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Abstract

Let Y1, Y2, . . . be positive, nondegenerate, i.i.d. G random variables, and independently let
X1, X2, . . . be i.i.d. F random variables. In this note we show that whenever

∑
XiYi/

∑
Yi

converges in distribution to nondegenerate limit for some F ∈ F , in a specified class of distri-
butions F , then G necessarily belongs to the domain of attraction of a stable law with index
less than 1. The class F contains those nondegenerate X with a finite second moment and
those X in the domain of attraction of a stable law with index 1 < α < 2.

1 Introduction and results

Let Y, Y1, . . . be positive, nondegenerate, i.i.d. random variables with distribution function [df]
G, and independently let X,X1, . . . be i.i.d. nondegenerate random variables with df F . Let φX
denote the characteristic function [cf] of X. We shall use the notation Y ∈ D(β) to mean that
Y is in the domain of attraction of a stable law of index 0 < β < 1, and Y ∈ D(0) will denote
that 1 − G is slowly varying at infinity. Furthermore RV∞(ρ) will signify the class of positive
measurable functions regularly varying at infinity with index ρ, and RV0(ρ) the class of positive
measurable functions regularly varying at zero with index ρ. In particular, using this notation
Y ∈ D(β), with 0 ≤ β < 1, if and only if G := 1−G ∈ RV∞(−β).

For each integer n ≥ 1 set

Tn =
n∑
i=1

XiYi/
n∑
i=1

Yi. (1)

Notice that E|X| < ∞ implies that Tn is stochastically bounded. Theorem 4 of Breiman [2] says
that Tn converges in distribution along the full sequence {n} for every X with finite expectation,
and with at least one limit law being nondegenerate if and only if

Y ∈ D(β), with 0 ≤ β < 1. (2)
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Let X denote the class of nondegenerate random variables X with E|X| < ∞ and let X0 denote
those X ∈ X such that EX = 0. At the end of his paper Breiman conjectured that if for some
X ∈ X , Tn converges in distribution to some nondegenerate random variable T , written

Tn →d T, as n→∞, with T nondegenerate, (3)

then (2) holds. By Proposition 2 (in the case β = 0) and Theorem 3 (in the case 0 < β < 1) of [2],
for any X ∈ X , (2) implies (3), in which case T , in the case 0 < β < 1, has a distribution related
to the arcsine law. Using this fact, we see that his conjecture can restated to be: for any X ∈ X ,
(2) is equivalent to (3).

It has proved to be surprisingly challenging to resolve. Mason and Zinn [8] partially verified
Breiman’s conjecture. They established that whenever X is nondegenerate and satisfies E|X|p <∞
for some p > 2, then (2) is equivalent to (3). In this note we further extend this result.

Theorem Assume that for some X ∈ X0, 1 < α ≤ 2, positive slowly varying function L at zero
and c > 0,

− log (ReφX(t))

|t|α L (|t|)
→ c, as t→ 0. (4)

Whenever (3) holds then Y ∈ D(β) for some β ∈ [0, 1).

Let F denote the class of random variables that satisfy the conditions of the theorem. Applying
our theorem in combination with Proposition 2 and Theorem 3 of [2] we get the following corollary.

Corollary Whenever X − EX ∈ F , (2) is equivalent to (3).

Remark 1 It can be inferred from Theorem 8.1.10 of Bingham et al. [1] (see also Theorem 1 and
5 of Pitman [9]) that for X ∈ X0, (4) holds for some 1 < α < 2, positive slowly varying function
L at zero and c > 0 if and only if X satisfies P {|X| > x} ∼ L(1/x)x−αcΓ(α) 2

π sin
(
πα
2

)
. Note that

a random variable X ∈ X0 in the domain of attraction of a stable law of index 1 < α < 2 satisfies
(4). For α = 2 there is no simple condition equivalent to (4). By Theorem 5 of Pitman [9] for
α = 2 condition (4) implies that

1−ReφX(t)

t2
∼
∫ t−1

0
uP{|X| > u}du, as t ↓ 0. (5)

Also a random variable X ∈ X0 with variance 0 < σ2 < ∞ fulfills (4) with α = 2, L = 1 and
c = σ2/2. Theorem 3 in [9] states that P{|X| > x} ∈ RV∞(−2) implies (5), from which, combined
with Proposition 1.5.9a [1], condition (4) follows.

