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ABSTRACT
Acute mesenteric ischemia (AMI) is caused by considerable intestinal injury, which is associated with
intestinal ischemia followed by reperfusion. To elucidate the mechanisms of ischemia/reperfusion
injuries, a C5a inhibitory peptide termed AcPepA was used to examine the role of C5a anaphylatoxin,
induction of inflammatory cells, and cell proliferation of the intestinal epithelial cells in an
experimental AMI model. In this rat model, the superior mesenteric artery was occluded and
subsequently reperfused (Induce-I/R). Other groups were treated with AcPepA before ischemia or
reperfusion. Induce-I/R induced injuries in the intestine and AcPepA significantly decreased the
proportion of severely injured villi. Induce-I/R induced secondary receptor for C5a-positive
polymorphonuclear leukocytes in the vessels and CD204-positive macrophages near the injured site;
this was correlatedwith hypoxia-induced factor 1-alpha-positive cells. Induction of these inflammatory
cells was attenuated by AcPepA. In addition, AcPepA increased proliferation of epithelial cells in the
villi, possibly preventing further damage. Therefore, Induce-I/R activates C5a followed by the
accumulation of polymorphonuclear leukocyte and hypoxia-induced factor 1-alpha-producing
macrophages, leading to villus injury. AcPepA, a C5a inhibitory peptide, blocks the deleterious effects
of C5a, indicating it has a therapeutic effect on the inflammatory consequences of experimental AMI.
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Acutemesenteric ischemia, a critical circulatory condition,
is caused by an arterial or venous thrombosis or embolism
(1, 2). The overall mortality rate of AMI has remained at
60% to 80% over the last 25 years and the incidence of this
disease is increasing (3, 4). AMI comprises a group of
pathologic processes that have a common end point—
intestinal necrosis (4). The intestinal epithelium is

probably one of the most sensitive tissues to I/R injury
in the body (5); intestinal ischemia rapidly progresses to
severe metabolic derangements, infiltration of inflamma-
tory cells, loss of villi and epithelial cells, and mucosal
destruction, culminating in irreversible bowel necrosis (3).

Reoxygenation is crucial for cell survival, however, it
has been well established that I/R causes much more
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severe tissue injury than that induced by ischemia
alone (6). Investigation of the development of I/R
damage has revealed significant regeneration of the
mucosa, which parallels necrosis and apoptosis of the
epithelial cells of the villi (7, 8). Published studies have
suggested that I/R injury involves multiple processes,
including activation of inflammatory cells with cytokine
production followed by decay or regeneration of the
injured epithelial cells. A variety of endogenous
compounds and effector cells have been identified as
mediators of I/R injury, including platelet-activating
factor (9), TNF-a (10), IL-6 (11) and oxygen radi-
cals (12). It is also well-known that I/R induces the so-
called antigen-independent inflammatory pathway via
which cellular andmolecular participants of the immune
system can be activated (13).
The complement system has been implicated as a

major candidate in I/R injury, several studies having
suggested that complement activation is involved in
I/R injury in the gut (14–16). Complement activation
results in production of C5a, which has been shown to
be fundamental in exacerbation of I/R injuries (17).
Complement activation occurs in the early stages of
inflammation. In the case of gut I/R, activated
complement induces activation of inflammatory cells,
such as PMNs and macrophages, which have been
demonstrated to play central roles in the development
of I/R injury (18–20). In addition, C5a has been
demonstrated to enhance the release of a number of
pro-inflammatory cytokines from activated PMNs
and macrophages (21–23). Furthermore, inhibition of
C5a by a complementary peptide to C5a (AcPepA)
reportedly suppresses the release of high mobility
group box 1 resulting in rescue of monkeys injected
with lethal doses of LPS (24).
C5a is considered to be a major factor in complement-

mediated I/R tissue injury. Thus, the development of I/R
injury involves multiple processes, such as C5a genera-
tion, induction of inflammatory cells and cytokine
production, all of which lead to apoptosis and
regeneration of the injured intestinal epithelial cells.
These processes would involve cellular and molecular
cross-talk among inflammatory cells, which has not yet
been investigated in detail. C5a is believed to be a major
factor in complement-mediated I/R tissue injury.
Accordingly, the present study aimed to shed more
light on the possible cellular and molecular pathways
involved in the proliferative consequences of I/R events.
To this endwe usedAcPepA, whichwe have generated

as an inhibitory complementary peptide (C-peps) of
C5a (25–27) and examined its modulating effects on
certain inflammatory responses, such as induction of
C5L2-positive cells, induction of activated macrophages

and involvement of HIF1-a in I/R injury, in a clinically
relevant animal model of AMI.

