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1 Introduction

The recipient of the 2015 János Bolyai International Mathematical Prize was
Barry Simon (IBM Professor California Institute of Technology). The prize is
given every 5 years by the Hungarian Academy of Sciences on the recommen-
dation of a 10 member international committee (this is the only international
prize of the Academy). It was established in 1902 for the 100th birth anniver-
sary of the great Hungarian mathematician János Bolyai, one of the founders of
non-Euclidean geometry, and the first two awardees were Henry Poincaré (1905)
and David Hilbert (1910). Then came World War I and the prize was not given
until 2000, when the Academy renewed it. It is commonly accepted that, since
there is no Nobel prize in mathematics, part of the original intention was to
have a prestigious substitute that honors high quality mathematical work. In
the renewed form the prize is given for monographs of high impact written in
the preceding 10-15 years. In 2000 Saharon Shelah was the recipient for his
book “Cardinal Arithmetic”, in 2005 Mikhail Gromov got it for the monograph
“Metric structures for Riemannian and non-Riemannian spaces”, and the 2010
awardee was Yurii Manin for this work “Frobenius manifolds, quantum coho-
mology, and moduli spaces”.

Barry Simon received the Bolyai Prize for his monumental two-volume trea-
tise “Orthogonal Polynomials on the Unit Circle” published by the American
Mathematical Society in the Colloquium Publications series in 2005. Simon
does not need much introduction: he is one of the most cited mathematicians;
the author of 21 monographs that has had profound influence on various fields of
physics, mathematical physics and mathematics; among others he is the recipi-
ent of the Poincaré Prize (2012), the Leroy P. Steele Prize (2016), honorary doc-
tor of Technion (Israel), the University of Wales–Swansea (Great Britain) and
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the Ludwig-Maximilians-Univerisität (Germany). His 4-volume treatise “Meth-
ods of Modern Mathematical Physics” written with Michael C. Reed is the bible
of mathematical physics, and his latest, just published 5-volume “Comprehen-
sive Course in Analysis” [10] will likely have the same lasting impact. His 400
research papers are on various areas such as quantum field theory, statistical me-
chanics, quantum mechanics, magnetic fields, just to name a few. He has been
a definitive authority on operator theory, Jacobi matrices and spectral theory
for a long time. So how did it happen that he wrote a book on orthogonal
polynomials and why that book has turned out to be so influential?

2 Orthogonal polynomials and Jacobi matrices

The theory of orthogonal polynomials goes back to at least two centuries to the
work of Jacobi. Let µ be a positive Borel measure on the complex plane with
infinite support for which ∫

|z|mdµ(z) < ∞

for all m ≥ 0. There are unique polynomials

pn(z) = pn(µ, z) = κnz
n + · · · , κn > 0, n = 0, 1, . . .

which form an orthonormal system in L2(µ), i.e.,∫
pmpndµ =

{
0 if m ̸= n
1 if m = n.

These pn’s are called the orthonormal polynomials corresponding to µ. κn is
the leading coefficient, and pn(z)/κn = zn + · · · is called the monic orthogonal
polynomial. If µ is on the real line then we get real polynomials, while if µ is
supported on the unit circle, then we get the polynomials with which Simon’s
book is mainly concerned. In the real case the pn’s obey a three-term recurrence
formula

xpn(x) = anpn+1(x) + bnpn(x) + an−1pn−1(x), (1)

where

an =
κn

κn+1
> 0, bn =

∫
xp2n(x)dµ(x),

and, conversely, any system of polynomials satisfying (1) with real an > 0, bn
is an orthonormal system with respect to a (not necessarily unique) measure on
the real line (Favard’ theorem).
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With bounded an > 0, bn ∈ R the so-called Jacobi matrix

J =


b0 a0 0 0 · · ·
a0 b1 a1 0 · · ·
0 a1 b2 a2 · · ·
0 0 a2 b2 · · ·
...

...
...

...
. . .

 ,

defines a self-adjoint bounded linear operator J on l2, a Jacobi operator. Every
bounded self adjoint operator with a cyclic vector is a Jacobi operator in an
appropriate base (just orthogonalize the orbit of a cyclic vector). Furthermore,
any operator when restricted to the closure of the orbit of a non-zero vector is
cyclic on that subspace.

