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Abstract 

Introduction: The therapeutic management of Parkinson’s disease has not yet been fully 

resolved, with motor fluctuations and levodopa-induced dyskinesia representing special 

therapeutic challenges. Furthermore, no disease-modifying therapies are currently available. 

Areas covered: This review focuses on promising novel therapies that are at present under 

investigation in Phase I or Phase II trials. Special emphasis is placed on gene therapies: 

vectors, the utilized gene constructs and the side-effects. Moreover, the main risk factors of 

the gene therapy (the insertional mutagenesis, the uncontrolled overproduction of the 

expressed protein and the autoimmune and inflammatory responses) are described. 

Expert opinion: Gene therapies represent a promising field in the therapeutic palette. In order 

to mitigate the side-effects of this therapy, the developments focus on the vectors applied. 

Gene therapy appears to be promising candidate for the management of motor complications 

in advanced stages of Parkinson’s disease. In addition to dopamine replacement therapy, this 

field may also offer a solution for neurogenesis and neuroprotection. 
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Highlights box: 

• To date, only an in vivo gene therapy approach has been utilized in  Parkinson’s 
disease (PD). 

• The safest viral vector is the adeno-associated viral type 2 (AAV2 ) vector, but its 
limitation is the restriction of the size of the delivered gene constructs; only lentiviral 
vectors can deliver larger gene constructs. 

• The main risk factors of the gene therapy are the insertional mutagenesis,  the 
uncontrolled overproduction of the expressed protein and the autoimmune and 
inflammatory responses of the patients. 

• Most of the gene therapy trials in PD are focused on dopamine replacement, though 
the dopaminergic system is not the only affected neurotransmitter system in PD. 
Neurogenesis and neuroprotection should be promising new foci of this research field. 

• Clinical evidence as to the efficacy of the calcium channel blocker isradipine and the 
metabotropic glutamate receptor 5 antagonists has not yet been proven. 

• Adenosine A2A antagonists show promising results in the management of motor 
complications in advanced stages of PD. 

 

Keywords: Parkinson’s disease, levodopa-induced dyskinesia, adenosine A2A antagonist, 

gene therapy, metabotropic glutamate receptors 

 

1. Introduction 

Parkinson’s disease (PD) is the second most prevalent chronic progressive neurodegenerative 

disease among the elderly1. Its neuropathological hallmarks include the preferential 

degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNPc) and the 

presence of intraneuronal inclusions consisting primarily of a-synuclein, the Lewy bodies. As 

the disease affects millions of families worldwide and causes serious problems in the aging 

societies, its social significance is tremendous. A meta-analysis of a worldwide dataset 

revealed an increasing prevalence of PD with age: 41/100,000 among those between 40 and 

49 years; 428/100,000 among those between 60 and 69 years; and 1903/100,000 among those 

above 80 years of age2. 

Protein aggregation, mitochondrial disturbances, oxidative stress, glutamate excitotoxicity, 

alterations of the tryptophan metabolism, immunological mechanisms, and genetic 

predisposition have all been suggested to play significant roles in the etiopathology of the 

disease3-13. 
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The diagnosis is based on the identification of the classical motor symptoms 

(tremor, rigidity, hypokinesia and difficulty in walking). In addition to these, however, non-

motor symptoms are also characteristic of the disorder (i.e. dementia, depression, sleep 

disorder, and emotional, cognitive and behavioral problems) 14. 

The introduction of long-term dopamine (DA) replacement therapy with 3,4-dihydroxy-L-

phenylalanine (L-DOPA), the precursor of DA, prove to be a milestone in the treatment of 

PD. However, the drug can evoke side-effects, which include motor fluctuations, L-DOPA-

induced dyskinesia (LID) and non-motor fluctuations. In advanced stages of PD, motor 

complications may appear, where the therapeutic window of L-DOPA becomes narrow: low 

plasma L-DOPA levels lead to an end-of dose worsening of the symptoms (wearing-off), 

whereas high levels may induce worsening of the dyskinesia. These motor complications are 

more frequent after L-DOPA treatment than after DA agonists. Both L-DOPA and DA 

agonists may also promote the development of other non-motor complications, such as 

cognitive dysfunction and neuropsychiatric symptoms (i.e. compulsive behavior and impulse 

control disorders (ICDs)) 15, 16. ICDs include gambling, pathological shopping, compulsive 

eating and hypersexuality. Interestingly, levodopa addicition may also develop, which has the 

same features as other medication addiction: compulsive drug intake, persistent use of the 

drug and withdrawal symptoms 17. Risk factors of developing ICDs are male sex, younger age 

at the onset of PD, and a prior history of any addiction or depression, and the trigger factor is 

dopaminergic therapy, especially DA agonists. The benefits of dopaminergic treatment may 

therefore be overshadowed by these troublesome side-effects aand by the appearance of 

symptoms that do not respond to dopaminergic treatments (i.e. autonomic symptoms, gait and 

balance problems, and cognitive impairment)18.  

An interesting issue is the placebo effect during clinical trials, which can be particularly high 

in PD patients. The placebo effect means that simply because of the expectation of a 

therapeutic benefit, an intervention or drug gives the sensation of being more efficacious. 

Positron emission tomography (PET) studies have confirmed an endogenous striatal DA 

release induced by placebo, which correlated with the perceived beneficial effect of a placebo 
19. DA release is closely connected with a reward mechanisms in the brain, but PET studies 

have  also confirmed that DA release in the ventral striatum is associated with the expectation 

of a reward and not the actual reward itself 20. These findings promote the understanding of 

difficulties for drug development in PD. These issues, together with the lack of available 

neuroprotective agents represent the driving force behind the search for new therapeutic 
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possibilities. In the last decade, several novel drugs have been developed and tested in PD, but 

so far only a small number have reached the market 21, 22. 

In this review, we focus on summarizing the results of recent phase I and II clinical trials with 

new potential therapeutic agents in PD. Gene therapy is at the focus of the article because it is 

a novel approach in the therapeutic palette. Besides gene therapy, novel drug candidates for 

drug development are also evaluated, which are currently undergoing Phase I or Phase II 

clinical trials.  

2. Novel therapeutic possibilities in PD 

2.1. Gene therapy 

In the past decade, a new player has appeared in the therapeutic palette, the aim of which is to 

fill the above-mentioned therapeutic gaps, i.e. gene therapy. Gene therapy refers to the 

application of a gene or genetic material (including DNA and RNA) as an agent to modulate 

cellular/biological functions with the aim of treating a disease18. 

