Environmental Management Accounting and Supply Chain Management
Environmental Management Accounting and Supply Chain Management
Sustainability requirements continue to be driven strongly both by regulators and customer demands. For some years, pressure concentrated on large, often stock-listed corporations. However, it soon became clear that much of the social and environmental impacts are to be found within the supply chain. As large multinationals hand down the societal pressure they are facing, suppliers increasingly need to be transparent about the social and ecological impacts of their products and services, and need to be able to assess and improve their respective performance. This creates new challenges. On the one hand, suppliers, often companies of much smaller scale and limited (financial and human) resources are faced with the need to deal with complex social and environmental issues. On the other hand, large companies with complex supply chains need to secure the consistency of data they receive by their suppliers, and need instruments for a meaningful interpretation of this data. To cope with this challenge in a consistent and cost effective manner, clear accounting standards and sound information systems are pivotal.

The literature on sustainable supply chains has reached a considerable level of maturity within the last years. However, accounting aspects have not been in the centre of attention of this discourse. The fifth volume in the Environmental and Sustainability Accounting Network (EMAN) research book series fills this gap by providing in-depth knowledge on supply chain related aspects of environmental management accounting. It offers both a general perspective on key issues and sector specific highlights for highly exposed industries like food and beverages (e.g. coffee, dairy), oil and gas and chemicals. A general perspective on environmental management accounting and on supply chain issues both upstream and downstream is rounded out by assessments of core regulatory developments, like the EU chemicals regulation REACH. Based on this comprehensive perspective, we believe this book to be of high value not only for academic readers, but also for interested practitioners.

Mr Michael Werner
Partner at Pricewaterhouse Coopers Germany and
Leader of the German PwC
Sustainability Services Group
Recent developments in environmental and sustainability accounting are addressed in this fifth volume in the Environmental and Sustainability Management Accounting Network (EMAN) research book series. The main subject is the role of environmental management accounting in supply chain management – a topic which has been dealt with at various EMAN conferences from which a selection of the best papers is now collected. As well as highlighting new developments in environmental and sustainability management accounting (EMA) generally, the papers presented here link sustainable supply chain management with EMA, which was the core theme of the EMAN-EU conference held in Espoo, Finland, in 2007. The book also considered papers which originated from the EMAN-EU conferences on sustainability and corporate social responsibility accounting in Budapest in 2008 and on environmental accounting and sustainable development indicators in Prague in 2009, as well as the first EMAN Global Conference on integrated environmental management accounting for sustainable development at Tshwane, South Africa in 2008. It is a pleasure to see the number of participants at EMAN conferences continuing to flourish, with 150 attending in Espoo, 100 in Budapest, 200 in Prague and 120 in Tshwane. Given the changing core topics of the EMAN conferences, the conferences were attended by not only experts on EMA but also by academics and practitioners from different disciplines and industries. The continued interest in EMA is also reflected in the growing interest in EMAN generally and shows that the role of EMA is acknowledged in an increasing number of disciplines, professions and industries.

The result is that this volume is able to present a collection of contributions relating to sustainable supply chain management, the social and economic aspects of environmental and sustainability management accounting, and the integration of EMA with sustainable development, a characteristic of sustainability which is sadly lacking from much of the earlier literature.

Adelaide
Lüneburg
Gloucester
Espoo
Budapest

R.L. Burritt
S. Schaltegger
M. Bennett
T. Puhjola
M. Csutora
Acknowledgments

The editors would like to thank Rainbow Shum, Research Administrator at the Centre for Accounting, Governance and Sustainability (CAGS), Amanda Carter, especially for her proofing work, and Irida Lekaj, both Research Assistants at CAGS, for their outstanding administrative support in dealing with the large number of submissions, revisions and reviewers involved. Special thanks also to the 48 reviewers listed below, who performed an excellent job, many of them reviewing papers several times:

Dr Jane Andrew, University of Sydney, Australia
Mr Martin Bennett, University of Gloucestershire, UK
Mr David Bent, Forum for the Future, UK
Professor Frank Birkin, Sheffield University, UK
Professor Roger L. Burritt, University of South Australia, Australia
Ms Jin Chen, University of South Australia, Australia
Mr Kim Christiansen, Novo Nordisk A/S, Denmark
Associate Professor Maria Csutora, Corvinus University of Budapest, Hungary
Dr Richard Fairchild, Bath University, UK
Dr Seakle Godschalk, Environmental & Sustainability Solutions, South Africa
Associate Professor Zilahy Gyula, Corvinus University of Budapest, Hungary
Dr Jennifer Harrison, Southern Cross University, Australia
Ms Marnie Ireland, Australian Research Centre for Urban Ecology, Australia
Dr Kumba Jallow, De Montfort University, UK
Dr Christine Jasch, Institute for Environmental Management and Economics, Austria
Associate Professor Mary Kaidonis, University of Wollongong, Australia
Associate Professor Tarja Ketola, University of Vaasa, Finland
Dr Marketta Koivisto, Aalto University, Finland
Professor Katsuhiko Kokubu, Kobe University, Japan
Mr Robert Langford, Institute of Chartered Accountants in England and Wales, UK
Dr Sumit Lodhia, University of South Australia, Australia
Dr Ian Mason, University of Canterbury, New Zealand
Mr Joe McDonald, Varicon Aqua Solutions Ltd, UK
Dr Edmund Merem, Jackson State University, USA
Dr Maryna Mohr-Swart, Environmental & Sustainability Solutions, South Africa
Professor John Morelli, Rochester Institute of Technology, USA
Mr Larry O’Connor, La Trobe University, Australia
Associate Professor Akira Omori, Yokohama National University, Japan
Assistant Professor René Orij, Leiden University, Netherlands
Professor Hanna-Leena Pesonen, University of Jyväskylä, Finland
Dr Tuula Pohjola, Aalto University, Finland
Mr Mark Price, Wolverhampton University, UK
Ms Martina Prox, Leuphana University Lüneburg, Germany
Dr Wei Qian, University of South Australia, Australia
Associate Professor Jean Raar, Swinburne University of Technology, Australia
Dr Christian Richter, Kingston University, UK
Professor Emeritus Bob Ryan, University of Gloucestershire, UK
Professor Chika Saka, Kwansei Gakuin University, Japan
Dr Tapan Sarker, Griffith University, Australia
Professor Dr Stefan Schaltegger, Leuphana University Lüneburg, Germany
Dr Paul Shum, University of South Australia, Australia
Dr Armi Temmes, Aalto University, Finland
Mr Ian Thomson, Strathclyde University, UK
Dr Laila Törnroos, Eltekon Ltd, Finland
Dr Heiner Tschochohei, Leuphana University Lüneburg, Germany
Dr Basil Tucker, University of South Australia, Australia
Mr Pentti Viluksela, Aalto University, Finland
Mr Dimitar Zvezdov, Leuphana University Lüneburg, Germany
Contents

Part I Introduction and Structure

1 **Sustainable Supply Chain Management and Environmental Management Accounting** ... 3
 Roger L. Burritt, Stefan Schaltegger, Martin Bennett,
 Tuula Pohjola, and Maria Csutora

Part II Contemporary Issues

2 **Life Cycle and Supply Chain Information in Environmental Management Accounting: A Coffee Case Study** 23
 Tobias Viere, Jan von Enden, and Stefan Schaltegger

3 **Motivations Behind Sustainable Purchasing** 41
 Gyöngyi Vörösmarty, Imre Dobos, and Tünde Tátrai

4 **An Input–Output Technological Model of Life Cycle Costing: Computational Aspects and Implementation Issues in a Generalised Supply Chain Perspective** ... 55
 Ettore Settanni, Giuseppe Tassielli, and Bruno Notarnicola