Remark 2 Consult Kevei and Mason [7] for a fairly exhaustive study of the asymptotic distribu-
tions of Tn along subsequences, along with revelations of their unexpected properties.

The theorem follows from the two propositions below. First we need more notation. For any
α ∈ (1, 2] define for n ≥ 1

Sn(α) =

∑n
i=1 Y

α
i

(
∑n

i=1 Yi)
α . (6)

Proposition 1 Assume that the assumptions of the theorem hold. Then for some 0 < γ ≤ 1

ESn(α)→ γ, as n→∞. (7)
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The next proposition is interesting in its own right. It is an extension of Theorem 5.3 by Fuchs
et al. [4], where α = 2 (see also Proposition 3 of [8]).

Proposition 2 If (7) holds with some γ ∈ (0, 1] then Y ∈ D(β), for some β ∈ [0, 1), where
−β ∈ (−1, 0] is the unique solution of

Beta(α− 1, 1− β) =
Γ(α− 1)Γ(1− β)

Γ(α− β)
=

1

γ(α− 1)
.

In particular, Y ∈ D(0) for γ = 1.

Conversely, if Y ∈ D(β), 0 ≤ β < 1, then (7) holds with

γ =
Γ(α− β)

Γ(α)Γ(1− β)
=

1

(α− 1)Beta(α− 1, 1− β)
.

2 Proofs

Set for each n ≥ 1, Ri = Yi/
∑n

l=1 Yl, for i = 1, . . . , n. For notational ease we drop the dependence
of Ri on n ≥ 1. Consider the sequence of strictly decreasing continuous functions {ϕn}n≥1 on
[1,∞) defined by ϕn(y) = E (

∑n
i=1R

y
i ), y ∈ [1,∞). Note that each function ϕn satisfies ϕn(1) = 1.

By a diagonal selection procedure for each subsequence of {n}n≥1 there is a further subsequence
{nk}k≥1 and a right continuous nonincreasing function ψ such that ϕnk converges to ψ at each
continuity point of ψ.

Lemma 1 Each such function ψ is continuous on (1,∞).

Proof Choose any subsequence {nk}k≥1 and a right continuous nonincreasing function ψ such that
ϕnk converges to ψ at each continuity point of ψ in (1,∞). Select any x > 1 and continuity points
x1, x2 ∈ (1,∞) of ψ such that 1 < x1 < x < x2 < ∞. Set ρ1 = x1 − 1 and ρ2 = x2 − 1. Since
ρ2/ρ1 > 1 we get by Hölder’s inequality

nk∑
i=1

Rx1i =

nk∑
i=1

Rρ1i Ri ≤

(
nk∑
i=1

Rρ2i Ri

)ρ1/ρ2
=

(
nk∑
i=1

Rx2i

)ρ1/ρ2
.

Thus by taking expectations and using Jensen’s inequality we get ϕnk(x1) ≤ (ϕnk(x2))
ρ1/ρ2 . Let-

ting nk → ∞, we have ψ(x1) ≤ (ψ(x2))
ρ1/ρ2 . Since x1 < x and x2 > x can be chosen arbitrarily

close to x we conclude by right continuity of ψ at x that ψ(x−) = ψ(x+) = ψ(x). �

Proof of Proposition 1 For a complex z, we use the notation for the principal branch of the
logarithm, Log (z) = log |z|+ ı arg z, where −π < arg z ≤ π, i.e. z = |z| exp (ı arg z) . We see that
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for all t

E exp (ıtTn) = E

 n∏
j=1

φX (tRj)


= E

 n∏
j=1

exp (LogφX (tRj))

 .

Since EX = 0 we have ReφX(u) = 1− o+(u), where o+(u) ≥ 0, and o+(u)/u → 0 as u → 0; and
ImφX(u) = o(u). This when combined with

(arctan θ)′ =
1

1 + θ2

gives as u→ 0,

arg φX(u) = arctan

(
ImφX(u)

ReφX(u)

)
= o (u) .

Note that for all |u| > 0 sufficiently small so that ReφX(u) > 0

LogφX(u) = Log(ReφX(u) + ıImφX(u)) = logReφX(u) + Log

(
1 + ı

ImφX(u)

ReφX(u)

)
,

where for the second term

ReLog

(
1 + ı

ImφX(u)

ReφX(u)

)
=

1

2

(
ImφX(u)

ReφX(u)

)2

(1 + o (u)) , as u→ 0.