Clinical gene therapy approaches can be divided into two categories (Figure 1.). The first 

option is ex vivo gene therapy, in which the patients receive genetically modified cells that 

express a desired protein or proteins. The second possibility is in vivo gene therapy, in which 

the genetic information is directly inserted into the patient’s own cells. To date, all human 

clinical trials have applied the in vivo method with the use of viral vectors; however, ex vivo 

gene therapeutic strategies may also play a role in the treatment of PD in the future23-25. It is 

of note that specific risks exist in association with the use of gene therapeutic approaches. 

Indeed, the uncontrolled overproduction of the expressed protein can cause undesirable 

effects. Appropriate selection of the gene promoter, a region that controls the gene expression, 

might be a solution for this probem26. 

 

Figure 1. 

 

A number of risk factors can be inherited as regards in vivo gene therapy too, including the 

induction of insertional mutagenesis and autoimmune and inflammatory responses in the 

patients. In the case of insertion mutagenesis, the introduced gene is integrated into the host 

genome at a site that promotes oncogenesis. The use of viral vectors can keep the risks of 

insertion mutagenesis at a low level. Further potential risks of harm include the autoimmune 

and inflammatory responses of the body of the patients. This risk can be mitigated by the use 
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of certain viral vectors and by a careful control of immune and inflammatory responses during 

the therapy. 

Viral and non-viral vectors are both available for the delivery of genetic material into the host 

cells. Non-viral techniques are mainly tested in preclinical models; in the present work, 

therefore, the review of these techniques is limited to short descriptions. These methods 

include electroporation, the gene gun, the intranasal injection of the genetic material, and 

liposomes coated with polyethyleneglycol (PEG). The electroporation techniques enhance the 

permeability of the membranes after the injection of the genetic material by applying 

controlled electric fields. The gene gun method represents a direct gene delivery into tissues 

or cells by injecting gold particles coated with DNA, which can penetrate into the nucleus. 

The other two approaches allow an easier access to the central nervous system (CNS), as they 

solve the problem of passing across the blood-brain barrier (BBB). The first solution is the 

direct intranasal injection of the genetic material, whereas the second option is transferring the 

genetic material via liposomes (coated with PEG), which are stable in blood and, after 

modifications, can be actively transported into the CNS. 

The first vectors used for gene therapy were of adenoviral and herpes simplex viral types; 

however, they were replaced by two vectors that are less toxic and less prone to produce an 

immune response. At present, the most widely applied vectors are the lentiviral and the 

adeno-associated viral (AAV) vectors. In the case of AAV, the majority of the virus genome 

is removed, which results in a decreased risk of secondary immune reactions and insertion 

mutagenesis. As the majority of the virus genome is removed, the viral genome remains 

episomic and is not integrated into the host genome, thereby reducing the risk of insertional 

mutagenesis. Due to these advantages of the AAV vectors, this is the most commonly used 

type of vectors for gene therapy. Nonetheless, it has a main limitation, which is the restriction 

of the size of the delivered gene constructs. On the other hand, lentiviral vectors can deliver 

larger gene constructs. It is noteworthy that these constructs integrate into the host genome, 

which on the one hand may evoke insertional mutagenesis, whereas on the other hand this 

approach enables a longer gene expression as a benefit of the integration. Nevertheless, it 

should be noted that the target neurons are mainly in their postmitotic stage, which may limit 

the risk of insertional mutagenesis. One of the main problems to be solved as regards viral 

gene therapy is the penetration of the agents across the BBB. Neither of these two viruses can 

pass through the BBB, and this form of treatment therefore requires craniotomy. 

The aims of gene therapy in PD are to increase the extent of DA production or the number of 

dopaminergic nerve terminals. However, PD affects not only the dopaminergic, but also other 
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neurotransmitter systems, such as the noradrenergic, serotoninergic, glutamatergic and 

cholinergic systems. Gene therapy is mainly focused on the dopaminergic system, but a more 

general repair approach might be more effective. This is one of the reasons why gene therapy 

has so far had only limited results. Altogether eight PD gene therapies have so far been 

conducted in phase I or phase II clinical trials (Table 1.). All of them involve the use of AAV 

or lentiviral vectors. 

 

2.1.1 Adeno-associated viral type 2-glutamic acid decarboxylase (AAV2-GAD) 

The first human in vivo gene therapy study with the aim of treating neurodegenerative 

disorders was a safety and tolerability study with the AAV2-GAD construct in PD27. 

The gene used was GAD, which encodes the rate-limiting enzyme for the synthesis of 

gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter within the brain. 

Earlier studies revealed that the CSF level of GABA is significantly decreased in PD28 and 

that GABAergic drugs injected into the region of the subthalamic nucleus (STN) could 

attenuate the disease symptoms29. In PD, the activity of the STN is increased, mainly due to a 

decrease in GABAergic inhibition from the globus pallidus30-32. In line with these findings, 

encouraging results emerged from preclinical experiments on rats33 and macaques34 with 

AAV2-GAD therapy. 

In a human clinical trial, 11 male and 1 female PD patients between 25 and 70 years of age 

and with a Hoehn and Yahr stage of 3 or greater were enrolled, all of them presenting with 

intolerable motor complications due to L-DOPA. Four patients received low-dose, four 

received medium-dose, and four received high-dose AAV2–GAD injections, which were 

injected unilaterally into the subthalamic nucleus (STN) region of the clinically less affected 

side. Each patient underwent surgery, and there were no dropouts or lost patients. No 

treatment-related adverse events or immune responses were reported during the one year of 

follow-up. Significant improvements were measured in the motor Unified Parkinson’s 

Disease Rating Scale (UPDRS) scores after 3 months, predominantly on the side of the body 

contralateral to the surgery, and this effect persisted for the duration of the trial. 
18Fluorodeoxyglucose positron emission tomography (18F-FDG-PET) was used to assess the 

changes in regional metabolism and network activity after the treatment. The above results 

were associated with increases in metabolism in the premotor cortex of the operated 

hemispheres, suggesting that the therapy changed the activity of the motor cortico-striato-
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pallido-thalamo-cortical circuit, which ameliorated the motor function35. In contrast, the 

activity of the cognition-related network did not change after gene transfer, which suggests 

that the modulation of the abnormal network activity underlies the clinical benefit of the 

AAV-GAD gene therapy in PD35. 

