ideally random and follows the 704

natural prevalence rates of the diseases. A limita- 705

tion of this design is the uncertainty of the relative 706

contribution of a particular pathology in cases pre- 707

senting with mixed pathology at autopsy, an issue that 708

is especially relevant in cases with longer follow-up 709

duration and higher age at death. We are not aware 710

of any studies have yet been published with this 711

design. Instead, studies addressing this question can 712

be essentially divided into two subtypes (Fig. 3). Both 713

subtypes work with arbitrarily set follow-up periods 714

and without autopsy-validated diagnostic groups, as 715

the majority of enrolled patients are still alive. The 716

first subtype of study design estimates the diagnostic 717

accuracy of biomarkers to distinguish between MCI 718

patients who clinically convert to AD dementia (usu- 719

ally referred to as MCI-AD or MCI-C) and those who 720

remain stable during the follow-up period (usually 721

referred to as MCI-stable, MCI-NC, or MCI-MCI). 722

Notably, this ‘MCI-AD versus MCI-stable’ design, 723
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Fig. 2. An idealistic longitudinal study design for the determination of prodromal differential diagnostic performance of core CSF biomarkers
obtained from MCI patients at baseline. Dotted arc represents the time needed until all participating MCI cases achieve clinical diagnosis of
dementia of any type, reflecting both the probabilistic nature of the diagnosis and the uncertainty whether such a time-point can be determined
at all due to the presence of residual MCI-stable cases. The solid arc represents the time needed until all cases have definite neuropathological
verification or revision of their diagnoses. Autopsy-confirmed diagnosis enables the accurate estimation of the overall specificity by the use
of MCI-AD versus MCI-NONAD+MCI-permanently stable design. The graph depicting the frequencies of MCI-AD converters that had an
AD CSF biomarker profile at baseline delineates an expectable gradual decrease in the diagnostic sensitivity by the increase of the latency
to convert to AD dementia, which suggests a diagnostically insufficient overall sensitivity and the limitation of core CSF biomarkers to at
most predict early conversion to AD. AD, Alzheimer’s disease; DLB, dementia with Lewy bodies; FTD; frontotemporal dementia; MCI,
mild cognitive impairment, VaD, vascular dementia; (. . . ), any other diagnosis including permanently stable cases.

an approach used in the majority of studies widely724

cited in support of the putative excellent accuracy725

of core CSF AD biomarkers in predicting the diag-726

nosis of AD even in the prodromal phase [59, 85,727

88, 136–148], has a severe and fundamental limi-728

tation in providing valid and clinically meaningful729

accuracy measures for prodromal differential diagno-730

sis, as it disregards the expectation that a remarkable731

proportion (∼20–40%) of converters would develop732

NONAD in a real-life situation, a group that is in fact733

missing from these analyses. The provided specificity734

value in studies using this design therefore does not735

reflect anything other than the ratio of patients with a736

negative CSF profile among non-converters, with no737

information about its relation with parallel-developed738

other dementias at all. In other words, the ‘MCI-AD739

versus MCI-stable’ design does not indeed identify740

prodromal AD, but only provides sensitivity values741

for the detection of early converters (Fig. 3). The 742

second and recently preferred way of estimating the 743

accuracy of CSF biomarkers in identifying prodromal 744

AD is more reminiscent of the idealistic approach 745

delineated above (Fig. 3). This approach recog- 746

nizes three groups at the end of follow-up, which 747

are converters to AD (MCI-AD), non-converters 748

(MCI-stable), and converters to a dementia other 749

than AD (MCI-NONAD), and analyzes them in 750

a study design comparing MCI-AD versus MCI- 751

stable+MCI-NONAD in the ROC analysis (the latter 752

pooled group is occasionally referred to collectively 753

as MCI-NONAD) [86, 87, 89, 149–154]. The study 754

with the longest follow-up period published to date 755

(median 9.2 years) reported the following distribu- 756

tion of diagnoses at evaluation: MCI-AD representing 757

77% of all dementia and 54% of all MCI; MCI- 758

NONAD representing 23% of all dementia and 16% 759
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MCI-stable                MCI-AD MCI-AD MCI-stable

Potential limitations of  accuracy values derived from conversion-type study designs include:

1. Lack of autopsy validation of clinical diagnosis

2. Highly variable follow-up periods and thus conversion rates

3. Estimates not not controlled for age and gender distribution

4. Dynamic heterogeneity of the MCI-stable group

5.a Omission of other dementias developed      5.b Note: identification, not differential diagnosis

vs vs

?
MCI MCI

MCI-
NONAD

Fig. 3. Limitations of longitudinal conversion studies in terms of clinical interpretation.

of all MCI (these stand for an overall 70% conver-760

sion rate); and MCI-stable representing 30% of all761

MCI [89]. In contrast, another study group with an762

overall 35–38% conversion rate from MCI patients at763

baseline within 2-3-year follow-up periods described764

a 89–92% versus 8–11% representation for MCI-765

AD and MCI-NONAD, respectively [149, 150]. The766

remarkable differences in the rate of conversion,767

which is a natural dependent of the established length768

of follow-up period and the disease duration at base-769

line sampling, and in the distribution of converters770

between MCI-AD and MCI-NONAD altogether sug-771

gest a high inter-study variability in terms of the772

predictive values of CSF biomarkers independently773

of the sensitivity and specificity characteristics of774

the biomarkers themselves, which should be taken775

into consideration during meta-analysis and collec-776

tive interpretation of the data (Fig. 3). This ‘MCI-AD777

versus MCI-NONAD+MCI-stable’ approach might778

indeed be useful and relevant when the aim is to enroll779

patients into clinical trials who are similar in terms of780

their expected latency to convert into dementia, and781

to identify prodromal cases in a late phase where CSF782

AD profile is established. It is also more proper com-783

pared to the ‘MCI-AD versus MCI-stable’ approach784

as their values related to the negative side (i.e.,785

specificity, predictive value, etc.) are clinically mean-786

ingful. Notably, however, the ability of this approach787

to accurately assess the differential diagnostic perfor-788

mance of biomarkers is still limited, since due to the789

heterogeneity of the MCI-stable group, a remarkable790

proportion of the MCI-NONAD+MCI-stable pooled 791

comparator group may indeed have AD as the under- 792

lying pathology at a prodromal stage as well (which 793

may as well be as high as 30–40% depending on 794

size of residual MCI-stable group and the length of 795

follow-up). Briefly, this approach does not literally 796

differentiate between prodromal AD and other pre- 797

dementias, but differentiates prodromal AD cases in 798

a fairly advanced stage from all other possible con- 799

ditions, including late converters to AD (Fig. 3). 800

Minor, but relevant additional concerns regarding 801

the conversion-type studies include the high chance 802

that the group of MCI patients who convert into 803

dementia during an a priori defined follow-up period 804

may happen to be significantly older than those who 805

do not convert to dementia, and/or have a higher 806

female/male ratio, with age and female gender being 807

significant risk factors of AD dementia. Though only 808

few studies address these issues specifically, such sce- 809

narios appear indeed quite often [85–87, 89, 106, 810

140, 151, 152, 155], whereas adjustment for these 811

confounders is usually performed in independent 812

multivariate Cox regression analyses, if at all, and 813

the diagnostic accuracy values themselves remain 814

frequently uncontrolled (Fig. 3). Another potential 815

limitation of conversion studies in terms of provid- 816

ing differential diagnostic estimates is the potentially 817

false presumption that all dementia diseases have 818

similar dynamics regarding the propensity to con- 819

vert; indeed, diseases with a slower conversion rate 820

(or later dementia onset) as compared with AD will 821
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be overrepresented in the MCI-stable group and vice822