To find the eigenvalues of J one considers the equation Jπ = λπ, π =
(π0(λ), π1(λ), . . .), which is equivalent to the three-term recurrence

an−1πn−1 + bnπn + anπn+1 = λπn, n = 1, 2, . . . (2)

b0π0 + a0π1 = λπ0, π0 = 1.

Thus, πn(λ) is of degree n in λ, and λ is an eigenvalue when {πn(λ)} ∈ l2.
By the spectral theorem J , as a self-adjoint operator having a cyclic vector

((1, 0, 0, . . .)), is unitarily equivalent to multiplication by x on some L2
µ space,

where µ is a positive measure with compact support on the real line. This µ
is called the spectral measure of J . It is clear that the support S(µ) of µ is
the set of those x for which xI − J is not invertible, so S(µ) is the spectrum of
J . Now if pn(µ) = pn(µ, x) are the orthonormal polynomials with respect to µ,
then {pn(µ)} is an orthonormal basis in L2

µ. Hence, if U maps the unit vector
en = (0, . . . , 0, 1, 0, . . .) to pn(µ), then U can be extended to a unitary operator
from l2 onto L2

µ, and if Sf(x) = xf(x) is the multiplication operator by x in
L2
µ, then J = U−1SU . The recurrence coefficients for pn(µ, x) are precisely the

an’s and bn’s from the Jacobi matrix, i.e., pn(µ, x) = cπn(x) with some fixed
constant c. Therefore, µ is one of the measures for the three-term recurrence
(2) in Favard’s theorem. Conversely, if we start from a measure µ with compact
support on the real line, form the orthogonal polynomials and their three-term
recurrence and form the Jacobi matrix J with the recurrence parameters, and U
is the unitary operator mapping en to pn, then J = U−1SU , i.e., J is unitarily
equivalent to multiplication by x on L2

µ.
These show that Jacobi operators are equivalent to multiplication by x in

L2
µ spaces if the particular basis {pn(µ)} are used. The relation of orthogonal

polynomials with Jacobi matrices is very close, for example if we consider the
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truncated n× n matrix

Jn =


b0 a0 0 0 · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
...

...
...

...
. . . an−2

0 0 0 · · · an−2 bn−1


then it has n real and distinct eigenvalues, which turn out to be the zeros of pn,
i.e., the monic polynomial pn(z)/κn is the characteristic polynomial of Jn:

pn(z)/κn = det(zIn − Jn). (3)

Since Simon has been working on Jacobi operators and their spectral prop-
erties, even from this short discussion it is evident that he was close to real
orthogonal polynomials.

3 Orthogonal polynomials on the unit circle

If the orthogonality measure is not real, things change. Indeed, on the real line to
have the three-term recurrence formula one expands xpn(x) as cn,n+1pn+1(x)+
cn,npn(x) + · · ·+ cn,0p0(x), and notice that, by orthogonality,

cn,j =

∫
xpn(x)pj(x)dµ(x) =

∫
xpn(x)pj(x)dµ(x) =

∫
pn(x)xpj(x)dµ(x) = 0

for all j < n − 1, hence there are only 3 terms in the expansion. If µ is not
supported on the real line, then we have

cn,j =

∫
zpn(z)pj(z)dµ(z) =

∫
pn(z)(zpj(z))dµ(z),

and we cannot use orthogonality, since zpj(z) is not a polynomial, and indeed,
in general, the coefficients cn,j will not be zero. Still, on the unit circle T there
is a substitute, called Szegő recurrence. If µ is a nontrivial probability measure
on T (that is, not supported on a finite set) the monic orthogonal polynomials
Φn(z, µ) are uniquely determined by

Φn(z) =

n∏
j=1

(z − zn,j),

∫
T

ζ−jΦn(ζ) dµ(ζ) = 0, j = 0, 1, . . . , n− 1,

and the orthonormal polynomials φn are φn = Φn/∥Φn∥L2
µ(T). However, as

opposed to the real case, the orthonormal set {φn}n≥0 may not be a basis in
L2
µ(T) for the set of polynomials may not be dense in L2

µ(T) (see below).
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On L2
µ(T) we consider the n−∗ map f∗(ζ) := ζnf(ζ). Since zz = 1 on the

unit circle, we get that Φn+1(z)− zΦn(z) is of degree n and is orthogonal to zj

for j = 1, 2, . . . , n. The same is true of Φ∗
n(z), hence

Φn+1(z)− zΦn(z) = ᾱnΦ
∗
n(z)

with some complex numbers αn, called the Verblunsky coefficients (this name
was coined by Simon and now it is widely accepted, earlier other names like “re-
currence coefficients”, “Schur parameters”, “reflection coefficients” were used).

