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Abstract

Consider the perpetuity equation X
D
= AX + B, where (A,B) and X on the right-hand side

are independent. The Kesten–Grincevičius–Goldie theorem states that P{X > x} ∼ cx−κ

if EAκ = 1, EAκ log+A < ∞, and E|B|κ < ∞. We assume that E|B|ν < ∞ for some
ν > κ, and consider two cases (i) EAκ = 1, EAκ log+A = ∞; (ii) EAκ < 1, EAt = ∞
for all t > κ. We show that under appropriate additional assumptions on A the asymptotic
P{X > x} ∼ cx−κ`(x) holds, where ` is a nonconstant slowly varying function. We use Goldie’s
renewal theoretic approach.
Keywords: Perpetuity equation; Stochastic difference equation; Strong renewal theorem; Ex-
ponential functional; Maximum of random walk; Implicit renewal theorem.
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1 Introduction and results

Consider the perpetuity equation

X
D
= AX +B, (1)

where (A,B) and X on the right-hand side are independent. To exclude degenerate cases as usual
we assume that P{Ax+B = x} < 1 for any x ∈ R. We also assume that A ≥ 0, A 6≡ 1, and that
logA conditioned on A 6= 0 is nonarithmetic.

The first results on existence and tail behavior of the solution is due to Kesten [23], who proved
that if

EAκ = 1, EAκ log+A <∞, logA conditioned on A 6= 0 is nonarithmetic,

and E|B|κ <∞ for some κ > 0,
(2)

where log+ x = max{log x, 0}, then the solution of (1) has Pareto-like tail, i.e.

P{X > x} ∼ c+x
−κ and P{X < −x} ∼ c−x−κ as x→∞ (3)

for some c+, c− ≥ 0, c+ + c− > 0. (In the following any nonspecified limit relation is meant as
x→∞.) Actually, Kesten proved a similar statement in d dimension. Later Goldie [16] simplified
the proof of the same result in the one-dimensional case (for more general equations) using renewal
theoretic methods. His method is based on ideas from Grincevičius [19], who partly rediscovered
Kesten’s results. We refer to the implication (2)⇒ (3) as the Kesten–Grincevičius–Goldie theorem.
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That is, under general conditions on A, if P{A > 1} > 0 the tail decreases at least polynomially.
Dyszewski [10] showed that the tail of the solution of (1) can even be slowly varying. On the
other hand, Goldie and Grübel [17] showed that the solution has at least exponential tail under
the assumption A ≤ 1 a.s. For further results in the thin-tailed case see Hitczenko and Weso lowski
[20]. Returning to the heavy-tailed case Grey [18] showed that if EAκ < 1, EAκ+ε <∞, then the
tail of X is regularly varying with parameter −κ if and only if the tail of B is. Grey’s results are
also based on previous results by Grincevičius [19].

That is, the regular variation of the solution X of (1) is either caused by A alone, or by B
alone (under some weak condition on the other variable). Our intention in the present note is to
explore more the role of A, i.e. to extend the Kesten–Grincevičius–Goldie theorem. More precisely,
we assume that E|B|ν < ∞ for some ν > κ, and we obtain sufficient conditions on A that imply
P{X > x} ∼ `(x)x−κ, where `(·) is some nonconstant slowly varying function.

The perpetuity equation (1) has a wide range of applications; we only mention the ARCH and
GARCH models in financial time series analysis, see Embrechts, Klüppelberg and Mikosch [11,
Section 8.4 Perpetuities and ARCH Processes]. For a complete account on the equation (1) refer
to Buraczewski, Damek and Mikosch [5].

The key idea in Goldie’s proof is to introduce the new probability measure

Pκ{logA ∈ C} = E[I(logA ∈ C)Aκ], (4)

where I(·) stands for the indicator function. Since EAκ = 1, this is indeed a probability measure.
If F is the distribution function (df) of logA under P, then under Pκ

Fκ(x) = Pκ{logA ≤ x} =

∫ x

−∞
eκyF (dy). (5)

Under Pκ equation (1) can be rewritten as a renewal equation, where the renewal function corre-
sponds to Fκ. If Eκ logA = EAκ logA ∈ (0,∞), then a renewal theorem on the line implies the
required tail asymptotics. Yet a smoothing transformation and a Tauberian argument is needed,
since key renewal theorems apply only for direct Riemann integrable functions.