MATERIALS AND METHODS

Animals and surgical preparation

The experiments were performed in full accordance with
the National Institutes of Health guidelines on the
handling and care of experimental animals and the study
was approved by the Animal Welfare Committee of the
University of Szeged.

A total of 35 male Sprague–Dawley rats (250–350 g
body weight) were anesthetized with sodium pentobar-
bital (50mg/kg, intraperitoneally) and placed in a
supine position on a heating pad. Tracheostomy was
performed to facilitate spontaneous breathing, after
which the right jugular vein was cannulated with PE50
tubing for administration of Ringer's lactate infusion
(10mL/kg/hr) and to facilitate maintenance of anes-
thesia with sodium pentobarbital throughout the
experiment.

The right common carotid artery was cannulated to
measure themean arterial pressure, which wasmeasured
at 30-min intervals and monitored throughout the
investigation. The i.v. administration of AcPepA did not
influence the mean arterial pressure of any of the treated
animals (data not shown).

Experimental protocol

After confirming cardiovascular stabilization during
the 30-minute recovery from anesthesia, a median
laparotomy was performed to carry out the following
experimental protocol. The animals were divided into
five groups. Rats in group A served as a sham-operated
group (n¼ 5). Rats in groups B (n¼ 8) and C (n¼ 8),
were exposed to ischemic insult, in which the superior
mesenteric artery was occluded for 45min with an
atraumatic vascular clamp (Induce-I). Rats in groups D
(n¼ 7) and E (n¼ 7), were subjected to ischemia
followed by reperfusion for 30min (Induce-I/R). Rats
in groups C and E were given AcPepA (courtesy of Alan
Okada, Research Institute for Protein Science, Nagoya,
Japan) (4mg/kg iv. in Ringer's lactate solution) 30min
after initiation of ischemia. The tissue samples were
divided into two portions. One was used for histological
and immunohistochemical analyses, whereas the other
served as materials for proteomic investigation and was
stored at �70°C. For histology, samples were fixed with
4% paraformaldehyde and then embedded and proc-
essed for further analysis. The fixed tissue was attached
to hard backing with staples to ensure the optimal
longitudinal orientation of the section.
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Evaluation of the degree of injury to the
villi

To evaluate the effects of ischemia, I/R and AcPepA
treatment on small intestinal villi, the percentage of
injured villi was calculated for each animal. The total
number of villi in each hematoxylin and eosin-stained
section was counted (20–25 fields at 400� magnifica-
tion). Each villus was assigned to one of four categories
(uninjured, slight, moderate or severe), depending on
the degree of damage (length of the villus, infiltration of
inflammatory cells, presence of surface erosion and
amount of necrotic epithelium in the lumen).

In vivo detection of structural damage

The extent of microvascular and epithelial damage in the
terminal ileum was evaluated by fluorescence real-time
laser scanning confocal endomicroscopy (Five1, Ex.
488 nm, Em. 505–585 nm; Optiscan, Melbourne, Victo-
ria, Australia) 30min after the beginning of reperfusion.
The mucosal surface of the terminal ileum was surgically
exposed 5 cm proximal to the cecum and laid flat for
examination. The microvascular structure was recorded
after i.v. administration of 0.3mL of fluorescein
isothiocyanate-dextran (150 kDa, Sigma-Aldrich, St.
Louis, Missouri, USA, 20mgmL�1 solution dissolved
in physiological saline). Confocal imaging was per-
formed 5min after dye administration (one scan/image,
1024� 512 pixels and 475� 475mm per image). The
villous architecture was examined following topical
application of the fluorescent dye acridine orange
(Sigma-Aldrich), surplus dye being flushed away from
the mucosal surface of the ileum with physiological
saline 2min before imaging.