5 **Farm Risk Management Applied to Sustainability of the Food Supply Chain: A Case Study of Sustainability Risks in Dairy Farming** ... 111
 Jarkko Leppälä, Esa Manninen, and Tuula Pohjola

Part III Social Issues

6 **Companies, Stakeholders and Corporate Sustainability – Empirical Insights from Hungary** 131
 György Málovics, Izabella Szakálné Kanó, and Szabolcs Imreh
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Corporate Social Responsibility and Competitiveness – Empirical Results and Future Challenges</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Torsti Loikkanen and Kirsi Hyytinen</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Social Impact Measurement: Classification of Methods</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>Karen Maas and Kellie Liket</td>
<td></td>
</tr>
<tr>
<td>Part IV</td>
<td>Economic Issues</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>New Decision Method for Environmental Capital Investment</td>
<td>205</td>
</tr>
<tr>
<td></td>
<td>Norio Minato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benjamin Karatzoglou and Ourania Karatzoglou</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Environmental Management Accounting: Comparing and Linking Requirements at Micro and Macro Levels – A Practitioner’s View</td>
<td>255</td>
</tr>
<tr>
<td></td>
<td>Christine Jasch</td>
<td></td>
</tr>
<tr>
<td>Part V</td>
<td>Other Issues</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>The Benefit Side of Environmental Activities and the Connection with Company Value</td>
<td>281</td>
</tr>
<tr>
<td></td>
<td>Hajnalka Ván and Szilvia Gärtner</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zsuzsanna Marjainé Szerényi, Ágnes Zsóka, and Judit Rákosi</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Health, Safety and Environmental Costs and Chemical Selection in the Oilfield Industry: A Method for Informed Decisions During Project Planning</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>Ylva Gilbert and Anna Kumpulainen</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Sustainability Management Control</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Stefan Schaltegger</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Impact Assessment in the European Union: The Example of the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>Anna Széchy</td>
<td></td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>367</td>
</tr>
</tbody>
</table>
Contributors

Martin Bennett
The Business School, University of Gloucestershire, Cheltenham,
United Kingdom
mbennett@glos.ac.uk

Roger L. Burritt
School of Commerce, University of South Australia, Adelaide, Australia
roger.burritt@unisa.edu.au

Maria Csutora
Corvinus University of Budapest, Budapest, Hungary
maria.csutora@uni-corvinus.hu

Imre Dobos
Corvinus University of Budapest, Budapest, Hungary
imre.dobos@uni-corvinus.hu

Szilvia Gärtner
University of Technology and Economics (BME), Stoczek József u. 2., 1111
Budapest, Hungary
sgartner@denso.hu

Ylva Gilbert
Gaia Consulting Oy, Helsinki, Finland
Ylva.Gilbert@gaia.fi

Kirsí Hyytinen
VTT InnovationStudies, Espoo, Finland
kirsí.hyytinen@vtt.fi

Szabolcs Imreh
Faculty of Economics and Business Administration, Institute of Economics
and Economic Development, University of Szeged, Szeged, Hungary
iszabi@eco.u-szeged.hu
Christine Jasch
Institute for Environmental Management and Economics, IOEW, Vienna, Austria
jasch.christine@ioew.at

Izabella Szakálné Kanó
Faculty of Economics and Business Administration, Institute of Economics and Economic Development, University of Szeged, Szeged, Hungary
Kano.Izabella@eco.u-szeged

Benjamin Karatzoglou
Department of Economics, University of Macedonia, Thessaloniki, Greece
venos@uom.gr

Ourania Karatzoglou
rania.mak@gmail.com

Anna Kumpulainen
Gaia Consulting Oy, Helsinki, Finland
Anna.Kumpulainen@gaia.fi

Jarkko Leppälä
MTT Agrifood Research Finland (Economic Research), Vihti, Finland
jarkko.leppala@mtt.fi

Kellie Liket
Erasmus Centre for Strategic Philanthropy, Erasmus University, Rotterdam, The Netherlands
liket@ese.eur.nl