What we assume instead of the finiteness of the mean is that under Pκ the variable logA is in
the domain of attraction of a stable law with index α ∈ (0, 1], i.e. logA ∈ D(α). Since

Fκ(−x) = Pκ{logA ≤ −x} = EI(logA ≤ −x)Aκ ≤ e−κx, (6)

under Pκ the variable logA ∈ D(α) if and only if

1− Fκ(x) = F κ(x) =
`(x)

xα
, (7)

where ` is a slowly varying function. Let U(x) =
∑∞

n=0 F
∗n
κ (x) be the renewal function of logA

under Pκ. Note that U(x) < ∞ for all x ∈ R, since the random walk (logA1 + . . . + logAn)n≥1

drifts to infinity under Pκ and Eκ[(logA)−]2 <∞ by (6); see Theorem 2.1 by Kesten and Maller
[24]. Put

m(x) =

∫ x

0
[Fκ(−u) + F κ(u)]du ∼

∫ x

0
F κ(u)du ∼ `(x)x1−α

1− α
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for the truncated expectation; the first asymptotic follows from (6), the second from (7), and holds
only for α 6= 1. To obtain the asymptotic behavior of the solution of the renewal equation we have
to use a key renewal theorem for random variables with infinite mean. The infinite mean analogue
of the strong renewal theorem (SRT) is the convergence

lim
x→∞

m(x)[U(x+ h)− U(x)] = hCα, ∀h > 0, where Cα = [Γ(α)Γ(2− α)]−1. (8)

The first infinite mean SRT was shown by Garsia and Lamperti [15] in 1963 for nonnegative integer
valued random variables, which was extended to the nonarithmetic case by Erickson [12, 13]. In
both cases it was shown that for α ∈ (1/2, 1] (in [15] α < 1) assumption (7) implies the SRT,
while for α ≤ 1/2 further assumptions are needed. For α ≤ 1/2 sufficient conditions for (8) were
given by Chi [7], Doney [8], Vatutin and Topchii [28]. The necessary and sufficient condition for
nonnegative random variables was given independently by Caravenna [6] and Doney [9]. They
showed that if for a nonnegative random variable with df H (7) holds with α ≤ 1/2, then (8) holds
if and only if

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1

yH(y)2
H(x− dy) = 0. (9)

We need this result in our case, where the random variable is not necessarily positive, but the left
tail is exponential. This is Theorem 7 in the Appendix. The proof follows along the same lines as
the proof of the SRT in [6]. For further results and history about the infinite mean SRT we refer to
[6, 9] and the references therein. In Lemma 1 below, which is a modification of Erickson’s Theorem
3 [12], we prove the corresponding key renewal theorem. Since in the literature ([27, Lemma 3],
[28, Theorem 4]) this lemma is stated incorrectly, we give a counterexample in the Appendix. We
use the notation x+ = max{x, 0}, x− = max{−x, 0}, x ∈ R. Summarizing, our assumptions on A
are the following:

EAκ = 1, (7) and (9) holds for Fκ for some κ > 0 and α ∈ (0, 1],

and logA conditioned on A 6= 0 is nonarithmetic.
(10)

Theorem 1. Assume (10) and E|B|ν < ∞ for some ν > κ. Then for the tail of the solution of
the perpetuity equation (1) we have

lim
x→∞

m(log x)xκP{X > x} = Cα
1

κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

m(log x)xκP{X ≤ −x} = Cα
1

κ
E[(AX +B)κ− − (AX)κ−].

(11)

Moreover, E[(AX +B)κ+ − (AX)κ+] + E[(AX +B)κ− − (AX)κ−] > 0 if P{Ax+B = x} < 1 for any
x ∈ R.

Theorem 1 is stated as a conjecture/open problem in [21, Problem 1.4.2] by Iksanov.
The conditions of the theorem are stated in terms of the properties of A under the new measure

Pκ. Simple properties of regularly varying functions imply that if eκxF (x) = α `(x)/(κxα+1) with
a slowly varying function `, then (7) holds. See the remark after Theorem 2 [26] by Korshunov.