Φn+1(z) = zΦn(z)− ᾱnΦ
∗
n(z) (4)

is known as Szegő recurrence. At z = 0 it gives αn = −Φn+1(0). If we apply
the (n+ 1)−∗ transform to (4), then we obtain

Φ∗
n+1(z) = Φ∗

n(z)− αnzΦn(z),

which is just another form of the Szegő recurrence.
Since Φ∗

n is orthogonal to Φn+1 and |Φ∗
n| = |Φn|, we obtain from (4)

∥Φn+1∥2L2
µ(T) = (1− |αn|2)∥Φn∥2L2

µ(T), ∥Φn∥2L2
µ(T) =

n−1∏
j=0

(1− |αj |2),

and so |αn| < 1. Let ∆∞ be the set of complex sequences {αj}∞j=0 with |αj | < 1.
The map V (µ) = {αj(µ)}∞j=0 is a well defined map from the set P of nontrivial
probability measures on T to ∆∞. By a theorem of Verblunsky, V is a bijection.
Furthermore, works of Szegő, Kolmogorov and Krein show that the following
are equivalent:

• limn→∞ ∥Φn∥L2
µ(T) = 0,

•
∑∞

n=0 |αn|2 = ∞,

• {φn}∞n=0 is a basis for L2
µ(T),

•
∫
T
logµ′ = −∞, where µ′ is the Radon-Nikodym derivative of µ with

respect to arc measure on T.

As we can see, for orthogonal polynomials on the unit circle a beautiful the-
ory is emerging. It was originated by Szegő in the late 1910’s and early 1920’s,
and it was first discussed in a compact form in Szegő’s book [14]. But is there an
analogue of the relation to Jacobi matrices? It turns out that there is, but the
corresponding matrix is 5-diagonal and not 3-diagonal (which is not much of a
difference for an operator theorist like Simon). To obtain it orthogonalize the se-
quence 1, ζ, ζ−1, ζ2, ζ−2, . . . in L2

µ(T) using the Gram-Schimdt procedure to get
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the so called CMV (Cantero, Moral, and Velázquez) basis (complete orthonor-
mal system) {χn}∞n=0, and consider the matrix of the operator of multiplication
by z in that basis. We get the so called CMV matrix C(µ) = (Cn,m)∞m,n=0,
where

Cn,m =

∫
ζχm(z)χn(z)dµ(z).

It turns that it is five-diagonal, and the χ’s can be expressed in terms of the φ’s
and φ∗’s:

χ2n(z) = z−nφ∗
2n(z), χ2n+1(z) = z−nφ2n+1(z), n = 0, 1, . . . ,

and the matrix elements in terms of the α’s and ρ’s: C = LM where L,M are
block-diagonal matrices

L = Diag(Θ0,Θ2,Θ4, . . .), M = Diag(1,Θ1,Θ3, . . .)

with

Θj =

(
αj ρj
ρj −αj

)
, j = 0, 1, . . .

(the first block of M is 1× 1).
The analogy with Jacobi matrices is quite strong, for example, the analogue

of (3) in the unit circle case is

Φn(z) = det(zIn − C(n)),

where C(n) is the principal n× n block of C.

4 OPUC

What follows is part of the personal recollections of Simon told in his acceptance
talk at the prize ceremony (see [11]).