Thus for every ε > 0 for all |t| > 0 sufficiently small and independent of n ≥ 1 and R1, . . . , Rn

1− ε2t2 ≤ cos(εt) ≤ Re

exp


n∑
j=1

Log

(
1 + ı

ImφX(tRj)

ReφX(tRj)

)
 ≤ e2−1εt2 ≤ 1 + εt2.

Thus we obtain

E exp
{ n∑
j=1

logReφX(tRj)
}(

1− ε2t2
)
≤ E (Re exp (ıtTn))

= ReE exp (ıtTn)

≤ E exp
{ n∑
j=1

logReφX(tRj)
}

(1 + εt2).

We shall show (4) implies that (7) holds for some 0 < γ ≤ 1. Now using (4) we get for any 0 < δ < c
and all |t| small enough independent of n ≥ 1,

− εt2 + logE exp

(
− (c+ δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

))
≤ log (ReE exp (ıtTn))

≤ εt2 + logE exp

(
− (c− δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

))
.
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Next since log s/(1 − s) → −1 as s ↗ 1, for all |t| small enough independent of n ≥ 1 and
R1, . . . , Rn, (keeping in mind that

∑n
i=1Ri = 1 and 1 < α ≤ 2)

logE exp

(
− (c+ δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

))

≥ −
(

1 +
δ

2

)
E

(
1− exp

(
− (c+ δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

)))
and

logE exp

(
− (c− δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

))

≤ −
(

1− δ

2

)
E

(
1− exp

(
− (c− δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

)))
.

Further since (1− exp (−y)) /y → 1 as y ↘ 0, for all |t| small enough independent of n ≥ 1,

−
(

1 +
δ

2

)
E

(
1− exp

(
− (c+ δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

)))

≥ − (1 + δ) (c+ δ) |t|α E

(
n∑
i=1

Rαi L (|t|Ri)

)
and

−
(

1− δ

2

)
E

(
1− exp

(
− (c− δ) |t|α

(
n∑
i=1

Rαi L (|t|Ri)

)))

≤ − (1− δ) (c− δ) |t|α E

(
n∑
i=1

Rαi L (|t|Ri)

)
.

Therefore for all |t| small enough independent of n,

− εt2 − (1 + δ) (c+ δ) |t|α E

(
n∑
i=1

Rαi L (|t|Ri)

)
≤ log (ReE exp (ıtTn))

≤ εt2 − (1− δ) (c− δ) |t|α E

(
n∑
i=1

Rαi L (|t|Ri)

)
.

By the Potter’s bound, Theorem 1.5.6 (i) in [1], for all A > 1 and 1 < α1 < α < α2, for all t > 0
small enough independent of n ≥ 1,

A−1
n∑
i=1

Rα2
i ≤

n∑
i=1

Rαi L (|t|Ri) /L (|t|) ≤ A
n∑
i=1

Rα1
i . (8)
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We see now that for all n ≥ 1 and 0 < 4ε < c, appropriate 1 < α1 < α < α2 and all |t| small
enough independent of n,

− εt2 − (1 + ε) (c+ 2ε) |t|α L (|t|)ESn (α2)

= −εt2 − (1 + ε) (c+ 2ε) |t|α L (|t|)E

(
n∑
i=1

Rα2
i

)
≤ log (ReE exp (ıtTn))

≤ εt2 − (1− ε) (c− 2ε) |t|α L (|t|)E

(
n∑
i=1

Rα1
i

)
= εt2 − (1− ε) (c− 2ε) |t|α L (|t|)ESn (α1) .