Using the same methods Goldie obtained tail asymptotics not only for solutions of perpetuity
equations, but of more general random equations. The extension of these results to our setup is
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straightforward. We mention a particular example, because in the proof of the positivity of the
constant in Theorems 1 and 3 we need a result on maximum of random walks.

Consider the equation

X
D
= AX ∨B, (12)

where a∨b = max{a, b}, A ≥ 0 and (A,B) and X on the right-hand side are independent. Theorem
5.2 in [16] states that if (2) holds, then there is a unique solution X to (12), and P{X > x} ∼ cx−κ,
with some c ≥ 0, and c > 0 if and only if P{B > 0} > 0.

Theorem 2. Assume (10), E|B|ν <∞ for some ν > κ. Then for the tail of the solution of (12)
we have

lim
x→∞

m(log x)xκP{X > x} = Cα
1

κ
E[(AX+ ∨B+)κ − (AX+)κ]. (13)

Equation (12) has an important application in the analysis of the maximum of perturbed
random walks; see Iksanov [22].

Finally, we note that the tail behavior (11) with nontrivial slowly varying function was noted
before by Rivero for exponential functionals of Lévy processes; see [27, Counterexample 1].

Assume now that EAκ = θ < 1 for some κ > 0, and EAt =∞ for any t > κ. Consider the new
probability measure

Pκ{logA ∈ C} = θ−1E[I(logA ∈ C)Aκ],

that is under the new measure logA has df

Fκ(x) = θ−1

∫ x

−∞
eκyF (dy).

The assumption EAt =∞ for all t > κ means that Fκ is heavy-tailed. Rewriting again (1) under
the new measure Pκ leads now to a defective renewal equation for the tail of X. To analyze
the asymptotic behavior of the resulting equation we use the techniques and results developed by
Asmussen, Foss and Korshunov [4]. A slight modification of their setup is necessary, since our df
Fκ is not concentrated on [0,∞).

For some T ∈ (0,∞] let ∆ = (0, T ]. For a df H we put H(x + ∆) = H(x + T ) −H(x). A df
H on R is in the class L∆ if H(x + t + ∆)/H(x + ∆) → 1 uniformly in t ∈ [0, 1], and it belongs
to the class of ∆-subexponential distributions, H ∈ S∆, if H(x + ∆) > 0 for x large enough,
H ∈ L∆, and (H ∗ H)(x + ∆) ∼ 2H(x + ∆). If H ∈ S∆ for every T > 0, then it is called
locally subexponential, H ∈ Sloc. The definition of the class S∆ is given by Asmussen, Foss and
Korshunov [4] for distributions on [0,∞) and by Foss, Korshunov and Zachary [14, Section 4.7]
for distributions on R. In order to use a slight extension of Theorem 5 [4] we need the additional
natural assumption supy>x Fκ(y + ∆) = O(Fκ(x+ ∆)) for x large enough. Our assumptions on A
are the following:

EAκ = θ < 1, κ > 0, Fκ ∈ Sloc, sup{Fκ(y + ∆) : y > x} = O(Fκ(x+ ∆)) for x

large enough, and logA conditioned on A 6= 0 is nonarithmetic.
(14)
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Theorem 3. Assume (14) and E|B|ν < ∞ for some ν > κ. Then for the tail of the solution of
the perpetuity equation (1) we have

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

g(log x)−1xκP{X ≤ −x} =
θ

(1− θ)2κ
E[(AX +B)κ− − (AX)κ−],

(15)

where g(x) = Fκ(x+1)−Fκ(x). Moreover, E[(AX+B)κ+− (AX)κ+]+E[(AX+B)κ−− (AX)κ−] > 0
if P{Ax+B = x} < 1 for any x ∈ R.

Note that the condition Fκ ∈ L∆ with ∆ = (0, 1] implies that g(log x) is slowly varying. Indeed,
for any λ > 0

g(log(λx))

g(log x)
=
Fκ(log x+ log λ+ ∆)

Fκ(log x+ ∆)
→ 1.