In the 1980’s and 1990’s Simon was working on discretized Schrödinger oper-
ators {un} → {un−1+un+1+V (n)un}. He proved that if V decays slower than
n−α, α < 1/2, then generically the spectrum is singular continuous. On the
other hand, it had been known that if |V (n)| ≤ n−α, α > 1, then the spectrum
is purely absolutely continuous. In the missing range 1/2 < α ≤ 1 results of
Kiselev and Deift showed that absolutely continuous spectrum exists, and Si-
mon raised the question if in that range there can also be a continuous singular
spectrum present (mixed spectrum). Often, instead of a power type decay, the
condition is in the form V ∈ lp, where the dividing parameter is p = 2 (matching
α = 1/2). Working with Killip on the problem they realized that if they had
an appropriate sum rule relating Jacobi parameters to a spectral quantity (see
Szegő’s theorem below for an example), they would get the following:∑

n

|an − 1|2 + |bn|2 < ∞
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if and only if the essential spectrum is [−2, 2], the spectral measure satisfies∫ 2

−2

(4− x2)1/4 logµ′(x)dx > −∞,

and if λn are the eigenvalues outside [−2, 2], then
∑

n ||λn| − 2|3/2 < ∞. This
theorem would prove the existence of Jacobi matrices with l2 decay and mixed
spectrum, for in it there is no hypothesis on the singular part of µ, so that can
be selected at one’s convenience and still get l2 decay for the potential. While
working on the required sum rule (which they eventually found in [6]) Simon
came across orthogonal polynomials on the unit circle through lectures given by
Dennisov at Caltech on mixed spectrums of Schrödinger operators. He realized
that people working on orthogonal polynomials tackled questions very similar
to those that were relevant to people in the mathematical physics community in
connection with spectral theory. He was drawn to orthogonal polynomials seeing
the strong analogy in between the two fields. He observed that the two com-
munities were practically unaware of each other, of the methods and questions
in the other field, and even the same theorems were discovered using differ-
ent language. For example, he discovered that his problem on mixed spectrum
had been solved for orthogonal polynomials on the unit circle by Verblunski
in 1936. Simon also observed that, while there were many results related to
OPUC (Orthogonal Polynomials on the Unit Circle), there was no comprehen-
sive treatment of them in a collected form (Szegő’s [14] and Freud’s [3] book
each had a chapter, and Geronimus had the small book [4], but that was all).
He realized that many ideas that were extensively investigated by him and other
researchers in spectral theory had not been studied by the orthogonal polyno-
mial community, so there was a whole new chapter to be developed by applying
the techniques and questions from one field to the other. For example, while
working on the aforementioned sum rule Killip and Simon proved a conjecture
of Nevai on real orthogonal polynomials: if the recurrence coefficients satisfy∑

n

(|an − 1|+ |bn|) < ∞,

then the measure of orthogonality belongs to the Szegő class (see below). Instead
of writing many small papers in this new chapter, around 2001 he decided to
write a longer paper (he later admitted he had estimated its length to be about
80 pages) that could serve as an introduction to the other field for researchers
in both communities. However, the collection of the results to be put in that
paper had a steady grow, and finally his OPUC book emerged with two volumes
and with more than a thousand pages.

Volume I discusses the general theory of orthogonal polynomials, while vol-
ume II is devoted to spectral theory with various connections and applications.
The list of chapter titles is quite illustrative:

Volume I:
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• The Basics

• Szegő’s Theorem

• Tools for Geronimus Theorem

• Matrix Representations

• Baxters Theorem

• The Strong Szegő Theorem

• Verblunsky Coefficients With Rapid Decay

• The Density of Zeros

Volume II:

• Rakhmanov’s Theorem and Related Issues

• Techniques of Spectral Analysis

• Periodic Verblunsky Coefficients

• Spectral Analysis of Specific Classes of Verblunsky Coefficients

• The Connection to Jacobi Matrices

The book discusses many connections/applications of OPUC from stationary
stochastic processes through analytic functions, unitary operators, scattering
theory up to random matrices. There is also an extended appendix on various
topics such as Schur functions, Toeplitz matrices and determinants, Aleksandrov
families, transfer matrices etc., and the book closes with conjectures and prob-
lems. The review [7] by Nevai contains many more details, historical accounts
and personal views of researchers on the monograph.

The book is not an easy reading, but it has had a profound influence on
the field of orthogonal polynomials even before its publication (various chapters
were available), and it will be the definitive reference work for a long time. It
is a worthy follower of Szegő’s 1939 classics [14].