Choose any subsequence {nk}k≥1 and a right continuous nonincreasing function ψ such that ϕnk
converges to ψ at each continuity point of ψ, which by Lemma 1 above is all (1,∞). We see that
ESnk(α) → ψ(α), ESnk(α1) → ψ(α1) and ESnk(α2) → ψ(α2), where necessarily 0 < ψ(α2) ≤
ψ(α) ≤ ψ(α1) ≤ 1. We see that for all |t| sufficiently small independent of the subsequence nk ≥ 1,

−εt2 − (1 + ε) (c+ 3ε) |t|α L(|t|)ψ(α2) ≤ log (ReE exp (ıtT ))

≤ εt2 − (1− ε) (c− 3ε) |t|α L(|t|)ψ(α1),
(9)

where T is the nondegenerate limit in (3). Note that if ψ(α1) = 0 then because of monotonicity
ψ(α2) = 0, so we would have limt→0 t

−2E[1 − cos(tT )] = 0, which by an easy argument based
on a classical probability inequality (see Lemma 1, p. 268 of Chow and Teicher [3]), implies that
P {T = 0} = 1, contrary to our assumptions. Therefore ψ(α1) > 0.

From (9) we obtain |t| sufficiently small independent of the subsequence nk ≥ 1,

−ε− (1 + ε) (c+ 3ε)ψ (α2) ≤ log (ReE exp (ıtTnk)) / (|t|α L (|t|))
≤ ε− (1− ε) (c− 3ε)ψ (α1) ,

where for α = 2 we use that lim inft↘0 L (t) > 0; see Remark 1. Since 0 < 4ε < c can be made
arbitrarily small and 0 ≤ ψ (α1) − ψ (α2) can be made as close to zero as desired, by letting
nk →∞, we get that for all |t| sufficiently small

−ε− (1 + ε) (c+ 4ε)ψ (α) ≤ log (ReE exp (ıtT )) / (|t|α L (|t|)) ≤ ε− (1− ε) (c− 4ε)ψ (α) ,

which can happen only if ψ (α) does not depend on {nk}. Thus (7) holds for some 0 < γ ≤ 1,
namely γ = ψ(α). �

Proof of Proposition 2 To begin with, we note that whenever (7) holds, necessarily EY = ∞. To

see this, write D
(1)
n = max1≤i≤n Yi/ (

∑n
i=1 Yi) and observe that(

D(1)
n

)α
= max

1≤i≤n

Y α
i

(
∑n

i=1 Yi)
α ≤ Sn(α)

≤ max
1≤i≤n

Y α−1
i

(
∑n

i=1 Yi)
α−1 =

(
D(1)
n

)α−1
.
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From these inequalities it is easy to prove that ESn(α)→ 0, n→∞, if and only if

D(1)
n →P 0, n→∞. (10)

Proposition 1 of Breiman [2] says that (10) holds if and only there exists a sequence of positive
constants Bn converging to infinity such that

n∑
i=1

Yi/Bn →P 1, n→∞. (11)

Since EY < ∞ obviously implies (11), it readily follows that ESn(α) → 0, n → ∞, and thus (7)
cannot hold.

We shall first prove the first part of Proposition 2. Following similar steps as in [8] we have
that

E
∑n

i=1 Y
α
i

(
∑n

i=1 Yi)
α = nE

Y α
1

(
∑n

i=1 Yi)
α

=
n

Γ(α)
E
∫ ∞
0

Y α
1 e
−t

∑n
i=1 Yitα−1dt

=
n

Γ(α)

∫ ∞
0

tα−1E
(
e−tY1Y α

1

)
(Ee−tY1)n−1dt

=:
n

Γ(α)

∫ ∞
0

tα−1φα(t)φ0(t)
n−1dt.

Next, assuming (7) and arguing as in the proof of Theorem 3 in [2] we get

s

∫ ∞
0

tα−1φα(t)es log φ0(t)dt→ γΓ(α), s→∞, (12)

where 0 < γ ≤ 1. For y ≥ 0, let q(y) denote the inverse of − logϕ0(t). Changing the variables to
y = − log φ0(t) and t = q(y), we get from (12) that

s

∫ ∞
0

(q(y))α−1 φα (q(y)) exp (−sy) dq(y)→ γΓ(α), as s→∞.

By Karamata’s Tauberian theorem, see Theorem 1.7.1′ on page 38 of [1], we conclude that

v−1
∫ v

0
(q(x))α−1 φα (q(x)) dq(x)→ γΓ(α), as v ↘ 0,

which, in turn, by the change of variable y = q(x) gives∫ t
0 y

α−1φα(y)dy

− log φ0(t)
→ γΓ(α), as t↘ 0.