The condition Fκ ∈ Sloc is much stronger than the corresponding regularly varying condition
in Theorem 1. Typical examples satisfying this condition are the Pareto, lognormal and Weibull
(with parameter less than 1) distributions, see [4, Section 4]. For example in the Pareto case,
i.e. if for large enough x we have F κ(x) = c x−β for some c > 0, β > 0, then g(x) ∼ cβx−β−1,
and so P{X > x} ∼ c′x−κ(log x)−β−1. In the lognormal case, when Fκ(x) = Φ(log x) for x
large enough, with Φ being the standard normal df, (15) gives the asymptotic P{X > x} ∼
cx−κe−(log log x)2/2/ log x, c > 0. Finally, for Weibull tails F κ(x) = e−x

β
, β ∈ (0, 1), we obtain

P{X > x} ∼ cx−κ(log x)β−1e−(log x)β , c > 0.

Theorem 4. Assume (14), E|B|ν <∞ for some ν > κ. Then for the tail of the solution of (12)
we have

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2κ
E[(AX+ ∨B+)κ − (AX+)κ], (16)

where g(x) = Fκ(x+ 1)− Fκ(x).

In the special case B ≡ 1 we obtain a new result for the tail asymptotic of the maximum of
random walks.

In this direction we note that assuming (7) Korshunov [26] showed for α > 1/2 (all he needs is
the SRT, so the same holds under (9) for α ∈ (0, 1)) that for some constant c > 0

lim
x→∞

P{M > x}eκxm(x) = c.

Thus Theorem 2 contains Korshunov’s result [26]. However, note that Korshunov obtained the
corresponding liminf result in (13), when the SRT does not hold. With our method the liminf
result does not follow due to the smoothing transform (20). The problem is to ‘unsmooth’ the
liminf version of (26). The same difficulty appears in the perpetuity case.

It turns out that in some special cases the regular variation of the tail of X and of M are
equivalent. This can be deduced from Theorem 4 by Arista and Rivero [3].

Finally, we note that using Alsmeyer’s sandwich method [1] it is possible to apply our results
to iterated function systems.
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2 Proofs

First, we prove the analogue of Goldie’s implicit renewal theorem [16, Theorem 2.3] in both cases.

Theorem 5. Assume (10), and for some δ > 0∫ ∞
0
|P{X > x} −P{AX > x}|xκ+δ−1dx <∞,

where X and A are independent. Then

lim
x→∞

m(log x)xκP{X > x} = Cα

∫ ∞
0

[P{X > x} −P{AX > x}]xκ−1dx.

Proof. We follow closely Goldie’s proof. Put

ψ(x) = eκx(P{X > ex} −P{AX > ex}), f(x) = eκxP{X > ex}. (17)

Using that X and A are independent we obtain the equation

f(x) = ψ(x) + Ef(x− logA)Aκ. (18)

By (4) we have Eκg(logA) = E(g(logA)Aκ), thus under Pκ equation (18) reads as

f(x) = ψ(x) + Eκf(x− logA). (19)

Since ψ is not necessarily directly Riemann integrable (dRi), we introduce the smoothing transform
of a function g as

ĝ(s) =

∫ s

−∞
e−(s−x)g(x)dx. (20)

Applying this transform to both sides of (19) we get the renewal equation

f̂(s) = ψ̂(s) + Eκf̂(s− logA). (21)

Iterating (21) we obtain for any n ≥ 1

f̂(s) =
n−1∑
k=0

∫
R
ψ̂(s− y)F ∗kκ (dy) + Eκf̂(s− Sn), (22)

where logA1, logA2, . . . are iid logA, independent of X, and Sn = logA1 + . . . + logAn. Since
Sn → −∞ P-a.s.

Eκf̂(s− Sn) = e−s
∫ s

−∞
e(κ+1)yP{XeSn > ey}dy → 0 as n→∞,

therefore as n→∞ from (22) we have

f̂(s) =

∫
R
ψ̂(s− y)U(dy), (23)
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where U(x) =
∑∞

n=0 F
∗n
κ (x) is the renewal function of Fκ. The question is under what conditions

of z the key renewal theorem

m(x)

∫
R
z(x− y)U(dy)→ Cα

∫
R
z(y)dy (24)

holds. In the following lemma, which is a modification of Erickson’s Theorem 3 [12], we give
sufficient condition for z to (24) hold. We note that both in Lemma 3 [27] and in Theorem 4
of [28] the authors wrongly claim that (24) holds if z is dRi. A counterexample is given in the
Appendix. The same statement is shown by different methods in [21, Proposition 6.4.2]. For the
sake of completeness we give a proof here.