After this successful Phase I study, a double-blind, Phase II, randomized-controlled trial was 

conducted in seven centers in the USA, which was a bilateral delivery trial with AAV2-

GAD36. All the patients enrolled had a progressive, L-DOPA-responsive, advanced PD, with a 

UPDRS motor score of 25 or above, and with an age betwen 30 and 75 years. The utilized 

dose was the highest applied in the Phase I trial (1*1012 vg/ml). 23 patients were randomly 

selected for sham surgery and 22 for AAV2-GAD therapy; out of these, eventually 21 and 16 

patients were assessed, respectively. The sham group received a bilateral intradural injection 

of sterile saline. The endpoint of the trial was at 6 months after surgery. A significant 

difference was observable in the UPDRS scores, with 8.1- (23%) and 4.7-point (13%) 

decreases in the AAV2-GAD and the sham group, respectively. The AAV2-GAD group 

achieved a significantly greater improvement from baseline in the UPDRS scores as 

compared with the sham group the 6-months duration of the study. The reported mild and 

moderate adverse events were probably related to surgery, presenting in headache and nausea. 

These results support the rationale for further development of bilateral injection therapy with 

AAV2-GAD into the subthalamic nucleus for PD, and suggest promising opportunities for 

gene therapy in other neurological disorders. 

It could be noticed from the above results that not only the treatment group, but also the 

sham-treated group achieved a certain extent of amelioration. This placebo or sham effect 

represents a major obstacle in the development of therapies in PD. A recent study suggested 

the use of individualized subject selection based on a predetermined network criterion, which 

may limit the need for sham interventions in future clinical trials37. 

 

2.1.2 AAV2-Glial-derived Neurotrophic Factor 

Gene therapy can be applied to halt the disease progression and to restore neuronal function. 

To achieve these goals, neurotrophic factors can be used to promote the normal cell function 

and to enhance the survival of damaged nigral dopaminergic neurons. 

The most extensively studied neurotrophic factor in PD is the glial cell line-derived 

neurotrophic factor (GDNF). Its safety and efficacy have been demonstared at the preclinical 
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level in PD animal model studies, in which the direct injection of GDNF was proven to 

ameliorate nigrostriatal dopaminergic cell death and to promote dopaminergic axonal 

sprouting38-41. Moreover, in primate models of PD, findings on the effects of GDNF treatment 

with the use of different viral vectors suggested that this form of therapy may mediate 

plasticity in the DA-depleted brain and ameliorate the lesion-induced behavioral deficits42, 43. 

Human ICV administration therapeutical studies provided rather promising results44, 45, which 

could further facilitate the initiation of viral vector-mediated delivery of GDNF genes in the 

clinical practice46. 

The most extensively examined GDNF family member, Neurturin (NTN) (CERE-120), 

showed efficacy and safety both in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-

induced primate and 6-hydroxydopamine (6-OHDA)-induced rodent models of the disease47. 

Twelve PD patients were treated in a Phase I trial with bilateral intraputaminal injection of 

NTN with 2 dose levels without serious adverse events48. The therapy was safe and well-

tolerated, and after 1 year, a significant clinical improvement (36%) was reached in OFF-

medication motor UPDRS scores. At the same time, the 18Fluorodopa PET imaging did not 

indicate significant increases in the number of dopaminergic nerve terminals. 

In 2010, 58 PD patients were enrolled in a randomized, double-blind, sham surgery-controlled 

clinical trial49. Unfortunately, there were serious adverse events in 13 of 38 patients from the 

treated group and in 4 of 20 from the sham surgery cohort. Three patients from the first group 

(one glioblastoma, one esophageal adenocarcinoma and one adenocarcinoma of the prostate) 

and two from the second (parotid gland tumor, apocrine gland adenocarcinoma) group 

developed tumors. The quantitatative PCR assays were negative for AAV2-NTN on each 

occasion. In the case of the glioblastoma the deeper investigation revealed that it had been 

present on MRI before the study entry. For these reason, the tumors were not thought to be 

related to the AAV2-NTN treatment, albeit this possibility cannot be completely discounted. 

Two patients from the treated group died (one from a myocardial infarction at 47 days and 

one from a pulmonary embolism at 91 days postoperatively), but these deaths were not 

adjudged to be related to the treatment49. The patients who received NTN treatment did not 

reach significant improvement in OFF-state motor UPDRS scores at the end of the first year. 

However, the study raised the possibility that benefit might be achieved by additional 

targeting of the substantia nigra and by the use of longer term follow-up periods in future 

studies. 
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In a two-year safety trial of bilateral therapy of CERE-120 injected into the SN and putamen 

suggested that the procedures were safe (Class IV evidence) and well tolerated, with no 

serious adverse events reported50. 

On the basis of these observations, a Phase IIb, double-blind, sham surgery-controlled trial 

investigated the efficacy of combined intraputaminal and intranigral gene delivery of CERE-

120 in PD patients18. Even though this trial could not confirm the efficacy of the treatment at 

the primary endpoint, significant improvements were achieved in certain secondary endpoints. 

The therapy was safe and well tolerated. 

Recently published results failed to show better efficacy as compared with sham surgery in a 

double-blind, randomized AAV2-NTN treatment bilaterally in the substantia nigra and the 

putamen (NTC00985517)51. There were no significant differences between the two groups in 

the primary and most of the secondary endpoints. No clinically relevant adverse events 

occurred in response to the treatment; only two patients suffered cerebral hemorrhages with 

transient symptoms. The therapy was safe and well tolerated. 

The post-mortem assessment of four patients after putaminal NTN treatment revealed modest 

improvement in the patients’s brain even four years after the therapy52. This was evidence of 

the long-term, stable and persistently targeted gene-transfer-mediated neutrophic factor 

expression, but these neurons represented only a very small proportion of the total neuronal 

population. These results may help in the design of the treatment protocols in future therapies. 

A new study is currently recruiting participants for an open-label dose-escalation study of 

AAV2–GDNF delivery in advanced PD patients to analyze the safety, tolerability and 

efficacy of bilateral treatment into the putamen in 4 doses (NCT01621581). 

The summary of recent studies suggests that this therapeutic approach may be effective only 

in relatively mild PD, which can be an explanation for the negative results of the clinical trials 

to date18, 53. 