Now using that − log φ0(t) ∼ 1− φ0(t) as t→ 0, we end up with

lim
t→0

∫ t
0 y

α−1φα(y)dy

1− φ0(t)
= γΓ(α). (13)
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Since φα(y) =
∫∞
0 e−uyuαG(du), by Fubini’s theorem∫ t

0
yα−1φα(y)dy =

∫ ∞
0

uαG(du)

∫ t

0
yα−1e−uydy

=

∫ ∞
0

G(du)

∫ ut

0
zα−1e−zdz

=

∫ ∞
0

G(z/t)zα−1e−zdz

= tα
∫ ∞
0

G(u)uα−1e−utdu.

A partial integration gives

1− φ0(t) = t

∫ ∞
0

G(u)e−utdu.

So (13) reads

tα−1
∫∞
0 G(u)uα−1e−utdu∫∞

0 G(u)e−utdu
→ γΓ(α), as t↘ 0, (14)

with 0 < γ ≤ 1. Let us define the function for t > 0

f(t) =

∫ ∞
0

G(u)uα−1e−utdu. (15)

Clearly, f is monotone decreasing and since EY = ∞, limt→0 f(t) = ∞. We shall show that f is
regularly varying at 0, which by Lemma 3 of Pitman [9], implies that G is regularly varying at
infinity. We use the identity

u1−αe−ut =
1

Γ(α− 1)

∫ ∞
0

yα−2e−(y+t)udy,

which holds for u > 0 and α ∈ (1, 2]. (This is the Weyl-transform, or Weyl-fractional integral
of the function e−ut.) This identity combined with Fubini’s theorem (everything is nonnegative)
gives

1

Γ(α− 1)

∫ ∞
0

yα−2f(y + t)dy =

∫ ∞
0

G(u)uα−1du
1

Γ(α− 1)

∫ ∞
0

yα−2e−(y+t)udy

=

∫ ∞
0

G(u)e−utdu.

So we can rewrite (14) as

lim
t↘0

tα−1f(t)∫∞
0 yα−2f(t+ y)dy

=
γΓ(α)

Γ(α− 1)
= γ(α− 1). (16)

A change of variable gives∫ ∞
0

yα−2f(t+ y)dy = tα−1
∫ ∞
1

(u− 1)α−2f(ut)du,
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and so we have

lim
t↘0

∫ ∞
1

(u− 1)α−2
f(ut)

f(t)
du = [γ(α− 1)]−1. (17)

We can rewrite f as

f(t) =

∫ ∞
0

G(u)uα−1e−utdu = t−α
∫ ∞
0

G(u/t)uα−1e−udu,

from which we see that the function

g(t) =

∫ ∞
0

G(u/t)uα−1e−udu = tαf(t)

is bounded and nondecreasing. Substituting g into (17) we obtain

lim
t→0+

∫ ∞
1

(u− 1)α−2u−α
g(ut)

g(t)
du = [γ(α− 1)]−1. (18)

Write g∞(x) = g(x−1), x > 0. Then (18) has the form

∫ ∞
1

(u− 1)α−2u−α
g∞(x/u)

g∞(x)
du =

k
M∗ g∞(x)

g∞(x)
→ [γ(α− 1)]−1, as x→∞, (19)

where

k(u) =

{
(u− 1)α−2u−α+1, u > 1,

0, 0 < u ≤ 1,

and

k
M∗ h(x) =

∫ ∞
0

h(x/u)k(u)/udu

is the Mellin-convolution of h and k. Note that the Mellin-transform of k,

k̃ (z) =

∫ ∞
1

(u− 1)α−2 u−α−zdu =

∫ 1

0
(1− v)α−2 vzdv

=
Γ (α− 1) Γ (1 + z)

Γ (α+ z)
= Beta(α− 1, 1 + z)

is convergent for z > −1. We apply a version of the Drasin-Shea theorem (Theorem 5.2.3 on page
273 of [1]). To do this we must verify the following conditions:

1. k̃ has a maximal convergent strip a < Re z < b such that a < 0 and b > 0, k̃ (a+) = ∞ and
k̃ (b−) =∞ if b <∞. Our k̃ satisfies this condition with a = −1 and b =∞.

2. Our function of interest

g∞(x) = g(x−1) =

∫ ∞
0

G(ux)uα−1e−udu, x > 0,

is certainly positive and locally bounded.
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3. Also our function g∞ is of bounded decrease, since for λ > 1

g∞(λx)

g∞(x)
= λ−α

(λx)αg(1/(λx))

xαg(1/x)
= λ−α

f(1/(λx))

f(1/x)
≥ λ−α,

so its lower Matuszewska index is at least −α.