Lemma 1. Assume that z is dRi and z(x) = O(x−1) as x→∞. Then (8) implies (24).

Proof. Using the decomposition z = z+ − z− we may and do assume that z is nonnegative. Write

m(x)

∫
R
z(x− y)U(dy) = m(x)

[∫ ∞
x

z(x− y)U(dy) +

∫ x

0
z(x− y)U(dy) +

∫ 0

−∞
z(x− y)U(dy)

]
=: I1(x) + I2(x) + I3(x).

We first show that I1(x) → Cα
∫ 0
−∞ z(y)dy whenever z is dRi. Fix h > 0 and put zk(x) =

I(x ∈ ((k − 1)h, kh]), ak = inf{z(x) : x ∈ ((k − 1)h, kh]}, and bk = sup{z(x) : x ∈ ((k − 1)h, kh]},
k ∈ Z. Simply

m(x)
0∑

k=−∞
ak(U ∗ zk)(x) ≤ I1(x) ≤ m(x)

0∑
k=−∞

bk(U ∗ zk)(x).

As x→∞ by (8) for any fixed k

m(x)(U ∗ zk)(x) =
m(x)

m(x− kh)
m(x− kh)[U(x− kh+ h)− U(x− kh)]→ Cαh,

where the convergence m(x)/m(x − kh) → 1 follows from the fact that m is regularly varying
with index 1 − α. Since m is nondecreasing and k ≤ 0 this also gives us an integrable majorant
uniformly in k ≤ 0, i.e. for x large enough supk<0m(x)(U ∗ zk)(x) ≤ 2Cαh. Thus by Lebesgue’s
dominated convergence theorem

lim
x→∞

m(x)
0∑

k=−∞
ak(U ∗ zk)(x) = Cα

0∑
k=−∞

akh,

and similarly for the upper bound. Since z is dRi the statement follows.
The convergence I2(x) → Cα

∫∞
0 z(x)dx follows exactly as in the proof of [12, Theorem 3],

since in that proof only formula (8) and its consequence U(x) ∼ Cαx/(αm(x)) are used.
Finally, we show that I3(x)→ 0. Indeed, with K = supx>0 xz(x),

m(x)

∫ 0

−∞
z(x− y)U(dy) ≤ Km(x)

∫ 0

−∞
(x− y)−1U(dy) ≤ Km(x)

x
U(0)→ 0.
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Recall (17). Next we show that ψ̂ satisfies the condition of Lemma 1. Indeed,

ψ̂(s) = e−s
∫ s

−∞
e(κ+1)x[P{X > ex} −P{AX > ex}]dx

≤ e−s
∫ es

0
yκ|P{X > y} −P{AX > y}|dy

≤ e−δs
∫ ∞

0
yκ+δ−1|P{X > y} −P{AX > y}|dy,

(25)

and the last integral is finite due to our assumptions. The same calculation shows that∫
R
ψ̂(s)ds =

∫
R
ψ(x)dx =

∫ ∞
0

yκ−1[P{X > y} −P{AX > y}]dy.

It follows from [16, Lemma 9.2] that ψ̂ is dRi, thus from Lemma 1 and (25) we obtain that for the
solution of (23)

lim
s→∞

m(s)f̂(s) = Cα

∫
R
ψ(y)dy. (26)

From (26) the statement follows in the same way as in [16, Lemma 9.3].

Theorem 6. Assume (14), and for some δ > 0∫ ∞
0
|P{X > x} −P{AX > x}|xκ+δ−1dx <∞,

where X and A are independent. Then

lim
x→∞

g(log x)−1xκP{X > x} =
θ

(1− θ)2

∫ ∞
0

[P{X > x} −P{AX > x}]xκ−1dx.

Proof. Following the same steps as in the proof of Theorem 5 we obtain

f̂(s) =

∫
R
ψ̂(s− y)U(dy),

where U is the defective renewal function U(x) =
∑∞

n=0(θFκ)∗n(x). Since θ < 1 we have U(R) =
(1− θ)−1 <∞. A modification of Theorem 5 [4] gives the following. Recall g from Theorem 3.