Immunohistochemical analysis

CD68 receptor, PCNA, C5L2 and CD204 receptors and
HIF-1a expression were evaluated by IHC of sections of
the small intestine. For this IHC study, the following
diluted primary antibodies were prepared: PCNA (Clone
PC10, 1:500; Dako Japan., Tokyo, Japan), C5L2 (1:100;
kindly provided by Masaki Imai, Department of
Immunology, Nagoya City University, Nagoya, Japan),
CD68 primary antibody (1:100; BMA Biomedicals,
Augst, Switzerland), CD204 (1:100; Trans Genic,
Kumamoto, Japan), and HIF1-a (1:100; Thermo Fisher
Scientific, Cheshire, UK). The entire IHC investigation
was carried out using an automatic IHC machine, Leica
Bond-max (Leica Microsystems, Tokyo, Japan) accord-
ing to the manufacturer's instructions. For quantitative
analysis, immunostained sections were examined under
a light microscope, and the numbers of nuclei and cells

positive for PCNA, C5L2, CD68, CD204 and HIF1-a
enumerated at a magnification of �400 for each region
of the normal and injured villi, respectively.

Statistical analysis

Statistical analysis of the in vivo data was performed
using Kruskal–Wallis and Bonferroni/Dunn multiple
comparison tests. Data are presented as means� SD.
Values of P< 0.05 were deemed significant.

RESULTS

Effect of AcPepA on the degree of small
intestinal injury

Induce-I and Induce-I/R induced various degrees of
injury to the small intestine. The villi were sorted into
four categories: uninjured (Fig. 1a), slightly (Fig. 1b),
moderately (Fig. 1c) and severely injured (Fig. 1d), based
on various histological criteria. About 96% of the
intestinal villi in the control group were classified as
uninjured (Table 1). The degrees of injury to the villi
induced by Induce-I and Induce-I/R are shown in
Table 1. The proportion of severely injured villi in the
Induce-I/R group (76%) was significantly higher than
that in the Induce-I group (6%) and was significantly
reduced by AcPepA administration (to 24%; Table 1,
Figure 1e).

Because Induce-I/R caused more severe injury to the
small intestinal epithelium (76%) than did Induce-I
(6%), the surface andmicro-vessels of the small intestinal
villi were further examined by confocal laser scanning
endomicroscopy. Acridine orange staining revealed that
the surfaces of the villi in the control group were smooth
(Fig. 1f). Although longitudinal fissures and epithelial
gaps filled with tissue debris were observed in the
Induce-I/R group (Fig. 1g), only a few shed cells and
epithelial gaps were observed in the AcPepA adminis-
tration following Induce-I/R group (Figure 1h). Simi-
larly, microvessel structures observed in the control
group (Fig. 1i) were disorganized and fluorescent dye
leakage was recorded in several areas of small intestinal
villi (Fig. 1j). The extent of leakage was diminished by
AcPepA administration following Induce-I/R (Fig. 1k).
Thus, AcPepA treatment significantly reduced the
degree of microvascular damage and preserved the
epithelial morphology.

Taken together, these results suggest that Induce-I/R
causes more severe injury to the small intestinal
epithelium than does Treat-I alone, indicating that
C5a activation may be involved in the increased damage
that can be suppressed by the C5a-inhibitory peptide
AcPepA.
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Effects of AcPepA administration on
proliferative changes in the epithelium
with Induce-I/R

Because injuries to the small intestine change the
resulted in a distributed balance between proliferation

and apoptosis in the epithelium, the extent of prolifera-
tion of epithelial cells in the villi (except in strongly
proliferative lesions) was examined to enable detection
of small differences in the proliferation index (Fig. 2a).
In normal villi, the PCNA index of the epithelium was
0.6–0.8% regardless of the treatment (Fig. 2b, c). In the
injured villi, PCNA indices in the Induce-I group were
similar to those observed in the Induce-IþAcPepA as
well as in the Induce-I/R group (Fig. 2c). Administering
AcPepA following Induce-I/R significantly increased
the PCNA index compared with Induce-I/R without
AcPepA administration (Fig. 2d, f). These results
indicate that C5a inhibition by AcPepA alleviates I/R
injury and increases cell proliferation in the epithelium.