Torsti Loikkanen
VTT Innovation Studies, Espoo, Finland
torsti.loikkanen@vtt.fi

Karen Maas
Department of Business Economics, Erasmus University, Rotterdam, The Netherlands
maas@ese.eur.nl

György Málovics
Faculty of Economics and Business Administration, Institute of Economics and Economic Development, University of Szeged, Szeged, Hungary
malovics.gyorgy@eco.u-szeged.hu

Esa Manninen
MTT Agrifood Research Finland (Economic Research), Vihti, Finland
esa.manninen@mtt.fi
Contributors

Norio Minato
Graduate School of Business Administration, Kobe University, Kobe, Japan
nminato@cox.net

Bruno Notarnicola
Faculty of Economics, University of Bari Aldo Moro, Bari, Italy
b.notarnicola@dgm.uniba.it

Tuula Pohjola
School of Science and Technology, Aalto University, Helsinki, Finland
tuula.pohjola@kolumbus.fi

Judit Rákosi
ÖKO Zrt., Budapest, Hungary
rakosi.judit@oko-rt.hu

Stefan Schaltegger
Leuphana University Lüneburg, Lüneburg, Germany
stefan.schaltegger@leuphana.de

Ettore Settanni
Faculty of Economics, University of Bari Aldo Moro, Bari, Italy
e.settanni@dgm.uniba.it

Anna Széchy
Department of Environmental Economics and Technology, Corvinus
University of Budapest, Budapest, Hungary
anna.szechy@uni-corvinus.hu

Zsuzsanna Marjainé Szerényi
Department of Environmental Economics and Technology, Corvinus
University of Budapest, Budapest, Hungary
zsuzsanna.szerenyi@uni-corvinus.hu

Giuseppe Tassielli
Faculty of Economics, University of Bari Aldo Moro, Bari, Italy
g.tassielli@dgm.uniba.it

Tünde Tátrai
Corvinus University of Budapest, Budapest, Hungary
tunde.tatrai@uni-corvinus.hu

Hajnalka Ván
University of Szeged, Szeged, Hungary
van.hajnalka@eco.u-szeged.hu

Tobias Viere
ifu Hamburg GmbH and Centre for Sustainability Management (CSM),
Leuphana University Lüneburg, Lüneburg, Germany
t.viere@ifu.com
Jan von Enden
EDE Consulting Americas, San Jose, Costa Rica
vonenden@ede-consulting.com

Gyöngyi Vörösmarty
Corvinus University of Budapest, Budapest, Hungary
gyongyi.vorosmartyi@uni-corvinus.hu

Ágnes Zsóka
Department of Environmental Economics and Technology, Corvinus University of Budapest, Budapest, Hungary
agnes.zsoka@uni-corvinus.hu
List of Figures