 

 

2.1.3 AAV2-AADC 

Another gene therapeutic opportunity in PD is to improve the efficiency of L-DOPA 

conversion to DA. The aromatic L-amino acid decarboxylase (AADC) gene encodes an 

enzyme that transforms both endogenous and pharmacologically administered L-DOPA to 

DA, which suggests a promising opportunity. In advanced PD, the activity of AADC is 

reduced as a result of the loss of nigrostriatal neurons, thereby reducing the level of 

endogenous DA. In consequence of the reduced DA levels, the patients require higher doses 
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of L-DOPA47. In vivo gene therapy through use of the AAV2-AADC construct can enhance 

DA synthesis and may ameliorate the efficacy of the applied L-DOPA treatment. The 

therapeutic benefit may be the reduction of the utilized dose of L-DOPA, which can lead to an 

alleviation in the associated side-effects. 

Earlier preclinical studies with primate models of PD resulted in robust gene expression 

changes lasting for more than seven years54, 55; lower doses of L-DOPA were therefore 

sufficient and behavioral improvement could be achieved without the side-effects typically 

associated with higher doses of L-DOPA. 

Five moderate-to-advanced PD patients were enrolled in the first human Phase I safety trial 

with bilateral injection of a low dose of AAV2-AADC vector into the putamen56. The results 

showed a modest improvement; nevertheless, the absence of a control group and the non-

blinded analysis made the interpretation difficult. These initial data demonstrated the safety 

and tolerability of the therapy at low dose, and prompted attempts with higher doses in future 

trials. 

In the next trial, 10 patients with moderately advanced PD received bilateral intraputaminal 

treatment57. Five of them received low-dose and five of them high-dose therapy, and the 

standardized clinical rating scales were used to measure the clinical state at baseline and at 6 

months. The therapy was well tolerated in these cohorts too, only the surgical intervention 

showing a possible association with increased risks of intracranial hemorrhage and headache. 

Asymptomatic hemorrhage (in 2 subjects), small subdural/subarachnoid hemorrhage (in one 

patient), intracerebral hemorrhage associated with a venous infarct (in one subject) and a 

symptomatic hemorrhagic infarct occurred. The hemorrhages took place along the trajectory 

of the catheter, but far from the site of infusion, and were presumably side-effects of the 

surgical procedure. The most common adverse events were the self-limited headache and 

discomfort at the operation site, but they were short-lived. No related adverse events occurred 

during the AAV2-AADC therapy. The measured total and motor rating scales improved in 

both treatment groups. The 6-month 18Fluoro-L-m-tyrosine (FMT) PET results showed 

greater improvement in the higher-dose as compared with the lower-dose cohort (75% vs 

30%). The amount of dopaminergic medication necessary was reduced in 8 patients (5 in the 

high-dose and 3 in the low-dose group). These results provided class IV evidence for the 

improvement of the mean scores in the UPDRS by approximately 30% in both the ON and 

OFF states. 
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A subsequent study aimed to analyze the magnetic resonance imaging (MRI) and PET data 

from the above-mentioned Phase I trial retrospectively. Moreover, the study correlated the 

data with a similar non-human primate dataset to improve future PD gene therapy trials in 

preparation for the initiation of the Phase II trial58. Ten PD patients treated with bilateral 

MRI-guided putaminal infusions of AAV2-AADC were enrolled and three normal adult non-

human primates received similar infusions into their thalamus. In view of the joint analysis of 

the MRI, PET and AADC immunohistochemistry results, the authors presented 

recommendations for future protocols with the use of T2-weighted MRI, as this modality 

appeared to allow visualization of a significant part of the distribution volume of the AADC 

therapy. 

 

2.1.4 Lenti–TH–AADC–GCH  

Lenti–TH–AADC–GCH (ProSavin®) therapy includes 3 different genes that are involved in 

the production of endogenous DA synthesis. Tyrosine hydroxylase (TH) and guanosine 

triphosphate cyclohydrolase (GCH) are responsible for catalyzing the conversion of dietary 

tyrosine to L-DOPA, which can then be further metabolized to DA via AADC. The aim of 

this approach is not only to increase the DA level in the striatum (via increased AADC 

activity), but also to further increase the availability of endogenous L-DOPA. 

Preclinical studies in 6-OHDA-induced rodent and MPTP-induced primate PD models 

provided promising results with the intrastriatal transduction of three AAV vectors, which 

separately carried the three genes18. These vectors were able to increase DA concentrations, 

and a three-gened lentivirus vector was therefore later developed to transduce genes for all 

three enzymes [Lenti–TH–AADC–GCH ]. This was able to increase extracellular striatal DA 

concentrations in animal models of PD 59. The advantage of this technique is that it may be 

suitable for providing long-term gene expression and thereby less pulsatile DA delivery in the 

striatum. This benefit could presumably reduce the risk of L-DOPA-associated side-effects 

(i.e. dyskinesia and hallucination). The first results with an MPTP macaque model treated 

with a striatal injection of the tricinstronic lentiviral vector indicated that this treatment was 

safe and effective without evoking dyskinesias59. 

The first Phase I/II open-label trial with a 12-month follow-up demonstrated the safety and 

efficacy of this therapy after bilateral injection into the putamen60. Fifteen patients received 

three doses of the drug, three of them low-dose (1.9*107 transducing units (TU)), six of them 

mid-dose (4.0*107 TU), and six of them high-dose (1*108 TU) treatment. After the first year 

D
ow

nl
oa

de
d 

by
 [

Fl
in

de
rs

 U
ni

ve
rs

ity
 o

f 
So

ut
h 

A
us

tr
al

ia
] 

at
 0

2:
52

 1
6 

M
ar

ch
 2

01
6 



13 
 

of follow-up, 54 mild or moderate adverse events were reported, and no serious adverse 

events occured. A significant improvement in mean UPDRS motor scores OFF medication 

could be detected as compared with the baseline in every patient at 6 months and after one 

year (NCT00627588)60. This safety, tolerability and efficacy trial has been prolonged for 10 

years in order to provide further data concerning this therapy (NCT01856439). Furthermore, 

preparations have been started to optimize the effective drug dose for a randomized, placebo-

controlled human clinical trial18. 

To summarize these results, the above clinical trials have shown that these therapies are 

generally safe and well tolerated, suggesting that this method could be applicable treatment 

for PD in the near future. 