Induction of C5L2-positive PMNs in the villi

The localization of C5L2, a C5a receptor, was analyzed to
identify cells in which C5a/C5L2 signaling is possibly
transduced. Circulating inflammatory cells were often
observed in dilated vessels located in the centers of villi,
this phenomenon being associated with an inflammatory

Fig. 1. Effect of AcPepA on the degree of small intestinal injury. Small intestinal injury (�600) was classified as (a) normal, (b) slight, (c)
moderate and (d) severe. (e) The percentages of severely injured villi in the variously treated groups. In vivo histology images of the mucosal
surface of distal rat ileum recorded under fluorescence confocal endomicroscopy (f, g, h) after i.v. administration of FITC-dextran and (i, j, k)
topical administration of acridine orange. (f) Normal epithelium on the surface of the villi of the control group. (g) Longitudinal fissures on the
surface of villi (white arrows) are apparent in the Induce-I/R group. (h) A few fissures on the surface of villi (thin white arrow) were observed in
the Induce-I/RþAcPepA group. (i) Mucosal vasculature was normal in the control group. (j) Severe dye leakage from vessel lumina was observed
30min after reperfusion in the Induce-I/R group. (k) Little dye leakage was observed in the Induce-I/RþAcPepA group.

Table 1. Degree of damage observed in intestinal villi

No. of damaged villi (%)

Intervention
No. of villi
examined Uninjured Slightly Moderately Severely

Control 266 96 4 0 0
Induce-I 413 3 25 66 6
Induce-I þ
AcPep

436 2 47 47 4

Induce-I/R 289 0 2 22 76†
Induce-I/R
þ AcPep

417 0 14 62 24‡

†, P< 0.001 versus Induce-I/R
‡, P< 0.001 versus Induce-I
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response (square in Fig. 3a). C5L2-positive cells were
observed among PMNs in the vessels (Fig. 3b). A few
positive cells were observed outside the vessels such as in
the erosion front of the injured villi (data not shown).
C5L2þPMNs were also observed in the dilated vessels of
moderately or severely injured villi (Fig. 3c, d). The
average number of C5L2þPMNs was less than one in
both the control and uninjured villi groups (Fig. 3E), the
number of C5L2þPMNs in the injured villi of
the Induce-I/R group was significantly higher than in
the Induce-I group. Additionally, C5L2þPMNs were
remarkably reduced by AcPepA administration in the
Induce-I/R group (Fig. 3f). Because of our observation of
a drastic increase in the number of C5L2-positive cells
in vessels of the villi of the Induce-I/R group, C5a
concentrations in the sera of the control, Induce-I/R
and Induce-I/RþAcPepA groups were examined
next (Fig. 3g). The serum concentration of C5a was
12 ng/mL in the control group, whereas in the Induce-I
and Induce-I/R groups it was undetectable (Fig. 3g). An
additional treatment with AcPepA restored the C5a
concentration to >12 ng/mL, which is equivalent to
that of the control group (Fig. 3g). These results suggest
that C5a stimulates C5L2þPMNs, causing a release
of cytokines which exacerbate inflammation; thus,

C5L2þPMNs may contribute indirectly to I/R injury.
Although Induce-I alone completely exhausted C5a in
serum, Induce-I/R increased the C5a concentration up
to 5 ng/mL, this possibly being attributable to further
generation of C5a by reperfusion (R) following ischemia
(I). The increased concentration of C5a (over 12 ng/mL)
in rats treated with AcPepA following Induce-I/R may
indicate protection of C5 by AcPepA from catabolism by
an inhibitor of C5a, namely carboxypeptidase R (28, 29),
which is also known as thrombin activatable fibrinolysis
inhibitor.

Induction of CD68-positive macrophages in
the villi

Next, evidence of macrophage induction in the control
and injured villi was examined. In contrast with
C5L2þPMNs, most CD68þMACs were observed in
stromal lesions outside the vessels in slightly injured villi
(arrowheads in Figure 4a). CD68þMACs were observed
in the erosion fronts of the injured villi (arrowheads in
Fig. 4b). Although many macrophages were observed
with Induce-I/R (Fig. 4b), fewer were observed with
Induce-I/RþAcPepA (Figure 4c). Regardless of the
form of treatment, about one macrophage was observed