Since the Bolyai Prize is a recognition of the Hungarian Academy, we close
this paper as an illustration of the many theorems in the book by discussing
two results that are related to Hungarian mathematics.
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5 Szegő’s theorem and Simon’s higher order Szegő
theorem

Szegő’s celebrated theorem is a sum-rule: if dµ = µ′ dm + dµs, w ∈ L1(T), is
the decomposition of µ into its absolutely continuous and singular part, then

∞∏
j=0

(1− |αj |2) = exp
( 1

2π

∫
T

logµ′(ζ) dm
)
.

In particular,
∞∑
j=0

|αj |2 < ∞ ⇐⇒ logµ′ ∈ L1(T). (5)

If either of the conditions in (5) holds, then we say that µ belongs to the Szegő
class. In this class the Szegő function is defined as

D(z) = exp

(
1

4π

∫
T

ζ + z

ζ − z
logµ′(ζ) dm(ζ)

)
, |z| < 1.

For it D(ζ) = limr↑1 D(rz) exists almost everywhere on the unit circle and it
satisfies |D(ζ)|2 = w(ζ) a.e.. The main asymptotic result of Szegő is the claim
that

lim
n→∞

φ∗
n(z) = D−1(z)

uniformly on compact subsets of the open unit disk ∆.
The following is often called strong Szegő theorem: if µs = 0 and µ is in the

Szegő class, then

∞∏
j=0

(1− |αj |2)−j−1 = exp(
∞∑

n=0

n|wn|2),

where wn are the Fourier coefficients of logw.
Simon came up with the idea to extend Szegő’s theorem for the case when

logµ′ may be infinite. His result from Section 2.8 from his book states that for
any ζ0 ∈ T

|ζ − ζ0|2 logw ∈ L1(T) ⇐⇒
∞∑
j=0

|αj+1 − ζ0αj |2 + |αj |4 < ∞.

There is a generalization to two zeros (see [13]): if ζ1, ζ2 ∈ T, then for ζ1 ̸= ζ2
we have

|ζ−ζ1|2|ζ−ζ2|2 logw ∈ L1(T) ⇐⇒
∞∑
j=0

|αj+2−(ζ1+ζ2)αj+1+ζ1ζ2αj |2+|αj |4 < ∞,
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while for ζ1 = ζ2

|ζ − ζ1|4 logw ∈ L1(T) ⇐⇒
∞∑
j=0

|αj+2 − 2ζ1αj+1 + ζ21αj |2 + |αj |6 < ∞

is true.

6 Zeros

It is easy to see that all zeros of the orthogonal polynomials for a measure on
the unit circle lie inside the unit disk ∆. Paul Turán asked if the zeros can be
dense in ∆. He did not specify, however, in what sense the density should be
considered. The simplest is to ask if the set of all the zeros of all the orthogonal
polynomials can be dense in ∆. In 1988 Alfaro and Vigil [1] answered this
affirmatively. Their result is a consequence of the recurrence formula (4): if
{zn} is given, then one can choose inductively αn ∈ ∆ so that zn, n = 1, 2, . . .
is a zero of Φn.

In [12] a much stronger statement was proven by Simon and the author. To
state it consider the sequence {νn(µ)}n≥1 of the normalized counting measures
for zeros of Φn, that is, νn = 1

n

∑
k δzk , where the summation is for all zeros of

Φn counting multiplicity. [12] proves the existence of a universal measure µ in
the sense that if ν is any probability measure on the closed unit disk, then there
is a subsequence N of the natural numbers such that along N the zero counting
measures νn converge to ν in the weak∗ topology. This is an easy consequence of
following theorem of independent interest: if Φ is a monic polynomial of degree
m with all its zeros in ∆ and z1, . . . , zk are arbitrary points in the unit disk,
then there is a measure µ on the unit circle such that Φ is the m-th monic
orthogonal polynomial with respect to µ, i.e., Φm = Φ, and z1, . . . , zk are zeros
of the (m+ k)-th orthogonal polynomial Φm+k.

There is a third way to understand Turán’s question: can it happen that
along the (complete) sequence of the integers n the set of zeros get dense in ∆,
i.e., if Zµ is the set of points in ∆ for which there is a sequence {zn} such that
zn is a zero of Φn and zn → z, then is it possible that Zµ is the whole closed unit
disk? That this cannot happen was proven in [2], where the following stronger
statement was verified: if 0 ∈ Zµ, then Zµ is a countable set converging to the
origin.

The author thanks Paul Nevai and Tivadar Danka for valuable comments.
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