 

2.2. Other therapeutic possibilities: 

2.2.1. Metabotropic glutamate receptor 5 antagonists 

The development of LID, an important complication of L-DOPA substitution, has a severe 

impact on the quality of life of PD patients. The pathomechanism of LID has been associated 

with alterations in both the dopaminergic and the glutamatergic neurotransmission. On the 

basis of the findings of animal models, metabotropic and ionotropic glutamate receptor 

antagonists have been suggested to be able to alleviate LID61. Mavoglurant (AFQ056) is a 

selective metabotropic glutamate receptor 5 antagonist, the beneficial effects of which on LID 

were first revealed in primates62. Two randomized, double-blind, placebo-controlled Phase II 

studies evaluated the efficacy of mavoglurant in PD patients with moderate-to-severe LID. 

The two studies assessed LID by the use of two different scales: the Lang-Fahn Activities of 

Daily Living Dyskinesia Scale and the modified Abnormal Involuntary Movement Scale. 

Although these studies involved only 29 patients, both of them clearly confirmed the efficacy 

of mavoglurant. Dyskinesia significantly improved without any influence on the 

antiparkinsonian effect of L-DOPA63. Another clinical trial also confirmed its efficacy and 

safety in 2013; however, two subsequent clinical trials (NCT01385592 and NCT01491529) 

failed to prove its efficacy and the investigations of mavoglurant have therefore been 

discontinued64. The current approaches to the investigation of dyskinesia are not consequent, 

and numerous different dyskinesia scales are available. These scales measure changes relating 

to the applied treatment in different ways and their sensitivity shows high variability, 

therefore further testing is recommended to evaluate their clinical properties and validity65, 66. 

The evaluation of novel drugs for the treatment of dyskinesia depends extensively on the 
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choice of rating scales. Another important issue is the relatively high placebo effect in PD 

patients, and placebo-associated improvements may confound the interpretation of the results. 

The impact of the placebo effect on the outcome must be considered in the study design67. 

Moreover, although no dyskinesia rating scales are free from placebo effects, the differences 

between these scales, and especially their objective and subjective factors, may seriously 

influence the evaluation of improvement65.  

Dipraglurant (ADX48621), another metabotropic glutamate 5 receptor antagonist, has so far 

been investigated in a Phase IIa study. The primary outcomes were safety and tolerability, and 

the study involved PD patients with moderate-to-severe LID. The results showed a moderate 

efficacy in reducing LID, and the drug was generally well tolerated. The main adverse events 

reported were nausea, dizziness and dyskinesia. The producer has already announced the 

initiation of a Phase II trial, and a PET-imaging study is also currently ongoing to assess the 

metabotropic glutamate receptor 5 occupancy of dipraglurant68, 69. 

 

2.2.2. Calcium-channel blockers 

Non-selective calcium-channel blockers, such as flunarizine and cinnarizine and in rare cases 

other calcium channel blockers such as amlodipine have been reported to cause drug-induced 

parkinsonism70, 71. However, more recent epidemiological studies did not confirm any 

association or indicated that the use of calcium-channel blockers as antihypertensive therapy 

was associated with a reduced risk of developing PD72-75. Isradipine is a dihydropyridine 

calcium-channel blocker and is an approved drug for the treatment of hypertension. However, 

it has recently been suggested to have a disease-modifying potential in PD patients. The first 

data implying its protective role came from mouse models of PD76, 77. The possible 

background and the importance of Cav1.3-containing L-type calcium channels in the 

regulation of DA receptor responses in the substantia nigra have been described only 

recently78, 79. 

A pilot study evaluated the safety and tolerability of isradipine in PD patients in 2010 

(NCT00753636), which confirmed that isradipine up to 10 mg was well tolerated and caused 

only minor side-effects, the most frequent ones being dizziness and leg edema80. Furthermore, 

in that study, isradipine had no effect on the blood pressure or motor function of PD patients. 

These results have been confirmed by a Phase II trial, which established that the maximum 

tolerated dose of isradipine was 10 mg81. While the current data did not confirm any 

immediate symptomatic benefit in PD patients, on the basis of the promising preclinical 

results and the good tolerability, isradipine warrants further investigation to assess its possible 
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neuroprotective capacity. A Phase III study is currently ongoing to assess the efficacy of 

isradipine in PD (NCT02168842). 

 

2.2.3. Adenosine A2A receptor antagonists 

Adenosine A2A receptors have been implicated in the pathomechanism of PD, as they may 

take part in the modulation of glutamatergic and GABA-ergic neurotransmission and may 

also influence the striatal DA receptors. This mode of action may influence the activation of 

the indirect striatopallidal pathway. Adenosine A2A antagonists (Figure 2) have been tested as 

early monotherapy for previously untreated PD patients, but they may also hold promise for 

PD patients with motor fluctuations or dyskinesia82. Another important benefit of A2A 

antagonists might be the better side-effect profile as compared with DA agonists. Several A2A 

antagonists have already been developed, such as istradefylline, tozadenant, vipadenant and 

preladenant. 

 

Figure 2. 

 

Istradefylline is the first A2A antagonist that has been approved for marketing in Japan, 

although in the United States, the Food and Drug Administration (FDA) rejected its approval. 

The drug has been tested both as monotherapy and in combination with L-DOPA. As 

monotherapy, istradefylline did not improve the motor symptoms of PD patients83, 84. 

However, as adjunctive therapy to L-DOPA, istradefylline produced more promising results. 

Several studies revealed an improvement in UPDRS motor scores, though some of them did 

not lead to any motor improvement83, 85, 86. On the other hand, a more consistent finding was 

the reduction of the OFF-time and the prolonged effect of L-DOPA83, 85, 87-89. Istradefylline 

was generally well tolerated, the most commonly reported adverse events being nausea, 

dizziness, and the prolongation of dyskinesia during the ON-time. Interestingly, the severity 

of dyskinesia did not worsen, only its duration increasing, which was mostly considered by 

the patients to be well tolerable. As the FDA did not approve the use of istradefylline and 

considered the available evidence to be insufficient, further investigations are on their way to 

assess the efficacy of this novel drug. 