Fig. 2. Effect of AcPepA on proliferation of small intestinal epithelium. Recovery of the epithelium was evaluated by cell proliferation by
counting PCNA-positive cells (PCNA index). (a) Positive epithelial cells were counted in the villi to avoid the strong proliferative region (below the
horizontal bar in [a]) to facilitate detection of small differences in the cell proliferation index. Epithelial cells of injured small intestinal villi were
visualized by PCNA staining of tissue from rats in the (b) Induce-I alone, (c) Induce-I/R and (d) Induce-I/RþAcPepA groups. (e) PCNA indices
(number of positive cells in each villus) of the epithelium of normal and (f) injured villi are summarized.
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in each normal villus (Fig. 4d). In the injured villi,
Induce-I/R significantly increased the number of macro-
phages, this effect being significantly suppressed by
subsequent AcPepA administration (Fig. 4e). These
results indicate that CD68þMACs are induced in the
small intestine in association with I/R and play a direct
role in I/R injury in a manner that is dependent on C5a
activation.

Induction of CD204-positive macrophages
in villi

CD204-positive macrophages are known to modulate
inflammation by producing various cytokines; accord-
ingly, their induction in villi was investigated. These cells

were observed not only in stromal lesions outside vessels
in slightly injured villi (arrowheads in Fig. 5a), but also
infiltrating the erosion fronts of severely injured villi
(Fig. 5b). Fewer CD204þMACs were observed in the
Induce-I/RþAcPepA than in the Induce-I/R group
(Fig. 5c), indicating that inhibition of C5a by AcPepA
suppresses activation of macrophages. A mean of
approximately one CD204þMAC was present in each
control and uninjured villus (Fig. 5d). The average
number of CD204þMACs was significantly larger in
the uninjured villi of the Induce-I/R group than in
those of the controls; additionally, AcPepA significantly
decreased the number of CD204þMACs (Fig. 5d). In the
injured villi, Induce-I/R induced significantly more
numerous CD204þMACs than in the Induce-I alone

Fig. 3. Induction of C5L2-positive cells in
villi. (a) Circulating inflammatory cells are often
visible in dilated vessels located in the centers of
the villi, this being associated with an
inflammatory response (Square in 3a). (b) C5L2-
positive cells among inflammatory cells in
vessels. (c, d), C5L2-positive cells are also
present in dilated vessels in severely injured villi.
(e, f) The number of C5L2-positive cells in (e)
normal and in (f) injured villi. (g) C5a serum
concentrations were significantly lower in the
Induce-I/R group than in the Induce-I/
RþAcPepA group.
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Fig. 4. Induction of macrophages in villi. (a) CD68-positive macrophages are present in the stromal region outside vessels in the villi
(arrowheads). (b) CD68-positive macrophages are present in the erosion fronts of injured villi of rats in which I/R was induced (arrowheads).
(c) Fewer macrophages are present in the Induce-I/RþAcPepA group. Numbers of the macrophages in (d) normal villi and (e) injured villi.

Fig. 5. Induction of CD204-positive macrophages in villi. (a) CD204-positive macrophages are present in the stromal region outside vessels
in slightly injured villi (arrowheads). (b) CD204-positive macrophages are present in the erosion fronts of severely injured villi. (c) Fewer CD204-
positive macrophages are present in the Induce-I/RþAcPepA group than in the Induce-I/R group. The number of CD204-positive macrophages in
(d) normal and (e) injured villi.
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group (Fig. 5e). There were significantly fewer positive
cells in the AcPepA with Induce-I/R than in the Induce-
I/R group alone; thus, again AcPepA with Induce-I
tended to decrease their numbers (Fig. 5e). These results
indicate that I/R induces significant CD204þMAC
activation in injured villi and suggest that M2-type
macrophages may contribute to I/R damage.

Induction of HIF-1a-positive cells

Hypoxia-induced factor 1-alpha is up-regulated in
association with ischemic conditions. Therefore,
whether HIF1-a-positive cells are involved in I/R-
induced changes in the villi was investigated. HIF1-a-
positive cells were detected by IHC both in stromal
lesions outside vessels in slightly injured villi (Fig. 6a)
and in moderately injured villi (Fig. 6b). Many HIF1-a-
positive cells were observed in the erosion fronts of
severely injured villi (Fig. 6c). The average number
of HIF1-a-positive cells was similar to that of
CD204þMACs in control, uninjured (Fig. 6d) and
injured villi (Fig. 6e), suggesting that CD204þMACs
produce HIF1-a.