Fig. 2.1 Coffee supply chain stages and environmental issues 27
Fig. 2.2 EMA decision situation at Neumann Coffee Group 32
Fig. 2.3 Supply chain costing, current situation (hypothetical) 35
Fig. 2.4 Supply chain costing, adequate fertiliser use (hypothetical) 36
Fig. 3.1 Activities according to the type of motivation and the source of motivation ... 50
Fig. 4.1 A generic manufacturing system network 64
Fig. 4.2 Account flowchart ... 100
Fig. 5.1 The farm management system, illustrating the various tasks of farmers ... 113
Fig. 5.2 Location of the case study farm in Finland, Europe 117
Fig. 5.3 Force field analysis for the sustainability of environmental issues .. 123
Fig. 5.4 Force field analysis for the sustainability of social and ethical issues ... 124
Fig. 5.5 Force field analysis for the sustainability of economic issues .. 125
Fig. 6.1 Average influence of different stakeholder groups 142
Fig. 6.2 Importance of the claims of the stakeholder groups examined ... 143
Fig. 7.1 Assessment of the respondents of impacts of responsible company activities on competitiveness ... 160
Fig. 8.1 Internal involvement in the corporate goals 173
Fig. 8.2 Impact value chain .. 175
Fig. 9.1 Event tree analysis for 2 years ... 213
Fig. 9.2 Event Tree Analysis ... 214
Fig. 9.3 Decision Tree Analysis ... 214
Fig. 9.4 Decision Flow with Total economic value for environmentally friendly projects ... 215
Fig. 9.5 Sales Volume Assumption .. 216
Fig. 9.6 Cumulative CO$_2$ reduction weight
 simulation result (k tons) .. 220
Fig. 9.7 PV distribution ... 222
Fig. 9.8 Event tree analysis (unit; billion yen) .. 223
Fig. 9.9 Decision tree analysis (unit; billion yen) 224
Fig. 9.10 Total Economic Value .. 224
Fig. 9.11 Sensitivity of Volatility .. 225
Fig. 9.12 Sensitivity of Abandonment Value 226
Fig. 9.13 Sensitivity of WACC ... 226
Fig. 9.14 Sensitivity of Risk free rate ... 227
Fig. 10.1 Price and traded volume of the EUAs for the 2004–2007
 period .. 237
Fig. 13.1 Ratio of the amount offered for non-use value 308
Fig. 14.1 A simplified view of ABC activities for chemical
 selection and usage .. 323
Fig. 14.2 Cost types and the overall calculations for oil well fluid 324
Fig. 14.3 Costing HSE risk (I_p = incident with minor, typical
 consequences; I_w = incident with major, worst case
 consequences) ... 326
Fig. 14.4 Screenshot of a HSE administrative cost page
 in BrineWise™ ... 330
Fig. 14.5 Screenshot of the results page in BrineWise™ 331
Fig. 14.6 Screenshot of the results page in BrineWise™ 331
Fig. 15.1 Market and non-market character of economically relevant
 sustainability topics ... 338
Fig. 15.2 The sustainability balanced scorecard structuring sustainability
 management control ... 344
Fig. 15.3 Possible generic indicators and performance drivers
 of sustainability management control based on the five
 SBSC perspectives ... 349
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Comprehensive environmental management and sustainability accounting framework</td>
<td>14</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Tools used in EMA and Supply Chain Management chapters based on comprehensive framework</td>
<td>15</td>
</tr>
<tr>
<td>Table 1.3</td>
<td>Comprehensive EMA framework and supply chain – three parties in a single country</td>
<td>16</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Physical input/output table for 1 ton of green bean input (simplified)</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Physical and monetary flows of green beans grade B (simplified)</td>
<td>34</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Activities according to social responsibility topics</td>
<td>49</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Activities according to type of motivation and field of sustainability</td>
<td>51</td>
</tr>
<tr>
<td>Table 4.1</td>
<td>Supply and use tables</td>
<td>67</td>
</tr>
<tr>
<td>Table 4.2</td>
<td>Other resources generated and used by the system</td>
<td>69</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Input–output representation of the system</td>
<td>74</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Production plan for 1 month</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.5</td>