Tozadenant is another very promising A2A receptor antagonist, which has already successfully 

completed two Phase II trials. In the first trial, 20 and 6 mg daily doses of tozadenant were 

assessed, and the drug was confirmed to improve the UPRDS motor scores by 20%. The 

beneficial effects were particularly pronounced in relation to the amelioration of 

D
ow

nl
oa

de
d 

by
 [

Fl
in

de
rs

 U
ni

ve
rs

ity
 o

f 
So

ut
h 

A
us

tr
al

ia
] 

at
 0

2:
52

 1
6 

M
ar

ch
 2

01
6 



16 
 

bradykinesia90. The effect was dose-dependent. In the other Phase II trial, four doses of 

tozadenant were investigated, ranging between 60 mg and 240 mg. This study was of 12 

weeks duration and all doses were administered in combination with L-DOPA. The results 

achieved statistical significance in all outcome measures: a reduction of the OFF-time, an 

increase of the ON-time, and improvements in both motor and non-motor UPDRS scores91. 

The reported adverse events were very similar to those of istradefylline: dizziness, nausea, 

dyskinesia and insomnia. 

Preladenant and vipadenant displayed promising efficacy in Phase II trials; however, the 

research on both drugs has been discontinued. Preladenant failed in Phase III trials, while 

vipadenant was associated with safety issues, and the investigations therefore now focus on a 

next-generation compound, V814492. 

 

3. Conclusions 

The first evidence from the PD gene therapy trials showed that these approaches are safe and 

well tolerated, but none of the studies have indicated sufficiently robust clinical efficacy. The 

most important advantage of these studies is that they contribute to the solution of major 

safety hurdles that previously suppressed CNS-related gene therapy. The main remaining 

tasks include the development of more predictive animal models, the optimization of clinical 

trial design and patient selection, the development of better delivery approaches and finally 

the establishment of the appropriate dose. Metabotropic glutamate receptor 5 antagonists are 

under investigation for the therapy of LID, but so far only limited results are available. The 

calcium-channel blocker isradipine has been suggested to be neuroprotective, though to date 

only the safety has been confirmed in PD patients. Adenosine A2A antagonists are of promise 

for the management of motor complications in advanced PD patients. 

 

4. Expert opinion 

The therapeutic management of PD patients often poses a challenge for neurologists. While 

the gold standard remains L-DOPA substitution, long-term therapy may induce motor 

complications such as dyskinesia, and the non-physiological stimulation of DA receptors may 

also result in motor fluctuations. The therapy of these complications, and that of non-motor 

symptoms remain to be solved. Another important therapeutic gap is the lack of disease-

modifying agents, as currently no proved neuroprotective drug is available. A number of 

novel approaches exist with the aim of the solution of the problem of this therapeutic gap. 

Over the last 10 years, several new techniques have appeared in the palette of clinical trials. 
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One of them was gene therapy. Like other therapeutic modalities, gene therapy approaches 

have both advantages and disadvantages. The most important advantages include the fact that 

these approaches may exert both symptomatic and disease-modifying effects, and that, 

through the application of genome-integrating lentiviral vectors, long-term gene expression 

can be achieved. The symptomatic approach has concentrated on increasing DA production 

(AADC, TH, GCH) enhancing the efficiency of the levodopa conversion to dopamine 

(AADC) and normalizing the basal ganglia circuitry (GAD) by modulation of the neuronal 

phenotype18, 93. The main disadvantages of all therapies directed at replacing DA are unlikely 

to solve the burden of non-dopaminergic problems in PD. The disease-modifying approach 

has focused on halting the disease progression, restoring the neuronal function and increasing 

the dopaminerg nerve terminals (GDNF and NTN)18. However, the use of this therapy 

involves several inherited risks and side-effects. Some of these side-effects are attributed to 

craniotomy such as headache and hemorrhage. No serious adverse events relating to the virus 

or the carried gene(s) have occurred in the clinical trials performed so far. The currently 

applied viral vectors are unable to penetrate the BBB, and efforts are therefore needed to 

develop gene therapeutic approaches that will not require surgery in the future. 

Immunogenicity and carcinogenicity are also among the main risks of the therapy; however, 

certain approaches already exist to decrease these risks. Other disadvantages of viral vectors 

include their poor specificity to the target cells, the limited size of the genes that can be 

transduced, and the high expenses of the approach. Therefore, other approaches (non-viral 

vectors, nanocarriers, etc.) may be potential alternatives to viral vectors to attain better 

efficiency in gene therapy94. To summarize the results detailed above, gene therapy that 

targets the striatum, STN and substantia nigra can be safe and well tolerated in PD patients, 

but significant challenges remain to be solved in the future. The most important questions are 

how we can control and modulate gene expression, and determine the optimal target, dose and 

patient populations. The answers to these questions require further clinical investigations. 

The calcium-channel inhibitor isradipine has been suggested to have neuroprotective 

properties, but strong clinical evidence is still eagerly awaited. Clinical studies suggest that 

isradipine is well tolerated, but the currently available data are limited, and larger cohorts of 

patients are needed to draw conclusions. The risk of orthostatic hypotension, which is a 

frequent symptom in PD patients, is an important issue; however, only patients in very early 

stages of PD have so far been involved in the trials, which necessitates tests on isradipine in 

advanced stages too in order to permit conclusions on this potential side-effect. Nevertheless, 

isradipine seems to be generally well tolerated, and hence efficacy studies are awaited to 
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prove its disease-modifying property. Importantly, longer durations of trials are needed to 

assess the disease-modifying and neuroprotective capacity of the drug.  

After the first promising results, the metabotropic glutamate receptor 5 antagonist 

mavoglurant failed to prove its efficacy in the treatment of LID. However, clinical trials have 

confirmed that targeting metabotropic glutamate receptors 5 may still be a rational approach 

to manage LID. Dipraglurant is currently investigated in clinical trials, but the initial data 

were reassuring. Importantly, antagonists of metabotropic glutamate receptor 5 were well 

tolerated and safe; future investigations are therefore definitely warranted. 

Adenosine A2A antagonists are promising novel candidates for drug development, and 

especially for the management of motor complications in advanced stages of PD. 