Therefore by Theorem 5.2.3 of [1], whenever,

k
M∗ g∞(x)

g∞(x)
→ c, as x→∞, (20)

then k̃(ρ) = c for some ρ ∈ (−1,∞). (In our case by (19), c = [γ(α − 1)]−1.) Moreover, since
k̃ (z) is strictly decreasing on (−1,∞) and k̃ (0) = 1

α−1 , for any 0 < γ ≤ 1 the solution ρ to

k̃(ρ) = [γ(α − 1)]−1 must lie in (−1, 0]. Theorem 5.2.3 of [1] also says that g∞(x) is regularly
varying at infinity with index 0 ≥ ρ > −1.

Next since g∞(x) = g(x−1) = x−αf(x−1) ∈ RV∞(ρ), where k̃(ρ) = c, g ∈ RV0(−ρ), which
implies that f ∈ RV0(−ρ− α). Recalling that

f(t) =

∫ ∞
0

G(u)uα−1e−utdu,

the Karamata Tauberian theorem now gives that∫ x

0
G(u)uα−1du ∈ RV∞(α+ ρ).

Thus by Lemma 3 of Pitman [9], G(u) ∈ RV∞(ρ).

This says that Y ∈ D(β), where ρ = −β ∈ (−1, 0] and β is the unique solution of

Beta(α− 1, 1− β) =
Γ(α− 1)Γ(1− β)

Γ(α− β)
=

1

γ(α− 1)
.

We now turn to the proof of the second part of Proposition 2. First consider the case β = 0.

Let 0 ≤ D
(n)
n ≤ · · · ≤ D

(1)
n denote the order statistics of Y1/ (

∑n
i=1 Yi) , . . . , Yn/ (

∑n
i=1 Yi). We see

that

E
(
D(1)
n

)α
≤ ESn (α) =

n∑
i=1

E
(
D(i)
n

)α
≤ E

(
D(1)
n

)α−1
≤ 1.

Now D
(1)
n →P 1 if and only if Y ∈ D(0). (See Theorem 1 of Haeusler and Mason [5] and their

references.) Thus if Y ∈ D(0) then (7) holds with γ = 1.

Now assume that Y ∈ D(β), 0 < β < 1. In this case, there exists a sequence of positive
constants {an}n≥1, such that a−1n

∑n
i=1 Yi →d U , where U is a β-stable random variable, with

characteristic function

EeıtU = exp

{
β

∫ ∞
0

(eıtu − 1)u−β−1u

}
.
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Moreover, Y α ∈ D(β/α), and it is easy to check that a−αn
∑n

i=1 Y
α
i →d V , where V is a β/α-stable

random variable, with cf

EeıtV = exp

{
β

α

∫ ∞
0

(eıtu − 1)u−β/α−1u

}
.

Since

lim
n→∞

nP{Y > anu, Y
α > aαnv} = lim

n→∞
nG(an(u ∨ v1/α)) = u−β ∧ v−β/α =: Π((u,∞)× (v,∞)),

for u, v ≥ 0, u + v > 0, using Corollary 15.16 of Kallenberg [6] one can show that the joint
convergence also holds, and the limiting bivariate Lévy measure is Π. That is(

a−1n

n∑
i=1

Yi, a
−α
n

n∑
i=1

Y α
i

)
→d (U, V ),

where the limiting bivariate random vector has cf

Eeı(sU+tV ) = exp

{∫
[0,∞)2

(
eı(su+tv) − 1

)
Π(u, v)

}
= exp

{
β

∫ ∞
0

(
eı(su+tu

α) − 1
)
u−β−1u

}
.

Since P {U > 0} = P {V > 0} = 1, we obtain

Sn (α)→d
V

Uα
.

Thus since Sn (α) ≤ 1 for all n ≥ 1,

ESn (α)→ E
(
V

Uα

)
=: γ ≤ 1.

Clearly P {U <∞} = 1, which implies that 0 < E
(
V
Uα

)
≤ 1, and thus by the first part of

Proposition 2,

0 < γ =
Γ(α− β)

Γ(α)Γ(1− β)
< 1.

�
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