Lemma 2. Assume (14), z is dRi, and z(x) = o(g(x)). Then∫
R
z(x− y)U(dy) ∼ θg(x)

(1− θ)2

∫
R
z(y)dy.

Proof. By the decomposition z = z+−z−, we may and do assume that z is nonnegative. We again
split the integral ∫

R
z(x− y)U(dy) = I1(x) + I2(x) + I3(x),

where I1, I2 and I3 are the integrals on (x,∞), (0, x] and on (−∞, 0], respectively.
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The asymptotics I1(x) ∼ θg(x)
∫ 0
−∞ z(y)dy/(1−θ)2 follows along the same lines as in the proof

of Lemma 1. Theorem 5(i) [4] gives I2(x) ∼ θg(x)
∫∞

0 z(y)dy/(1−θ)2. (In the Appendix we explain
why the results for ∆-subexponential distributions on [0,∞) remain true in our case.) Finally, for
I3 we have

I3(x) ≤ U(0) sup{z(y) : y ≥ x} = o(g(x)),

where we used that supy≥x Fκ(y + ∆) = O(Fκ(x+ ∆)).

As in (25) we have ψ̂(x) = O(e−δx) for some δ > 0. Since Fκ is subexponential ψ̂(x) = o(g(x)).
That is, the condition of Lemma 2 holds, and we obtain the asymptotic

f̂(s) ∼ θg(s)

(1− θ)2

∫
R
ψ(y)dy as s→∞.

Since g(x) is subexponential, g(log x) is slowly varying, and the proof can be finished in exactly
the same way as in Theorem 5.

The proofs of Theorems 1, 3, 2, 4 are applications of the corresponding implicit renewal theorem.

Proofs of Theorems 2 and 4. The existence of the unique solution of (12) follows from [16, Propo-
sition 5.1]. Choose δ ∈ (0, ν−κ). Since |P{AX∨B > x}−P{AX > x}| = P{AX∨B > x ≥ AX},
Fubini’s theorem gives∫ ∞

0
|P{AX ∨B > x} −P{AX > x}|xκ+δ−1dx =

∫ ∞
0

P{AX ∨B > x ≥ AX}xκ+δ−1dx

= (κ+ δ)−1E[(AX ∨B)κ+δ
+ − (AX)κ+δ

+ ] ≤ (κ+ δ)−1EBν
+.

Therefore (13) and (16) follows from Theorem 5 and 6, respectively. The form of the limit constant
follows similarly. Note that for B ≡ 1, i.e. when logX = M , the maximum of a random walk with
negative drift, then the constant is strictly positive.

Proofs of Theorems 1 and 3. The existence of the unique solution of (1) is well-known. Let us
choose δ > 0 so small that

κ+
3κδ

1− δ
< ν, if κ ≥ 1, and κ+ δ ≤ min{1, ν}, for κ < 1. (27)

Note that

|P{AX +B > y} −P{AX > y}| ≤ P{AX +B > y ≥ AX}+ P{AX > y ≥ AX +B}.

Now Fubini’s theorem gives for the first term∫ ∞
0

yκ−1+δP{AX +B > y ≥ AX}dy ≤ (κ+ δ)−1EI(B ≥ 0)((AX +B)κ+δ
+ − (AX)κ+δ

+ ).

The same calculation for the second term implies∫ ∞
0
|P{AX +B > y} −P{AX > y}|yκ+δ−1dy ≤ (κ+ δ)−1E|(AX +B)κ+δ

+ − (AX)κ+δ
+ |.
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We show that the expectation on the right-hand side is finite. Indeed, for a, b ∈ R we have
|(a + b)γ+ − a

γ
+| ≤ |b|γ for γ ≤ 1 and |(a + b)γ+ − a

γ
+| ≤ 2γ|b|(|a|γ−1 + |b|γ−1) for γ > 1. From

Theorem 1.4 by Alsmeyer, Iksanov and Rösler [2] we know that E|X|γ < ∞ for any γ < κ. (We
note that for κ > 1 this also follows from Theorem 5.1 by Vervaat [29]. Actually, [2, Theorem 1.4]
states equivalence.) Assume that κ ≥ 1 and let p = κ + 2κδ/(1 − δ), 1/q = 1 − 1/p. By Hölder’s
inequality and by the choice of δ in (27)