Istradefylline is already marketed in Japan; however, the FDA considered the available 

evidence inconclusive for approval. While the prolongation of the ON-time seems to be 

confirmed, the different trials yielded mixed results as concerns the motor symptoms. Another 

important aspect is the presence of dyskinesia, as it has been reported to be prolonged by 

istradefylline. Although most patients considered the dyskinesia non-troublesome, further 

investigations are justified to assess the global effect of istradefylline on motor functions and 

the quality of life of PD patients. Tozadenant has so far produced more conclusive results, and 

importantly, it did not worsen dyskinesia in the ON-time. This drug was also able to improve 

the non-motor UPDRS scores. The currently available therapies are often unable to manage 

motor complications in advanced PD patients; A2A antagonists are therefore promising 

candidates and are likely to reach the market in the next decade. 
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1. Table Summary of clinical gene therapy trials in Parkinson’s disease 

Gene Vector Target n Clinical 
state 

Dose Study 
features 

Adverse 
events 

Study 
phase 

Outcome  NTC 
num
ber 

Ref. 

GAD AAV2 u. STN 12 -H and Y 
stage 3 
or 
greater  

Low 1*1011 

vg/ml 
Medium 
3*1011 vg/ml 
High 1*1012 

vg/ml 

1-year 
Double-
blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

No 1 -Significant 
improvements in motor 
UPDRS scores 
-Safe and well tolerated 

0019
5143 

27, 35  

GAD AAV2 b. STN 44 -25≤ 
UPDRS 
motor 
score 
(OFF 
state) 

1*1012 vg/ml 6 month 
Double-
blind: 
Yes 
Sham-
surgery: 
Yes 
Randomi
zed: Yes 

1 serious, 
not 
attributed 
to the 
treatment 
 
Mild or 
moderate: 
headache, 
nausea 

2 -Significant 
improvements in motor 
UPDRS scores 
-Safe and well tolerated 

0064
3890 

36 

GDNF AAV2 b. 
putamen 

Ongoing Advance
d 

0.7*1012 
vg/patient 

Ongoing 
Double-
blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

NA 1 NA 0162
1581 

46 

Neurtu
rin 

AAV2 b. 
putamen 

12 -
Moderat

Low 
1.3*1011 

1-year 
Double-

No 1 -Significant 
improvements in motor 

0025
2850 

48 
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(CERE
-120) 

e to 
severe, 
-H and Y 
stage 3 
or 4, 
-30≤ 
UPDRS 
motor 
score 
(OFF 
state)  

vg/patient 
 
High 
5.4*1011 
vg/patient 

blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

UPDRS scores 
-Safe and well tolerated 

Neurtu
rin 
(CERE
-120) 

AAV2 b. 
putamen 

58 -
Advance
d PD,  
-30≤ 
UPDRS 
motor 
score 
(OFF 
state) 
 

5.4*1011 

vg/patient 
1 year 
Double-
blind: 
Yes 
Sham-
surgery: 
Yes 
Randomi
zed: Yes 

Serious 
adverse 
events: 
13 of 38 in 
the 
neurturin 
group (3 
tumors) 
4 of 20 in 
the sham 
surgery 
controls (2 
tumors) 

2 -No significant 
improvements in motor 
UPDRS scores 

0040
0634 

49 

Neurtu
rin 
(CERE
-120) 

AAV2 b. 
putamen, 
STN 

6 -
Moderat
ely 
advanced
, 
- H and 
Y stage 2 
or 3 

Low 
4.0*1011 
vg/patient 
 
High 
5.4*1011 
vg/patient 

2 years 
Double-
blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

No 1 -Safe and well tolerated 0098
5517 

50 
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-34≤ 
UPDRS 
motor 
score 
(OFF 
state)  

Neurtu
rin 
(CERE
-120) 

AAV2 b. 
putamen, 
STN 

51/47 good 
response 
to L-
Dopa 
-stable 
doses of 
antiparki
nsonian 
drugs for 
at least 6 
weeks 
-mean H 
and Y 
stage 2.5 
(0.51) 
-the 
mean 
values of 
UPDRS 
motor 
scores 
(OFF 
state) 
larger 
than 35 
in both 

Substantia 
nigra 
2.0*1011 
vg/patient 
Putamen 
1.0*1012 
vg/patient 
 
 

2-year 
Double-
blind: 
Yes 
Sham-
surgery: 
Yes 
Randomi
zed: Yes 

No 
clinically 
adverse 
events 
occurred 

1 Safe and well tolerated 0098
5517 

51 
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groups 
AADC AAV2 b. 

putamen 
5 -

Moderat
e to 
advanced 

Low 6 month 
Double-
blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

No 1 - Safe and well tolerated 
- Modest improvement 
(interpretation dificulties: 
no control, non-blinded 
analysis) 
-PET: evidence of 
sustained gene 
expression 

NA 56 

AADC AAV2 b. 
putamen 

10 -
Moderat
ely 
advanced  

Low 
9*1010 
vg/patient 
 
High 
3*1011 
vg/patient 

6 month 
Double-
blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

No serious 
 
1 
symptoma
tic and 2 
asymptom
atic 
intracrania
l 
hemorrhag
es, 
headache 

1 -Safe and well tolerated 
-The necessary amount 
of dopaminergic 
medication was reduced 
in 8 patients 
-FMT PET: 30% increase 
in putaminal uptake in 
the low-dose cohort, 75% 
increase in the high-dose 
cohort 
-Total and motor rating 
scales improved in both 
cohorts 
-Motor diaries also 
showed increased ON-
time and reduced OFF-
time without increased 
ON-time dyskinesia 

0022
9736 

57 

ProSav
in® 
(Lenti–
TH–
AADC

lenti-
virus 

b. 
putamen 

15 -H and Y 
stage 3 
or 4 in 
(OFF 
state) 

Low 
1.9*10⁷ TU 
 
Medium 
4.0*10⁷ TU 

1-year, 
prolonge
d for 10 
years 
Double-

No serious  
 
51 mild, 3 
moderate  

1/2 -Safe and well tolerated 
-Significant improvement 
in mean UPDRS part III 
motor scores OFF 
medication 

0062
7588 
; 
0185
6439 
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–GCH) -UPDRS 
(OFF 
medicati
on) 
between 
20 and 
60; 

 
High 
1*10⁸ TU 

blind: No 
Sham-
surgery: 
No 
Randomi
zed: No 

-Improvement in motor 
behavior was observed in 
all patients. 
 

u: unilateral, b: bilateral, H and Y: Hoehn and Yahr stage, TU: transducing units. 
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Table 2. Summary of the main clinical trials on metabotropic glutamate receptor 5 antagonists, calcium channel blockers and adenosine 
A2A antagonists 

Drug name n Clinical 
state 

Dose Study 
features 

Adverse 
events 

Study 
phase 

Outcome  Ref. 