DISCUSSION

Acute mesenteric ischemia is a serious multifactorial
condition that develops from an occlusion of a main

artery or vein. Interruption to the intestinal blood flow
can lead to macro- and micro-circulatory failure of
abrupt onset, frequently resulting in bowel necrosis (4).
In this study, we designed an experimental setup for
inducing severe injuries based on an AMI model that we
had used previously (30–32). Similarly to in ileal
specimens from AMI patients (33, 34), in our rat model
we observed patchy evidence of damage to the villous
mucosa, including detachment of cells, particularly in
the villi's apical regions, giving rise to degraded mature
epithelial cells in their lumens. We therefore evaluated
the effects of I/R and the consequences of using a C5a
antagonist to treat epithelial injury and examined
regeneration using a clinically relevant experimental
AMI protocol.

Acutemesenteric ischemia induces not only structural
damage and circulatory deficiencies, but also leads to a
great abundance of inflammatory mediators that can
result in multi-organ failure (35). The complement
system has been demonstrated to be a crucial mediator of
I/R injury (36, 37). In the present study, we applied a
newly synthesized C5a antagonist peptide, AcPepA (25,
27) and found that it significantly decreased the degree of
I/R injury in our AMI model. Thus, we confirmed that
C5a is involved in I/R injury in this model.

Because the C5a antagonist peptide AcPepA signifi-
cantly decreased the degree of I/R damage in this study,
we postulated that both structural damage to the villi and

Fig. 6. Induction of HIF1-positive cells. (a, b) HIF1-a-positive cells are present in the stromal regions outside vessels in both (a) slightly injured
and (b) moderately injured villi. (c) Many HIF1-a-positive cells are present in the erosion fronts of severely injured villi. (d, e) Changes in numbers
of HIF1-a-positive cells in (d) normal and (e) injured villi.
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repair of their intestinal epithelial cells would be induced
by the inflammatory cytokines released from cells
stimulated with C5a generated following complement
activation. We therefore examined the cell proliferation
activity of intestinal epithelial cells in normal and injured
villi by counting the number of proliferating cells
visualized by PCNA staining and found that AcPepA
significantly increased proliferation of intestinal epithe-
lial cells in injured villi. These results indicate that C5a
restriction by AcPepA suppresses cytokine production
by inflammatory cells, resulting in suppression of
inflammation; any remaining C5a may have directly
stimulated the growth of epithelial cells.
We have previously determined the localization of the

C5a receptor C5L2 (38) to investigate how C5a/C5L2-
mediated signaling modulates the inflammatory re-
sponses that lead to I/R injury (39, 40). It has been
demonstrated in vitro that C5L2 is expressed in
neutrophils, macrophages and fibroblasts (41). Addi-
tionally, C5a has been shown to exert a chemotactic
effect on neutrophils (42), releasing superoxide anions
from them. Thus, C5a is believed to be largely
responsible for exacerbating PMN-mediated I/R tissue
injuries. In the present study, C5a serum concentrations
were decreased although C5L2þ PMNs were signifi-
cantly more numerous in the Induce-I/R group,
indicating that serum C5a is consumed because of
greater binding to C5L2. It is also possible that the
generated C5a is inactivated by carboxypeptidase R (28,
29), also known as thrombin activatable fibrinolysis
inhibitor, which removes the carboxy-terminal arginine
of C5a causing inactivation of the molecule, resulting in
C5a-desArg. However, C5L2þPMNs were observed
mainly in vessels of the villi, a location somewhat distant
from the site of epithelial injury. Thus, these results
suggest that C5a/C5L signaling has an indirect influence
on I/R damage. On the other hand, C5a has been shown
to enhance release of pro-inflammatory cytokines
from activated macrophages and monocytes (22, 43).
Previous studies have suggested that alveolar macro-
phage activation is a key initiation signal for acute lung
I/R injury (44, 45), whereas studies of complement
inhibition in mice have suggested that intestinal I/R
injury is unaffected by neutrophil depletion (36, 46).
We found that CD68þMACs were significantly more
numerous after I/R and decreased in number after
subsequent AcPepA treatment. In addition, we mainly
observed CD68þMACs near the site of injury. Taken
together, even though there is some controversy
about the direct contribution of neutrophils, C5a has
an effect on PMNs and the subsequent activation of
macrophages plays an important role in small intestinal
I/R injury.