versa, and consequently, the relative proportion of823

the different conditions within the MCI-stable group824

changes dynamically during the follow-up period825

(and therefore differs between studies with different826

follow-up lengths), factors which together add fur-827

ther uncertainty to the constitution of the MCI-stable828

group (Fig. 3).829

ARE WE ABLE TO ESTABLISH A830

PRODROMAL DIAGNOSIS?831

On the basis of the published data and recent832

systematic reviews suggesting a high accuracy of833

combined CSF biomarkers in differentiating between834

AD and different dementias and proposing that CSF835

AD profile can be detected in AD patients at a pro-836

dromal stage, the indirect conclusion can logically837

be drawn that these markers should have the abil-838

ity to differentiate prodromal AD patients from MCI839

patients with other etiological background. The need840

for a prodromal differential diagnosis of typical AD is841

indisputable, as it potentially represents a key for suc-842

cessful clinical trials. Indirect deductions, however,843

should be based on massive evidence.844

According to our critical review, diagnostic accu-845

racy data on the performance of combined CSF846

biomarkers to distinguish between AD and NONAD847

in the dementia phase in a cross-sectional design848

are biased to a certain extent, mainly owing to the849

paucity of autopsy validation and the frequently non-850

representative assembly of the NONAD groups in851

terms of real-life prevalence rates (Fig. 1). Never-852

theless, there may be arguments suggesting that the853

diagnostic performance of CSF biomarkers from this854

respect may still be comfortingly high. Since AD rep-855

resents the majority of dementia cases (∼60%; i.e.,856

the chance of a random demented patient having AD857

is higher relative to all other diagnoses altogether), the858

adjustment for the prevalence rates increases the pre-859

dictive values. The report proposing that the clinical860

diagnosis fairly underestimates the diagnostic perfor-861

mance of CSF biomarkers compared with autopsy862

diagnosis is also supportive in this respect [156]; how-863

ever, this observation was not confirmed by others864

[71].865

On the other hand, longitudinal conversion studies866

have likewise provided in part biased informa-867

tion about the predictive performance of the AD868

biomarker profile as regards early conversion to AD,869

which is mainly because of the omission of MCI-870

NONAD from the comparator group in the majority 871

of studies addressing this question (‘MCI-AD ver- 872

sus MCI-stable’ design; Fig. 3). While respecting the 873

incontestable clinical significance of studies using 874

the ‘MCI-AD versus MCI-stable+MCI-NONAD’ 875

design, it should be noted that such a design can- 876

not specifically address the differential diagnostic 877

accuracy due to the substantial heterogeneity of the 878

comparator groups (i.e., the ‘unstable’ MCI-stable 879

group; Fig. 3). Strictly speaking, the true differen- 880

tial diagnostic performance of CSF biomarkers in a 881

prodromal phase cannot be accurately estimated until 882

residual MCI-stable cases with the potential to con- 883

vert to AD later are present in the evaluation; the term 884

‘the accuracy of AD diagnosis at the prodromal stage’ 885

should therefore be used with caution, as the values 886

obtained from these studies at most refer to ‘the accu- 887

racy of identifying early converters to AD’. While 888

this distinction may sound academic, the two terms 889

are essentially different. This is because, while there 890

may indeed be a chance that the combined use of core 891

CSF biomarkers may identify early converters to AD 892

from all other possible outcomes, their overall differ- 893

ential diagnostic performance in the prodromal phase 894

can be prognosticated to be rather poor. Since Tau and 895

pTau elevations in the CSF appear to be preferentially 896

present in MCI patients within 5 years before clini- 897

cal conversion to dementia (i.e., in early converters) 898

and not in those who convert later (as opposed to the 899

relatively stable presence of decreased CSF A�42 in 900

MCI) [89], the frequency of an altered CSF profile 901

in MCI-AD patients (i.e., the sensitivity) presumably 902

gradually decreases by the increase in the latency to 903

convert to dementia (Fig. 2). This suggests that the 904

overall sensitivity of the biomarker profile to identify 905

MCI-AD cases among all MCI patients is less than 906

it would be accepted as being of diagnostic value 907

(i.e., 85%). This theoretical concept of gradually 908

decreasing sensitivity is supported by the reported fall 909

in sensitivity value for the combination of Tau and 910

A�42/pTau from the excellent 95% [86] to a diag- 911

nostically insufficient 82% by the extension of the 912

median follow-up with 4 years (from 5.2 to 9.2 years) 913

[89], whereas in another study by a fall in sensitivity 914

for the AD-like CSF pattern from 82.9% to 68.0% by 915

a 2-year extension of the follow-up (from 1 to 3 years) 916

[148]; furthermore, it is also confirmed by findings of 917

a comprehensive recent meta-analysis of conversion 918

studies estimating the differences between those with 919

a follow-up ≤ or > 1 year [90]. 920

In addition to the limitations of studies address- 921

ing the prodromal diagnosis of AD discussed above, 922
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Table 1
Diagnostic accuracy values and main characteristics of conversion studies reporting the combined use of core CSF biomarkers

Publication Biomarker§ Design Sensitivity Specificity Cohort Follow-up (y) Subject No. Method