Mavoglurant 
(AFQ056) 

15 moderate 
to severe 
LID 

25-
150mg 
twice 
daily 

16 day 
RCT 
placebo-
controlled, 
double-blind 
(NCT005826
73) 

mostly mild: 
most 
common 
dizziness 
4 serious: 
worsening 
of 
dyskinesia, 
hyperkinesia 

2 significant 
improvements in 
dyskinesia (Lang-
Fahn Activities of 
Daily Living 
Dyskinesia Scale 
and UPDRS scores) 

63 

Mavoglurant 
(AFQ056) 

14 severe LID 25-
150mg 
twice 
daily 

16 day 
RCT 
placebo-
controlled, 
double-blind 
(NCT008880
04) 

mostly mild 
2 serious: 
psychosis, 
worsening 
of 
dyskinesia 

2 significant 
improvements in 
dyskinesia 
(modified 
Abnormal 
Involuntary 
Movement Scale 
and UPDRS scores) 

63 

Dipraglurant 
(ADX48621) 

N
A 

moderate 
to severe 
LID 

50mg 
once 
daily – 
to 
100mg 
three 
times 
daily 

4 weeks 
placebo-
controlled, 
RCT, 
double-blind 
(NCT013360
88) 

nausea, 
dizziness, 
dyskinesia 

2 moderate efficacy 
(Abnormal 
Involuntary 
Movement 
Scale and UPDRS 
scores) 

68, 69 

Isradipine 31 PD stage 2 5-
20mg 

1 year 
non-
randomized, 

only minor: 
dizziness, 
leg edema 

2 up to 10mg well 
tolerated 

80 
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open-label 
safety study 
(NCT007536
36) 

Istradefylline 15 PD 
moderate 
to 
advanced 
stage 

40-
80mg 

6 week, 
placebo-
controlled, 
safety and 
efficacy 
study 

no 
important 

2 alone no efficacy, 
in combination with 
levodopa 
potentiated 
antiparkinsonian 
effect with less 
dyskinesia 
(UPDRS scores) 

83 

Istradefylline 17
6 

PD 
patients 
Hoehn-
Yahr 
stages 1-
2.5 

40mg 12 week, 
double blind, 
placebo 
controlled 
(NCT001994
33 
(6002-US-
051)) 

similar as 
placebo 

2 no efficacy 84 

Istradefylline 83 levodopa-
treated PD 
patients 
with both 
motor 
fluctuation
s and 
peak-dose 
dyskinesia
s 

20-
40mg 

12-week, 
double-blind, 
randomized, 
placebo-
controlled, 
exploratory 
study 
(6002-US-
001) 

most 
common: 
nausea 

2 recuction of OFF 
state, no change of 
dyskinesia severity 

85 

Istradefylline 36
3 

PD 
patients 
with motor 
complicati
ons 

20-
40mg 

12-week 
double blind 
placebo 
controlled 
RCT 

most 
common: 
dyskinesia 

2 reduced the daily 
OFF time compared 
with placebo 
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(NCT004555
07 
(6002-0608)) 

Istradefylline 19
6 

PD 
patients 
with 
wearing-
off motor 
fluctuation
s 

40mg 12-week 
double-blind, 
multicenter, 
placebo 
controlled 
RCT 
(NCT004565
86 
(6002-US-
005)) 

generally 
mild 

2 significantly 
reduced OFF time 

88 

Istradefylline 39
5 

PD 
patients 
with motor 
complicati
ons 

20-
60mg 

12-week 
double blind, 
placebo-
controlled 
RCT 
(NCT004567
94 
(6002-US-
006)) 

dyskinesia, 
nausea, 
dizziness, 
and 
hallucinatio
ns 

2 significantly 
reduced OFF time 

89 

Tozadenant 30 patients 
with mild 
to 
moderate 
PD 

20-
60mg  

7 days, 
randomized, 
double-blind, 
placebo 
controlled, 
study  
(NCT006055
53) 

dizziness, 
nausea, 
dyskinesia, 
and 
insomnia 

2 improve UPRDS 
motor scores by 
20% 

90 

Tozadenant 42
0 

PD 
patients 
with motor 
fluctuation
s 

60-
240mg 

international, 
multicentre, r
andomised, d
ouble-blind, 
placebo-

dizziness, 
nausea, 
dyskinesia 

2 120mg and 180mg 
well tolerated and 
significantly 
reduced OFF time 
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controlled, 
parallel-
group, dose-
finding clinic
al trial 
(NCT012835
94) 
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Figure legends 

Figure 1. Gene therapy approaches. 

I. Ex vivo gene therapy: with this approach, patients receive genetically modified cells that express a desired protein or proteins. The 
genetic modifications of the patient’s target cells are performed outside the body, in a cell culture.  
1. Copies of the therapeutic gene(s) integrate into the viral DNA. 2. The target cells of the patient are removed and grown in a cell 
culture. 3. The cultured cells are transfected with the genetically modified virus. 4. These transfected cells are reintroduced into the 
patient’s body, where they express the necessary protein(s). 

II. In vivo gene therapy: In this case, the genetic information is directly inserted into the patient’s own cells.  
1. The therapeutic gene(s) can be inserted into viral DNA, coated in a liposome or created in the form of a plasmid DNA. 2. The 

genetically modified DNA is transferred by cell-specific direct tissue injection (or in the case of a plasmid vector by dermal 
vaccination). 3. Inside the patient’s body, the inserted DNA is incorporated into the cells of the targeted tissue and starts to 
produce the encoded protein(s). 
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Figure 2. Adenosine A2A antagonists 

This figure displays the chemical structures of adenosine A2A antagonists. 
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	The first human in vivo gene therapy study with the aim of treating neurodegenerative disorders was a safety and tolerability study with the AAV2-GAD construct in PD27.
	The gene used was GAD, which encodes the rate-limiting enzyme for the synthesis of gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter within the brain. Earlier studies revealed that the CSF level of GABA is significantly decreased i...
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	A subsequent study aimed to analyze the magnetic resonance imaging (MRI) and PET data from the above-mentioned Phase I trial retrospectively. Moreover, the study correlated the data with a similar non-human primate dataset to improve future PD gene th...