E|(AX +B)κ+δ
+ − (AX)κ+δ

+ | ≤ 2(κ+ δ)
[
E|B||AX|κ+δ−1 + E|B|κ+δ

]
≤ 2(κ+ δ)

[
E|X|κ+δ−1(E|B|p)1/p(EAq(κ+δ−1))1/q + E|B|κ+δ

]
<∞,

which proves the statement for κ ≥ 1. For κ < 1 we choose δ such that κ+ δ ≤ 1, so

E||AX +B|κ+δ − |AX|κ+δ| ≤ E|B|κ+δ <∞.

Finally, the positivity of the limit follows in exactly the same way as in [16]. Goldie shows [16,
p.157] that for some positive constants c, C > 0

P{|X| > x} ≥ cP {max{0, S1, S2, . . .} > C + log x} .

Now the positivity follows from Theorem 2 and 4, respectively, with B ≡ 1.

3 Appendix

3.1 Strong renewal theorem

We state a slight extension of the strong renewal theorem by Caravenna [6] and Doney [9]. The
proof follows along the same lines as the proof of Caravenna [6], and it is given in [25]. For
convenience, we also use Caravenna’s notation.

Theorem 7. Assume that the distribution function H is nonarithmetic, and for some c, κ > 0,
α ∈ (0, 1) and for a slowly varying function ` we have

H(−x) ≤ ce−κx, 1−H(x) = H(x) =
`(x)

xα
, x > 0.

Then, for the renewal function U(x) =
∑∞

n=0H
∗n(x)

lim
x→∞

m(x)[U(x+ h)− U(x)] = hCα,

holds for any h > 0 with m(x) =
∫ x

0 H(u)du, if and only if

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1

yH(y)2
H(x− dy) = 0.
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3.2 A counterexample

Here we give a counterexample to [27, Lemma 3] and [28, Theorem 4], which shows that alone
from the direct Riemann integrability of z the key renewal theorem (24) does not follow.

Let an = n−β, with some β > 1, and let dn ↑ ∞ a sequence of integers. Consider the function z
that satisfies z(dn) = an, z(dn±1/2) = 0, is linearly interpolated on the intervals [dn−1/2, dn+1/2],
and 0 otherwise. Since

∑∞
n=1 an <∞ the function z is directly Riemann integrable.

Consider a renewal measure U for which SRT (8) holds. Let a > 0 be such that U(a+ 1/4)−
U(a− 1/4) > 0. From the proof of [12, Theorem 3] it is clear that for any ν ∈ (0, 1)

m(x)

∫ x

νx
z(x− y)U(dy)→ Cα

∫ ∞
0

z(y)dy.

On the other hand for x = a+ dn∫ a+1/4

a−1/4
z(x− y)U(dy) ≥ an

2
[U(a+ 1/4)− U(a− 1/4)]

Choosing dn = n2 and β such that 2α+β < 2, and recalling that m is regularly varying with index
1− α, we see that m(a+ dn)an →∞, so the asymptotic (24) cannot hold.

3.3 Local subexponentiality

We claim that Theorem 5 in [4] remains true in our setup. Additionally to the local subexponential
property, we assume that supy≥xH(y + ∆) = O(H(x+ ∆)). The main technical tool in [4] is the
equivalence in Proposition 2. In our setup it has the following form.

Lemma 3. Assume that H ∈ L∆, and supy≥xH(y+ ∆) = O(H(x+ ∆)). Let X,Y be iid H. The
following are equivalent:

(i) H ∈ S∆;

(ii) there is a function h such that h(x)→∞, h(x) < x/2, H(x− y+ ∆) ∼ H(x+ ∆) uniformly
in |y| ≤ h(x), and

P{X + Y ∈ x+ ∆, X > h(x), Y > h(x)} = o(H(x+ ∆)).

The proof is similar to the proof of Proposition 2 in [4], so it is omitted. Assuming the extra
growth condition all the results in [4] hold true with the obvious modification of the proof.
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