Riemenschneider et al. [85] Tau and A�42 MCI-AD versus MCI-stable 90.0% 90.0% German 1.5 28 ELISA
Herukka et al. [137] A�42/pTau MCI-AD versus MCI-stable 60.9% 87.3% Finnish 3 78 ELISA
Hansson et al. [86] Tau and A�42/pTau MCI-AD versus MCI-pooled 95.0% 87.0% Swedish 5.2 137 xMAP
Visser et al. [150]∗ Tau and A�42 MCI-AD versus MCI-pooled 100.0% 38.5% DESCRIPA 3 100 ELISA
Mattsson et al. [151] Tau and A�42/pTau MCI-AD versus MCI-pooled 82.6% 72.0% Swedish 3 750 ELISA & xMAP
Hertze et al. [87] Tau and A�42 MCI-AD versus MCI-pooled 88.0% 82.0% Swedish 4.7 166 xMAP
Davatzikos et al. [142] Tau/A�42 MCI-AD versus MCI-stable 86.8% 35.4% ADNI 1 120 xMAP
Cui et al. [147] Tau/A�42 and pTau/A�42 MCI-AD versus MCI-stable 80.4% 48.3% ADNI 2 143 xMAP
Parnetti et al. [88] A�42/pTau MCI-AD versus MCI-stable 81.0% 95.0% Italian 3.4 90 ELISA
Vos et al. [149] A�42/Tau MCI-AD versus MCI-pooled 83.0% 65.0% DESCRIPA & VUmc 2 153 ELISA
Buchhave et al. [89] A�42/pTau MCI-AD versus MCI-pooled 88.0% 90.0% Swedish 9.2 137 xMAP
Liu et al. [146] Tau and A�42 MCI-AD versus MCI-stable 57.0% 70.0% ADNI 3 199 xMAP
Westman et al. [148] AD profile of all three MCI-AD versus MCI-stable 68.0% 64.4% ADNI 3 162 xMAP
Gaser et al. [144] A�42/pTau MCI-AD versus MCI-stable 92.0% 42.0% ADNI 3 195 xMAP
Toledo et al. [145] Tau/A�42 MCI-AD versus MCI-stable 80.0% 46.2% ADNI 3 122 xMAP
Vos et al. [153] A�42/Tau (aMCI) MCI-AD versus MCI-pooled 98.0% 38.0% DESCRIPA & VUmc 2.6 346 ELISA

A�42/Tau (naMCI) MCI-AD versus MCI-pooled 90.0% 54.0% 2.4 192
Sierra-Rio et al. [154]‡ A�42/pTau MCI-AD versus MCI-pooled 84.4% 81.6% Spanish 3 94 ELISA

§Biomarkers with the best performance within a study are indicated. ∗ Specificity value was unpublished but could be calculated based on the reported data. ‡ Sensitivity and specificity values
were unpublished but could be calculated from the reported data. MCI-pooled refers to the MCI-stable+MCI-NONAD design. Follow-up periods are indicated as means or medians. ADNI,
Alzheimer’s Disease Neuroimaging Initiative; DESCRIPA, Development of Screening Guidelines and Clinical Criteria for Predementia Alzheimer’s Disease; VUmc, VU University Medical
Center, Amsterdam, the Netherlands.
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Table 2
Diagnostic accuracy values for the individual and combined use of CSF AD biomarkers, stratified by the different study designs

Biomarker Study design n Sensitivity (%) Specificity (%)

A�42 MCI-AD versus MCI-stable 9 73.13 (±5.99) 74.82 (±4.38) 66.83 (±8.74) 67.46 (±5.59)
MCI-AD versus MCI-pooled 5 77.86 (±6.43) 68.60 (±3.01)

Tau MCI-AD versus MCI-stable 11 72.10 (±5.11) 72.38 (±3.90) 64.42 (±5.92) 65.37 (±4.51)
MCI-AD versus MCI-pooled 4 73.15 (±5.23) 67.98 (±5.60)

pTau MCI-AD versus MCI-stable 10 77.73 (±2.24) 75.28 (±3.58) 70.54 (±6.18) 70.20 (±5.75)
MCI-AD versus MCI-pooled 2 63.05 (±21.1) 68.50 (±21.5)

Combination MCI-AD versus MCI-stable 9 77.34 (±4.19) 83.62 (±2.75) 64.29 (±7.53) 65.93 (±4.90)
MCI-AD versus MCI-pooled 9 89.89 (±2.15) 67.57 (±6.69)