<td>Input–output representation of the system</td>
<td>78</td>
</tr>
<tr>
<td>Table 4.6</td>
<td>Input–output representation of the system</td>
<td>82</td>
</tr>
<tr>
<td>Table 4.7</td>
<td>Input–output representation of the system</td>
<td>84</td>
</tr>
<tr>
<td>Table 4.8</td>
<td>Input–output representation of the system, with allocation</td>
<td>88</td>
</tr>
<tr>
<td>Table 4.9</td>
<td>Production plan with inventories and scrap</td>
<td>90</td>
</tr>
<tr>
<td>Table 4.10</td>
<td>Input–output representation of the system, with allocation</td>
<td>92</td>
</tr>
<tr>
<td>Table 4.11</td>
<td>Period cost drivers</td>
<td>94</td>
</tr>
<tr>
<td>Table 4.12</td>
<td>Changes to be made to Table 4.10 due to the beginning inventory</td>
<td>96</td>
</tr>
<tr>
<td>Table 4.13</td>
<td>Balanced flows in monetary terms</td>
<td>99</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Process tasks and possible risk issues in milking</td>
<td>119</td>
</tr>
<tr>
<td>Table 5.2</td>
<td>Summary of sustainability related factors in the milking process</td>
<td>121</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>6.1</td>
<td>Stakeholder influence as perceived by managers</td>
<td>137</td>
</tr>
<tr>
<td>6.2</td>
<td>Sustainability claims examined</td>
<td>142</td>
</tr>
<tr>
<td>7.1</td>
<td>Company background of the survey respondents</td>
<td>156</td>
</tr>
<tr>
<td>7.2</td>
<td>The manufacturing and service sectors of the respondents</td>
<td>156</td>
</tr>
<tr>
<td>7.3</td>
<td>The distribution of the professional positions of respondents in companies</td>
<td>156</td>
</tr>
<tr>
<td>8.1</td>
<td>Definitions of social impact and related terms</td>
<td>175</td>
</tr>
<tr>
<td>8.2</td>
<td>Overview of social impact measurement methods</td>
<td>178</td>
</tr>
<tr>
<td>8.3</td>
<td>Characteristics of social impact measurement methods</td>
<td>180</td>
</tr>
<tr>
<td>8.4</td>
<td>Classification of social impact measurement tools</td>
<td>183</td>
</tr>
<tr>
<td>9.1</td>
<td>Assumption of this model</td>
<td>214</td>
</tr>
<tr>
<td>9.2</td>
<td>Calculation results</td>
<td>214</td>
</tr>
<tr>
<td>9.3</td>
<td>Revenue, cost, profit, tax, free cash flow assumption</td>
<td>217</td>
</tr>
<tr>
<td>9.4</td>
<td>Investment assumption</td>
<td>218</td>
</tr>
<tr>
<td>10.1</td>
<td>Annual allowances and verified emissions for the first EU-ETS phase in Greece (kilotons of CO₂)</td>
<td>235</td>
</tr>
<tr>
<td>10.2</td>
<td>Descriptive statistical analysis of the sample companies allowance costs discounted by turnover, net earnings, headcount and total assets</td>
<td>240</td>
</tr>
<tr>
<td>10.3</td>
<td>Number, cumulative percentage, and verified emissions percentage for Greek installations participating in the first EU-ETS phase, classified by size</td>
<td>241</td>
</tr>
<tr>
<td>11.1</td>
<td>Overview of the input–output material flow balance</td>
<td>260</td>
</tr>
<tr>
<td>11.2</td>
<td>System boundaries for material flow accounting</td>
<td>260</td>
</tr>
<tr>
<td>11.3</td>
<td>Physical flow accounts according to SEEA</td>
<td>262</td>
</tr>
<tr>
<td>11.4</td>
<td>Environment related cost categories at the micro level</td>
<td>264</td>
</tr>
<tr>
<td>11.5</td>
<td>Distribution of environment related costs by EMA cost categories and accounts</td>
<td>265</td>
</tr>
<tr>
<td>12.1</td>
<td>Benefits from environmental activities – connection with the balance sheet</td>
<td>285</td>
</tr>
<tr>
<td>12.2</td>
<td>Value drivers and environmental benefits and measurement</td>
<td>290</td>
</tr>
<tr>
<td>12.3</td>
<td>The effects of the environmental measurements on the value drivers</td>
<td>296</td>
</tr>
<tr>
<td>13.1</td>
<td>WTP in the two pilot areas</td>
<td>307</td>
</tr>
<tr>
<td>13.2</td>
<td>Descriptive statistics of the variables influencing the WTP included in the model</td>
<td>309</td>
</tr>
<tr>
<td>13.3</td>
<td>Multivariate models estimated by linear regression (t-values are in parentheses)</td>
<td>310</td>
</tr>
</tbody>
</table>
List of Tables

Table 13.4 Results of aggregation ... 311
Table 14.1 Summarised HSE profiles of the case chemicals 327
Table 16.1 Overview of impact assessments included in the study 354