Several studies have demonstrated that M2 type
macrophages produce cytokines such as TNF-a, IL-6
and IL-12 in response to inflammatory stimuli (47–49);
M2 macrophages are considered to be important
effectors of fatal cellular mechanisms during cancer-
related inflammation. CD204, a class A scavenger
receptor, is a multifunctional molecule that is expressed
inM2macrophages.We postulated that CD204þMACs,
which produce HIF1-a, are involved in I/R injury. In the
present study, I/R treatment significantly increased the
number of CD204þMACs in both injured and normal
villi. Again, this increase was suppressed by AcPepA
treatment, which suggests that CD204þMACs are
indeed activated in response to I/R.

Hypoxia-induced factor 1-alpha is a heterodimeric
transcription factor composed of a constitutively ex-
pressed alpha-subunit (50) and is important for
promoting a variety of cellular responses to hypoxia (51).
Induce-I/R would be expected to activate HIF1-a;
however, its role in I/R injury is controversial. The
protective role of HIF1-a in I/R injury has been
demonstrated in proximal tubule cells in the kidney (52–-
54) as well as in astrocytes (55); additionally, HIF1- a
expression is known to be essential for the development
of I/R injury in the gut, especially with prolonged
ischemia (56, 57). In the present study, I/R significantly
increased the number of HIF1-a-positive cells in both
injured and uninjured villi. Induction of CD204þMACs
correlated closely with the number of HIF1-a-positive
cells and both types of cells were suppressed by AcPepA
treatment. These results suggest that, on activation with
treatment I/R, C5a directly or indirectly induces
activation of CD204þMACs in the intestinal villi; these
cells then secrete HIF1-a.

The mechanisms for I/R injury involve cellular/
molecular processes that begin with hypoxia and
hypoxia-induced C5a formation; concerted communi-
cation between C5a, MACs and PMNs is necessary for
the mediation of I/R damage in the villi. We propose that
activated leukocytes flowing into the villus microcircu-
lation spread signals further towards resident macro-
phages in the lamina propria and that this leads to
stimulation of macrophage-derived HIF-1a production
at the injury site. According to the outlined scenario, the
greatest structural destruction would be expected to
occur when C5a, activated PMNs and MACs are all
present in the reperfused villi. Furthermore, this cellular
casting might also explain the patchy pattern of mucosal
damage; the damage is less severe if one or more of the
players is not present or inactive.

Several studies have used blocking antibodies or
inhibitors to target C5 or C5a. In I/R models of rat
intestine, both C5 and C5a blockade result in protection
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from I/R injury (16, 58, 59). In myocardial infarcts in
rats, antibodies to C5 significantly inhibit necrosis, cell
apoptosis and neutrophil infiltration (60). In pigs, use of
antibodies directed against C5a results in reduced
myocardial injury and reduced coronary endothelial
dysfunction after I/R (61, 62). AcPepA, which we
generated as an inhibitory C5a peptide, is effective in
reducing the incidence of lethal shock in rats (25) and
mice (27), as well as sepsis induced by lethal doses of
bacterial LPS in cynomolgus monkeys (26). In the
present study, we demonstrated that AcPepA suppressed
I/R tissue injury in our AMI rat model. Combined
together, targeting C5/C5a may represent the best
strategy for inhibiting complement-mediated I/R-in-
duced tissue injury and may therefore prove useful for
therapeutic interventions in clinical settings. These
experimental studies should lead to clinical trials in
patients with AMI, lethal shock and sepsis.
In summary, we examined the mechanisms of C5a-

induced I/R injury using our clinically relevant rat AMI
model. The proposed mechanism includes the effect
of C5a on PMNs and the subsequent induction of
CD204þMACs, which secrete HIF1-a, in the intestinal
villi. Overall, targeting of C5/C5a is a potential strategy
for inhibiting PMNs and reducing macrophage- medi-
ated I/R injury and may therefore be a good option for
future therapeutic interventions.
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