The mean individual and combined sensitivities of CSF AD biomarkers are only slightly lower than that reported in meta-analyses assessing
studies with CSF samples obtained in the dementia phase, corresponding with the median follow-up period of 3 years and the expectation
that the complete CSF signature is present within 5 years before conversion to dementia [89]. However, the mean specificity values for both
the individual and combined biomarkers are ≤ 70%, far below diagnostic value. The obtained values are only slightly higher when analyzing
only studies using the more valid pooled design. Sensitivity and specificity data are presented as mean ± standard error of mean (SEM).
MCI-pooled refers to the MCI-stable+MCI-NONAD design. Bold values are obtained from joint analysis of studies with the two different
designs.

the highest concern regarding arguments stating that923

core CSF biomarkers could identify AD in a prodro-924

mal phase with high scientific accuracy is that there925

is at present no meta-analytic study to support them.926

Indeed, in the past year, Ferreira et al. published a927

comprehensive meta-analysis on the available data,928

and reported a good 85-86% sensitivity, but only929

a modest 60–79% specificity for the combined use930

of core CSF biomarkers in identifying prodromal931

AD, with the A�42/pTau ratio providing the highest932

diagnostic performance; the meta-analysis, how-933

ever, jointly analyzed studies with ‘MCI-AD versus934

MCI-stable’ and ‘MCI-AD versus MCI-stable+MCI-935

NONAD’ designs [90]. This is in line with our own936

calculations with even higher number of relevant and937

additional recent studies included [85–89, 137, 142,938

144–151, 153, 154], yielding a mean sensitivity ∼939

85% (ranging 80–100%), but a mean specificity as940

low as <70% (ranging 35–95%) for the combined941

use of core CSF biomarkers in identifying prodromal942

AD, with only a slight improvement in specificity943

when separately analyzing studies with the ‘MCI-944

AD versus MCI-stable+MCI-NONAD’ design [86,945

87, 89, 149–151, 153, 154] (Tables 1 and 2, see946

methods in Supplementary Material). Even though947

our calculations are not of meta-analytic value, these948

data together with the recent meta-analysis suggest949

an insufficient diagnostic accuracy for core CSF950

biomarkers to identify prodromal AD, due to low951

specificity.952

CONCLUDING REMARKS953

The available accuracy data in the literature sug-954

gest a high performance of the combined use of core955

CSF biomarkers in differentiating between AD and 956

other dementias, and propose that their characteristic 957

alterations can be detected even at advanced prodro- 958

mal stages of AD. On this basis, it is tempting to 959

presume their ability to differentiate prodromal AD 960

patients from MCI patients of all causes, a concept 961

reflected by the recent revisions of AD research cri- 962

teria and a consensus statement. According to our 963

critical review on the widely applied study designs 964

and evaluating approaches, however, the available 965

evidence on the accuracy of CSF biomarkers in dif- 966

ferentiating between AD and other dementias as 967

well as in identifying MCI patients who convert into 968

AD dementia are biased mainly by a disproportion- 969

ate representation of differential diagnoses within 970

the NONAD group, the frequent non-adjustment 971

for confounders such as age and gender, the omis- 972

sion of MCI-NONAD cases from the analysis, the 973

potentially dynamic heterogeneity of the MCI-stable 974

group, and as a common source of confounders the 975

lack of autopsy confirmation of the clinical diagnosis. 976

Though unbiased direct evidence on the performance 977

of CSF biomarkers to distinguish between prodromal 978

AD and other pre-dementias is virtually absent, theo- 979

retical considerations in line with the reported data 980

suggest that the overall sensitivity may fall below 981

the acceptable value with the gradual extension of 982

follow-up. While accurate identification of early con- 983

verters to AD among MCI patients would per se 984

be of outstanding clinical relevance, the calculated 985

specificities from the currently available studies do 986

not reach the level of diagnostic accuracy, in line 987

with the results of a recent meta-analysis. While 988

further prospective studies with an unbiased evalu- 989

ation design and consecutive autopsy validation are 990
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eagerly awaited, at present there is no massive scien-991

tific evidence to support the use of CSF biomarkers992

in the differential diagnosis of prodromal AD, either993

in research or in clinical platforms.994
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